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A large class of fluids of particles interacting via ultrasoft, repulsive pair potentials crystallize
into cluster crystals. Here, we employ density functional theory and computer simulations to study
the behavior of a system of particles that repel each other with a exp(—r®)-potential [A. J. Moreno
and C. N. Likos, Phys. Rev. Lett., 2007, 99, 107801] under planar confinement. We compare
the behavior for purely repulsive to that for attractive slit walls. In particular, we present the
phase diagram and we show that for repulsive walls the system freezes from the middle, whereas
for attractive ones crystallization sets in at the walls and proceeds to the middle. For large wall-
wall-separations we find continuous growth of a fluid or crystalline layer on the wall, depending on
the wall-particle interaction, which is interrupted by capillary melting or freezing close to the bulk
crystallization transition. An asymptotic scaling analysis of the width of the liquid or crystalline
films growing at the walls indicate complete wetting in both cases.

PACS numbers: 64.70.Dv, 82.30.Nr, 61.20.Ja, 82.70.Dd

I. INTRODUCTION

The influence of slit pore confinement and of single
planar walls on freezing and melting has been studied for
many different atomic and colloidal systems [T}, 2 3] [4]

by means of computer simulation [5, @] [7, [8 [, 10, 11,
theory [12, O3} [14], and experiment [3| 15, 16]. In

general, two limiting cases of planar confinement are
to be distinguished in terms of the pore size: In nar-
row pores of the width of one or few particle diame-
ters, crystallization of the quasi-2D system is strongly
influenced by the wall-particle interaction and by pack-
ing effects [8] 17, 18] [19]. For monolayers or even a few
hard-sphere layers in planar confinement, the otherwise
first-order Kosterlitz-Thouless phase transition becomes
continuous [20, 21]. On the other hand, for large con-
finement widths, freezing and melting is dominated by
the 3D bulk phase behavior and by single-wall proper-
ties, i.e., crystal/fluid wetting [6] [7, @]. For large confine-
ment widths, two possible scenarios are observed upon
approaching the bulk liquid-solid transition, depending
on the different interactions between the wall, the liquid,
and the crystal: In the first scenario, the walls induce
melting, which becomes manifest in a fluid layer grow-
ing on the walls, already under conditions in which the
crystal is stable in the bulk, a situation referred to as
premelting [12), 13, 14, [15]. In the second scenario, the
walls induce freezing, which is due to the presence of
a crystalline slab under conditions in which the fluid is
stable in the bulk, denoted as prefreezing [5, [0} [7, [8, ©].
The former mechanism is responsible for surface melting,
which prevents the persistence of overheated crystalline
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states [I5]. On the other hand, the latter mechanism
prevents undercooling of the fluid state; after a quench
from a high to a low temperature it is responsible for
heterogeneous nucleation on the walls [22] which is often
much more likely than homogeneous nucleation deep in
the (bulk) fluid state.

Despite a host of literature on experiments, simulation
studies, and phenomenological theories, there have been
only few attempts to study confinement-induced freez-
ing or melting by means of microscopic theories [I], in
which the only input should be the particle-particle and
the wall-particle interaction potentials. The method of
choice is, evidently, classical density functional theory
(DFT) [4, 23], 24, 25, 26]. DFT is an ezact reformula-
tion of the statistical mechanics of many-body systems,
uniform and nonuniform alike, based on the equilibrium
one-particle density peq(r) of the system. As such, it
treats fluids (peq(r) = p, a prescribed constant) and crys-
tals (peq(r) is a periodically modulated space field) on
equal footing. In fact, several of the commonly used
liquid-state theories can be derived from a DFT for-
mulation [27], whereas the DFT-treatment of crystals
can be traced back to the pioneering work of Ramakr-
ishnan and Yussouff [28]. Concomitantly, DFT offers
also a tool to study bulk phase coexistence, a prereq-
uisite for the subsequent investigations of fluid-solid in-
terfaces [29]. There have been DFT calculations for sur-
face melting of Lennard-Jones particles [12] [13], for hard
spheres on hard walls [I3], for hard spheres in very thin
slit pores [30], and also for hard spheres sedimenting onto
hard walls [3I]. Hard spheres in slit pores have been
examined by means of macroscopic, thermodynamically-
inspired arguments [32] as well as by computer simula-
tions in a system similar to the one that is the subject of
this work, in the sense that it also forms clusters, albeit
of a different nature than the ones we consider here [33].
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Quite a bit of theoretical work and simulation studies
have been carried out for liquid-gas separation and wet-
ting phenomena of fluids in confinement [24] [34]. How-
ever, to the best of our knowledge, the effect of varying
confinement-width on crystallization has not been sys-
tematically studied by means of DFT to-date.

