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ABSTRACT 

Throughout the history of walking robots several static and dynamic stability criteria have been 
defined.  Nevertheless, different applications may require different stability criteria and, up to 
the authors’ best knowledge, there is no qualitative classification of such stability 
measurements. Controlling a robot gait by means of using the wrong stability criterion may 
prevent the task from succeeding.  By the other hand, if the optimum criterion is found the 
robot gait can also be optimized.   In this work, the stability criteria that have been applied to 
walking robots with  at least four legs are examined attending to the stability margin on 
different static and dynamic situations. As a result, a qualitative classification of stability 
criteria for walking machines is proposed so that the proper criterion can be chosen for every 
desired application. 
 

1  INTRODUCTION 

Robot stability must be carefully controlled during gait generation. The first generation of 
walking machines were huge mechanisms composed of heavy limbs too difficult to control 
[13]. The adoption of statically stable gaits [7] could simplify their control. However, during 
the motion of the heavy limbs and body some inertial effects and other dynamic components 
(friction, elasticity, etc.) arise. For this reason, low and constant velocity movements must be 
performed. Thus, the adoption of static stability limits speed of motion. 
 
Little effort has been done to solve for the dynamic effects that limit statically stable machines’ 
performance [3][5][6][12][15]. However, one of the main goals of the research on legged 
locomotion is the application of walking robots into industrial processes and transport areas, 
and such kind of robots are not intended to trot or gallop but walk. 
 
The few dynamic stability criteria defined for quadrupedal walking seem to give different form 
and name to a unique idea: the sign of the moment around the edges of the support polygon 
caused by dynamic effects acting over the center of mass of the vehicle. The suitability of each 
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criterion for each particular application (i.e. manipulation forces and moment present, uneven 
terrain, etc.)  is not clear at all. Nevertheless, the use of a stability criterion not suitable for the 
current application may prevent the task from succeeding. Therefore a qualitative classification 
of the existing static and dynamic stability criteria for robots of four or more legs is absolutely 
required. 
 
In this work, the existing stability criteria are briefly reviewed in Section 2. Then, Section 3 
describes a comparative study of their stability margins attending to their suitability to measure 
stability for a number of representative situations. Also, the final qualitative classification of the 
stability criteria is proposed. Finally, Section 4 presents some conclusions. 
 
Equation Section 2 

2  A REVIEW ON STABILITY CRITERIA 

2.1  Static Stability Margins 
 
The first static stability criterion for an ideal machine walking at constant speed along a 
constant direction and over flat and even terrain was proposed by McGhee and Frank in 1968 
[7].  The CG Projection Method claims that the vehicle is statically stable if the horizontal 
projection of its center of mass  (c.o.m.) is inside the support polygon (defined as the convex 
polygon formed by connecting footprints).  Later, this criterion was extended to uneven terrain  
[8] by redefining the support polygon as the horizontal projection of the real support pattern. 
The Static Stability Margin, SSM was defined for a given support polygon as the smallest of 
the distances from the c.o.m. projection to the edges of the support polygon. Approximations 
to the SSM are the Longitudinal Stability Margin, LSM [17] and the Crab Longitudinal 
Stability Margin, CLSM [18]. 

 
The above stability criteria are all based on geometric concepts; the SSM, LSM and CLSM are 
independent of the c.o.m. height and do not consider either kinematic or dynamic parameters.  
It is intuitive that the stability of a non-ideal walking machine should depend on those 
parameters. 
 
A more convenient stability measurement was proposed by Messuri in 1985 [9]. He defines the 
Energy Stability Margin, ESM, as the minimum potential energy required to tumble the robot 
around the edges of the support polygon, that is: 
 

 min( )
sl

ESM ii
S mgh=  (2.1) 

where i denotes the segment of the support polygon considered as rotation axis and ls the 
number of supporting legs. hi is the variation of c.o.m. height during the tumble, which comes 
from: 

 (1 cos )cosi ih R θ ψ= −  (2.2) 

where Ri is the distance from the c.o.m. to the rotation axis, θ is the angle that R forms with 
the vertical axis and ψ is the inclination angle of the rotation axis relative to the horizontal 
plane. 