In this work, we study the influence of planar confine-
ment on a special class of colloidal particles, which inter-
act via bounded and purely repulsive pairwise additive
potentials. In particular, these pair potentials do not di-
verge at zero particle distance. These so called ultrasoft,
repulsive particles are realized in nature and experiment
by a large class of complex molecules, such as branched or
non-branched polymers that possess a vast number of in-
ternal degrees of freedom, a property which allows them
to share their (center-of-mass) position with another par-
ticle or even several other particles of their kind [35].
The effective interaction of such complex molecules is
highly tunable by choosing different architectures and
solvabilities of the respective polymer monomers, model
amphiphilic dendrimers being a concrete example [36].
Recent interest in such potentials has grown not only on
the basis of their physical relevance but also due to some
beautiful mathematical properties they possess, allowing
for the determination of ezact ground states [37, [38] and
the application of generalized duality relations to such
systems [39].

The rest of this work is organized as follows: In Sec-
tion [[I] we introduce the model interaction and briefly
review its properties. In Section we give a short de-
scription of the DFT, whereas in Section [[V] we describe
the numerical simulation technique used. The bulk phase
behavior is discussed in Section [V] The system confined
between repulsive walls is studied in Section [VI, whilst
the attractive walls are studied in Section [VII} Finally,
in Section [VIIIl we summarize and draw our conclusions.

II. THE MODEL: ULTRASOFT, REPULSIVE
PARTICLES

The particles considered here interact by means of
a non-negative and bounded pair interaction potential,
0 < ¢(r) < oo, that is integrable and possesses a Fourier
transform gzg(k), and are termed wultrasoft, repulsive par-
ticles. Such interactions have been divided into two cat-
egories, the so called Q*- and the QT-class [40]. The
former classifies potentials for which ¢(k) has an oscil-
latory decay about zero, while interaction potentials in
systems of the latter kind fulfill the condition ¢(k) > 0.
The drosophila of bounded pair potentials is the gener-
alized exponential model of index n (GEM-n), which is
defined by

¢(r) = eexp[—(r/o)"], (1)

where 7 is the particle distance, o is the interaction range
(typically a measure of the particle’s size), and € is the
interaction strength. In the following, we will set € = 1,

o =1 as well as kg = 1, the latter being Boltzmann’s
constant. It has been shown [41I] that ¢(r) of eq. (1)) be-
longs to the Q% -class for n < 2 and to the Q*-class for
n > 2. Moreover, it has been established [40] that the
distinction of Q*- and Q*t-particles goes along with two
different principle features of the topologies of the respec-
tive bulk phase diagrams: Systems of the Q*-kind dis-
play freezing for arbitrarily high temperatures and den-
sities into so called cluster crystals [36] 4], [42] [43] while
systems of the QT-kind are characterized by reentrant-
melting and a maximum freezing temperature [44]. In
this paper, we concentrate on the class of Q*-particles
and their behavior in confinement.

Cluster crystallization is highly distinct from crystal-
lization of “conventional/ordinary” colloids: It implies
that at high densities several particles share the same
lattice site of a periodic crystal. In fact, it has been
shown for the GEM-4 model that upon increasing the
density, the lattice constant of the stable fcc crystal,
a = v/2d, where d is the nearest-neighbor distance, ap-
proaches a density- and temperature-independent con-
stant [36]. The above implies that the average number
of particles sharing a lattice site, n., grows linearly with
density. In this work, we investigate the phase behav-
ior of GEM-8-particles, i.e., representative ones of the
Q*-species, which show a tendency to cluster at a lower
density than the GEM-4-particles do, due to a deeper
minimum of the respective Fourier-transformed pair po-
tential [41]. Freezing is studied with the help of mean
field density functional theory (MFA-DFT) and with sim-
ulation for different wall-particle interactions and for dif-
ferent wall-wall separation L,. MFA-DFT has proved to
be highly accurate to reproduce the bulk phase behav-
ior of the GEM-4 model [43], and will be shown here to
accurately predict the equilibrium phase diagram of the
GEM-8 in the bulk and in confinement.

The main focus of this work is in the behavior of the
GEM-8 model in slit pores. Two kinds of planar confine-
ment are considered: In a first setup we study the effect
of purely repulsive Yukawa-walls on the structure and
phase diagram of the system while in a second setup the
influence of attractive Lennard-Jones walls is examined.
The Yukawa potential has been shown to model the inter-
action of dendrimers with hard walls [45] [46]. In order
to model attractive walls we introduce a 9-3-Lennard-
Jones potential. The latter interaction is not based on
microscopic grounds but is introduced to model the in-
fluence of attractive wall potentials in general. However,
recent simulation results [46] have shown that dendrimers
on walls with core-monomer-wall attractions show very
similar effective interaction potentials. We demonstrate
that the first setup leads to premelting: the system is
molten at the walls and crystallizes at the center, while
for the second setup the opposite happens, i.e., there the
walls induce prefreezing [Il 2]. Furthermore, we argue
that both setups display complete wetting [47] which is
deduced from a continuous, logarithmic growth of the
fluid/crystalline wetting layer down/up to the point of



capillary melting/freezing.

A salient property that distinguishes the behavior of
clustering particles from non-clustering ones in confine-
ment, is the ability to locally adjust the average occupa-
tion number of the clusters, n., without distorting the
crystal structure through point defects such as vacan-
cies or interstitials. Remarkably, although there is inces-
sant hopping of particles from one site to the other, ren-
dering these crystals ergodic and endowing them with a
non-vanishing long-time diffusivity, the underlying crys-
tal structure remains intact. In fact, this happens not
despite the hopping mechanism but because of it. For
details, see Ref. [48] [49].

III. DENSITY FUNCTIONAL THEORY

Density functional theory is based on a variational
grand canonical functional Q[p(r)], a unique functional of
the static one-particle density p(r) = <Zf\/:1 o(r — r1)>
of the system, where r;, ¢ = 1... N are the particle coor-
dinates and {(...) denotes the according grand canonical
average [23]. The functional Q[p(r)] is minimized by the
equilibrium one-particle density peq(r), where it takes the
value of the system’s grand potential, Q[p(r)]. The den-
sity functional is typically split into the ideal gas, an
excess, and an external part,

Q[p(r)] = Fia [p(r)] + Fex [p(r)]

2
n / drp(r) (V(x) - 1), @

where V(r) is the external potential and p is the chemical
potential. The integral runs over the system volume. The
ideal part reads as

Fa [p(r)] = 67! / drp(r) [n p(r) — 1] + 3 (N) A~ In A,

3)
with =1 =T, (N) = [drp(r) being the average particle
number and A the thermal de Broglie wavelength. The
last term in eq. above is thermodynamically irrelevant
and will be ignored henceforth. The excess part is given
very accurately for sufficiently high temperatures and/or
densities by the mean-field expression [41]

Fuclp6)) = 5 [ [ avar'opiote ). (@

It is pertinent, at this point, to shortly comment on the
accuracy of the expression (4) above. In Ref. [41], it has
been shown that this functional form rests on the validity
of the approximation ¢(r) = —(¢(r) for the direct corre-
lation function ¢(r) of the fluid (uniform) phase. Within
the framework of linear response theory and employing
the Percus identity, it can be shown that the relation
c(r) = —p¢(r) holds asymptotically in regions of space
for which the potential ¢(r) caused by a test particle

held fixed at the origin is much weaker than the other
two energy scales of the problem: the thermal energy T
and/or the average potential energy per particle caused
by all other particles in a fluid of density p [27]. For
diverging potentials, this relationship must break down
at sufficiently small r-values [50]. However, for ultrasoft,
bounded potentials, it can and it indeed does hold ap-
proximately true for all separations r provided T' and/or
p are sufficiently high, so that the thermal and/or the
potential energy per particle dominate over ¢(r). In pre-
vious work [40, 4] it was demonstrated that the condi-
tions T' 2 1 and/or p 2 1 are sufficient for the relation-
ship ¢(r) = —pv(r) to be fulfilled to a satisfactory degree
of approximation.

Minimization of [p(r)] is pursued by demanding its
functional derivative with respect to density to vanish.
This amounts to numerically solving the self-consistent
equation

pealr) = exp {m - v - [ sl - r/|>peq<r/>} |
(5)

for peq(r) in an iterative fashion, on a periodic rectangu-
lar grid of N, x Ny, x N, grid points, where the convo-
lution integral is evaluated with the help of fast Fourier
transform. We chose a grid of N, ~ 16L,, a = z,y, 2
which is fine enough to reach numerical convergence for
all state points under study. For the study of crystalline
states the z- and y-dimensions of the box are chosen to
be commensurable with the expected lattice spacings in
plane with the confining walls (see Section[V)). The lattice
spacing of crystalline GEMs in the bulk is well known to
be relatively insensitive towards density /chemical poten-
tial and temperature. This is also found for the GEM-8
in confinement, as will be shown below.