 
The ESM gives a qualitative idea of the amount of impact energy supported by the vehicle. 
Extensions of the ESM were proposed by Nagy in 1991 [10] to consider the foot sinkage on 
soft and compliant terrain (the Compliant Energy Stability Margin, CESM) and the stabilizing 
effect of a leg of a foot that is in the air (the Tipover Energy Stability Margin, TESM). For 
most walking machines the ESM and the TESM coincide because the non-supporting legs are 
too far from the floor to enhance stability. Only frame-based vehicles will find this stability 
margin an advantage. 
 
Finally, Hirose et al. in 1998 normalize the ESM to the robot weight and propose the 
Normalized Energy Stability Margin, NESM , defined as [4]: 
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sl
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NESM ii

S
S h

mg
= =  (2.3) 

2.2 Dynamic Stability Margins 
 
The first dynamic stability criterion for quadrupeds using crawl gaits was proposed in 1976 by 
Orin as an extension of the CG Projection Method. The Centre of Pressure Method, COP [11] 
declares that a robot is dynamically stable if the projection of the c.o.m. along the direction of 
the resultant force acting on the c.o.m. is inside the support polygon. The Dynamic Stability 
Margin is thus defined as the smallest distance from the COP to the edges of the support 
polygon (see also [3]).  
 
Kang et al. (1997) lately renamed the COP as the Effective Mass Center, EMC [5], and 
redefine it as the point on the support plane where the resultant moment due to terrain-reaction 
forces and moments vanishes, which in the literature of biped robots is commonly named as the 
Zero Moment Point, ZMP [16]. 

 
At the same time, some momentum-based stability criteria have been defined. Here, only the 
most meaningful ones are reviewed. The statement is as follows: given a robot + manipulator 
system as shown in Figure 1(a), the forces and moments acting over the c.o.m. may destabilize 
it, making the system tumble. The dynamic equilibrium at the c.o.m. requires: 
 

 = + +I S G MF F F F  (2.4) 

 
Figure 1: (a) Forces acting on a robot + manipulator system. (b) Robot tumbling around the rotation axis. 



 = +I S G MM M M + M  (2.5) 

where subscripts I, S, G and M denote inertia, support, gravitational and manipulation effects 
respectively. 
 
During the tumble the robot loses most of the support feet, remaining only those that conform 
a rotation axis (see Figure 1(b)). An interaction force FR and moment MR between robot and 
terrain exist as the addition of reaction forces at every foot (Fri) and momentum they generate 
around the c.o.m., respectively. This reaction force and moment generate a moment Mi about 
the rotation axis i that must compensate for the destabilizing forces and moments to ensure the 
system stability. When such compensation is not enough, the system is said to be dynamically 
unstable. 
 
Based on this statement, Lin and Song (1993) [Lin and Song 1993] redefine the Dynamic 
Stability Margin, DSM, as the smallest of all moments Mi for every rotation axis in the support 
polygon normalized by the weight of the system, that is: 
 

 
( )

min i
DSM i

S
mg

⋅ × +
= i R Re F P M

 (2.6) 

where Pi is the position vector from the c.o.m. to the i-th support foot and ei is the unit vector 
that goes round the support boundary n the clockwise sense. If all moments are positive 
(relative to ei) then the system is stable. 
 
Note that the term DSM is used for both Orin’s dynamic stability margin and Lin and Song’s 
criterion, but in this paper, the term DSM will be reserved for Lin and Song’s criterion, while 
Orin’s dynamic stability margin will be referred to as the EMC. 
 
Yoneda and Hirose (1997) [Yoneda and Hirose 1997] propose the Tumble Stability Judgment, 
TSJ, based on the same statement. In the dynamic equilibrium of the system they assume 
massless legs, so leg-support and foot-reaction forces coincide. Therefore they obtain the 
resultant reaction force FR and moment MR  from: 
 

 = − −R I G MF F F F  (2.7) 

 = − −R I G MM M M M  (2.8) 

Thus, the moment Mi around the rotation axis is calculated as follows: 
 

 iM = ⋅ + × ⋅R i R i iM e F P e  (2.9) 

Note that the moment calculated by eq. (2.9) is exactly the same that is used in eq. (2.6). 
 