IV. SIMULATION

We simulated a system of several thousand parti-
cles, N, interacting through a GEM-8 potential ¢(r) =
exp(—r8). For the case of confinement, they also expe-
rience an external wall potential V(z) presented in Sec-
tions [VI] and [VII} Simulation results presented here are
obtained by means of Brownian dynamics. The equation
of motion for the position vector r; of a particle  is given
by:

Bi(t) = =TV, [V(r)+ > (i — 1)) | +wi(t), (6)
J#i
where T' is a mobility constant (we set I' = 1) and w;(t)
is a stochastic Gaussian noise term. The latter repre-
sents the random collisions with the much faster solvent
molecules, which are not explicitly included in the model.
The noise fulfills the statistical properties [51]

(wi(t)) =0, (w(tyw] (t')) = 287" 6apdi;d(t —t'),
(7)



where «, § are the Cartesian x, y, z-components.

We implemented periodic boundary conditions for the
simulation cell of volume V, = L, x L, X L,. Periodicity
was applied in the z, y-directions in all cases, and also in
the z-direction for the bulk case. We employed a cubic
cell of size L, = L, = L, = 18.57 for the bulk system. In
the confined system, we set L, = L, = 20.43 for slits of
thickness L, < 8. We also carried out simulations on the
confined system for thickness L, = 24, with L, = L, =
9.285.

The Brownian dynamics simulations were performed
at constant N, V., and T, and the equations of motion
@ were integrated via the Ermak’s algorithm [51 [52],
with a timestep A7 = 10~%rg. Here, 73 = [ is the
Brownian time scale. The system was prepared by ran-
domly placing the particles in the simulation cell. In
this way, crystallization occurs spontaneously at suffi-
ciently high density. An equilibration run of typically
10% timesteps was performed before the production run
of typically 3 x 10° timesteps. During the production
run, configurations were periodically saved for computa-
tion of observables. Density profiles and radial distribu-
tion functions (see below) were averaged over typically 30
configurations, the interval between two consecutive con-
figurations of the latter being 100000 timesteps. In this
time scale, the particle mean displacement is of at least
one molecular diameter for all the investigated systems,
guaranteeing that the former configurations are uncorre-
lated. At high densities, a few independent runs were also
performed for some fixed state points (p, T, L. ), starting
from different configurations of the particles, in order to
check that the final values of the former observables are
independent of the initial conditions.

V. THE BULK PHASE DIAGRAM

The phase behavior in confinement is determined by
two factors, the interaction of the particles with the walls
and the behavior in the bulk; in particular, the location of
the considered thermodynamic point (@, T") with respect
to bulk phase boundaries plays a decisive role in influenc-
ing the density profiles in confinement and related surface
phase transitions. Before presenting the phase diagram
of the system in confinement we therefore provide the
bulk phase behavior, as obtained from the DFT, which
serves as a reference point.

Solving eq. within the minimum rectangular unit
cell of the body centered cubic (bce), the face centered
cubic (fcc) and the hexagonal close packed (hep) lattices
of variable lattice spacing, we find that for temperatures
0.5 < T < 4 the system undergoes two subsequent first-
order transitions upon increasing the chemical potential
, first from the liquid to a hcp cluster crystal at pr, and
at higher p, a subsequent structural phase change from a
hep to a fee cluster crystal. This scenario is in contrast to
other GEM-n models with smaller n where at first a post-
freezing bcc cluster phase is found, preceding a bcc — fec
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transformation at higher values of p (or p) [42, 43]. We
have not carried out a search of other non-Bravais lattices
than the hcp-one. Thus it cannot be ruled out that there
are other stable phases of non-Bravais lattices at freezing
or at higher u. However, we can clearly state that within
the DF'T the post-freezing lattice is not a Bravais lattice.

For T = 1, which is the temperature for all confine-
ment studies throughout this work, we locate the freezing
transition in the bulk at a chemical potential p1y = 12.09.
Here, a fluid of density py = 2.96 coexists with the hep
cluster crystal of density ps = 3.48. The latter crystal
consists of polydisperse clusters that contain on average
ne =2 6.02 particles each, corresponding to an equilibrium
nearest neighbor distance of d = 2'/6(n./p,)"/? = 1.347.
The second transition towards the fcc crystal takes place
at a chemical potential ;x = 20.03. Here, already deep
in the crystalline phase, an hcp lattice of average den-
sity p = 7.80, average occupation number n. = 11.96,
and nearest neighbor distance d = 1.295 coexists with a
fcc lattice of average density p = 7.82, occupation num-
ber n. = 11.85, and nearest-neighbor distance d = 1.289
implying a lattice constant of a = v2d = 1.823. We
anticipate that, similar to the GEM-4-model, there is a
triple point at which liquid, hep crystal and fcc crystal
coexist.