The TSJ claims that the system is dynamically stable if there exists any support foot j in the 
direction of rotation that prevents the system from tumbling. Then, the Tumble Stability 
Margin, TSM becomes: 

 min i
TSM i

M
S

mg
=  (2.10) 



Recently, Zhou et al. (2000) [19] proposed the Leg-end Supporting Moment criterion, LSM. 
This stability margin is exactly the same as the TSM, but they obtain the resultant force FR and 
moment MR  from force sensors at the feet. 

 
Apart from ZMP-based and momentum-based stability criteria a different criterion was 
proposed by Papadopoulos and Rey (1996) [12]. The Force-Angle stability criterion finds the 
angle, αi, between the resultant force acting from the c.o.m. on the ground (the opposite to the 
reaction force FR) and the vector Ri, normal to the rotation axis from the c.o.m. (see Figure 2). 
The system gets unstable when this angle becomes zero. The stability margin is the product of 
the angle times the resultant force FR, that is: 
 

 min( )FASM ii
S α= RF  (2.11) 

3  COMPARATIVE ANALYSIS OF STABILITY MARGINS 

A comparative analysis of the reviewed stability margins has been performed throughout 
simulation. For this purpose the Yobotics! Simulation construction Set [14] has been chosen 
as it provides the suitable tools for dynamic simulations. The model of the SILO4 walking 
robot has been used [1]. The goal of the analysis is a qualitative classification of stability 
margins to determine which one is more suitable for each given application. 
 
The stability margins that have been selected for the analysis are the SSM, the NESM, the 
DSM, the TSM, the FASM and the EMC. They have been computed while the robot walks a 
two-phases discontinuous gait [2] under the following six different terrain and dynamic 
situations: 
 
 CASE 1: Horizontal and even terrain in the absence of dynamics. 
 CASE 2: Uneven terrain in the absence of dynamics. 
 CASE 3: Horizontal and even terrain.  Inertial and elastic effects arise. 
 CASE 4: Uneven terrain. Inertial and elastic effects arise. 
 CASE 5: Horizontal and even terrain.  Inertial, elastic and manipulation dynamics arise. 
 CASE 6: Uneven terrain. Inertial, elastic and manipulation dynamics arise. 
 
The above six case studies represent different situations that a robot can meet during real 
applications. 

 
Figure 2: Geometric problem of the Force-Angle stability margin. 



 
Figure 3(a) and (b) shows one half of the gait cycle for the cases 1 and 2 respectively. The gait 
phases corresponding to the swing of the rear and front legs precede the body support phase. 
From both figures it can be observed that  the margins SSM, DSM, TSM and EMC coincide. 
Also, for a different height of the c.o.m. (dotted line) those margins coincide. It is relevant that 
in the first case study (Figure 3(a)), when the terrain is horizontal and even, these four margins 
do not vary with the c.o.m. height. This is obviously a drawback of these four criteria because 
the increase of the c.o.m. height is a destabilizing effect. However, in the second case study, 
for uneven terrain (see Figure 3(b)), the six margins consider the c.o.m. height. The vertical 
dashed line inside the body support phase interval points to the instant when the SSM stability 
margin is maximum, which, over horizontal terrain is one half of the support phase interval. 
For both case studies that instant coincides for all margins. The NESM and FASM are the only 
margins that reflect the effect of body height increase over horizontal and even terrain. Thus, 
they are the only margins that give a successful stability measurement.  
 
Over an inclined surface (see Figure 3(b)), the NESM and FASM differ from the others in the 
instant of maximum stability. The maximum NESM takes place after SSM, DSM, TSM and 
EMC (which coincide). Also the maximum FASM occurs even later than NESM. Which of the 
margins is the best? The NESM is defined as the measurement of impact energy that the 
system can absorb during the tumble. Thus, when the c.o.m. is placed in the maximum NESM 
point the possibility of tumbling downhill is equal to uphill (see also [15]). Therefore, the 
instant of maximum NESM is the optimum one. 

 
(a) CASE 1                (b) CASE 2 

Figure 3: Different stability margins in the absence of system dynamics. Solid line for a robot height of 
320 mm and dotted line for a robot height of 420 mm. (a) CASE 1: horizontal terrain, (b) CASE 2: 
terrain inclined 10º from the horizontal plane. 



 
Figure 4(a) and (b) shows one half of the gait cycle for the cases 3 and 4 respectively, which 
correspond to the existence of inertial effects when the robot walks over horizontal and 
inclined terrain respectively. Also elastic effects are introduced due to joint elasticity and 
ground contact effects. 
 
Over horizontal terrain (see Figure 4(a)) all the instants of maximum stability still coincide. 
However, the DSM, TSM, FASM and EMC reflect some oscillation of the margin due to 
elasticity. Also inertial effects during the legs transfer phase and body support are reflected. 
Those dynamic effects are not reflected by the SSM and  NESM (just because they are static 
stability margins).  
 
Therefore, only dynamic stability criterions are valid to judge stability when inertial and elastic 
effects arise (which is obvious). However, as over horizontal terrain the DSM, TSM and EMC 
do not consider the effect of height changes, only the FASM is suitable for the case study 3. 
Nevertheless, if the robot height is not presumed to change, also DSM, TSM and EMC are 
suitable. 
 
Figure 4(b) represents stability margins for the fourth case study, when the terrain is inclined 
and inertial and elastic effects arise. While the SSM and NESM do not reflect any reduction of 
the stability margin due to the existing dynamics (as they are the same as in Figure 4(b)), the 
DSM, TSM, FASM and EMC reflect an stability decrease. Also their instants of maximum 
stability occur some time before than in the case study 2, when no dynamics exist.  
 
The maximum stability instant of the FASM occurs later than DSM, TSM and EMC. However, 
the optimum criterion is the one whose maximum stability instant takes place before FASM 
and after DSM, TSM and EMC. Therefore, no optimum stability criterion exists for the case 
study 4. 
 

 
(a) CASE 3                (b) CASE 4 

Figure 4: Different stability margins when inertial and elastic effects arise. (a) CASE 3: horizontal 
terrain, (b) CASE 4: terrain inclined 10º from the horizontal plane. 

 



Figure 5(a) and (b) shows one half of the gait cycle for the cases 5 and 6 respectively, which 
correspond to the existence of manipulation effects when the robot walks over horizontal and 
inclined terrain respectively. Also inertial and elastic effects are considered. Both figures show 
that manipulation forces opposing to motion cause an stability decrease at the rear leg’s swing 
phase and increase at the front leg’s swing phase. Also, a delay of the maximum stability 
instant on the DSM, TSM, FASM and EMC can be observed. It is obvious from the figure that 
if the manipulation force is increased the robot could be destabilized during the swing of the 
rear leg. This will never be previewed by the SSM and NESM. 
 
The instant of maximum FASM takes place after the instant of maximum DSM, TSM and 
EMC.  However, the optimum criterion should meet the maximum stability position after DSM 
and before FASM. Thus, no optimum criteria exists for the fifth case study. 
 
The same can be stated for the last case, when manipulation forces exist and the robot walks 
over uneven terrain. 
 
Table I  resumes a classification of the studied stability margins. The symbol √ denotes that the 
criterion is “valid”, the symbol × denotes “not valid” and the symbol * denotes “optimum”. As 

 
(a) CASE 5                (b) CASE 6 

Figure 5: Different stability margins when inertial, elastic and manipulation effects arise as a 20 N constant 
force opposing to motion. (a) CASE 5: horizontal terrain, (b) CASE 6: terrain inclined 10º from the 
horizontal plane. 

 

Table I: Classification of the existing stability criteria. 
 

 



static stability margins only NESM provide the optimal measurement. However all of them are 
valid. As dynamic stability margins the SSM and NESM are not valid. When inertial effects 
arise over horizontal terrain only the FASM provides the optimum measurement, however the 
rest of dynamic stability criteria are valid. When any other dynamics are present, as 
manipulation forces and moments, over horizontal or uneven terrain, there is no criterion that 
provides the optimum margin. Therefore there is no criterion that can assure the stability of a 
machine under those conditions. Another conclusion of the study is that the DSM, TSM and 
EMC provide the same measurement for every studied situation. 
 

4  CONCLUSIONS 

In this work a comparative analysis of the existing stability criteria has been performed. For 
this purpose, six case studies have been considered, which cover all the situations that can 
occur during real industrial applications of legged robots. 
 
As a result, a classification of stability criteria has been proposed. It shows that no optimum 
criterion exists for every situation studied. Also it has been showed that every momentum-
based stability criteria provide the same stability margin, and they are never optima. 
 
This classification enables the election of the proper stability criterion for each real application 
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