The detailed investigation of the bulk phase behavior
of the GEM-8-model is not the purpose of this work, yet
a few comments are of order. First, the stability of the
hep lattice with respect to the fcc comes as a surprise,
since the latter features a larger distance to the third-
nearest neighbors of a given particle than the first. On
energetic grounds, one would thus expect the fcc to win,
and it indeed does so at T' = 0. But very much like
the bcec-lattice is the post-freezing structure above the
triple point of the GEM-4-model on entropy grounds, the
hcp achieves a lower free energy than the fcc due to an
entropically more favorable arrangement of the density
profiles around the crystal sites [53]. As density grows,
however, so does also the cluster population n.. The
inter-site interaction energy, which scales as n2, becomes
increasingly important, energy takes over and fcc wins
over hcp. There are indications from the simulations in
confinement that at post-freezing densities the ordered
state indeed has the propensity to undertake a hcp-like
ordering, i.e., an ABAB ... stacking of hexagonal arrays,
as opposed to the ABCABC ... stacking of the fcc, as
shown in fig. However, in bulk simulations the sys-
tem spontaneously forms a bcec lattice at freezing. The
determination of accurate phase boundaries and crystal
phases could be pursued by means of the novel simulation
technique of Mladek, et al. [36]. This task goes beyond
the scope of this work and will be the subject of further
investigations.

For the rest of this paper, we sidestep thus the issue of
the stability of the hcp-lattice and the associated ques-
tion of the possible existence of other non-Bravais lat-
tices and restrict our theoretical studies to Bravais crys-
tals only. The reasons for doing this are twofold: first,



FIG. 1: Left panel: simulation snapshot of the four crystalline layers of a confined GEM-8-model at temperature T = 1 and
density p = 4.2, view of one quarter of the zy-periodic box from the bottom (lower wall). The two repulsive walls have a
separation L, = 5.2 and are lying parallel to the page. The layers of clusters are color-coded, from bottom to top: green, blue,

orange, and gray. An ABAB...
side view.

as mentioned above, because it is not clear which other
non-Bravais lattices might be competitive. Second, we
expect that our results are generic, since the physics is
dictated by the tendency of the model to form cluster
crystals and is not dependent on the detailed spatial ar-
rangement of the same on a specific lattice. Therefore, we
focus on the bulk results for the phase boundary between
a liquid and a fcc crystal, ignoring any other candidate
periodic arrangement; among all Bravais lattices, the fcc
lattice is the most stable one. The bulk freezing transi-
tion for the same temperature 7' = 1 within the DFT is
found at a slightly higher chemical potential than for the
liquid-hcp transition, namely py = 12.13. Here, a fluid
of density py = 2.97 coexists with the fcc cluster crystal
of demnsity ps = 3.50. The fcc crystal consists of polydis-
perse clusters that contain on average n, = 6.04 particles
each, corresponding to an equilibrium lattice constant of
a = (4n./ps)'/® = 1.905. The equilibrium lattice con-
stant exceeds the value

a* =2V3r/k* =1.859, (8)

where k* = 5.855 is the wavenumber for which ¢(k) at-
tains its minimum, negative value, by a factor 1.025. The
lattice constant a* corresponds to a nearest-neighbor dis-
tance d* = 2-%/2a¢* = 1.314 and to a distance of ad-
jacent layers of hexagonally crystalline particles in the
111-direction of the fcc crystal ¢* = a*/v/3 = 1.073 [54].
The result of eq. stems from a simplified version of
the MFA-DFT, which takes only the first reciprocal lat-
tice vector (RLV) of the fcc lattice into account and re-
sults into the outcome that the length of the first shell
of RLVs of the fcc crystal should coincide with k* at all
densities [41]. The equilibrium lattice constant of the

stacking of the hexagonal layers can be seen. Right panel: same as the left but now from the
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FIG. 2: The equilibrium lattice constant for the fcc crystal in
the bulk as a function of chemical potential for T' = 1.

fce crystal resulting from the full DFT-minimization is
relatively insensitive towards temperature changes. Fur-
thermore, as is known for the GEM-4 as well, it is almost
independent of u. In particular, for T'= 1, a decays as
a function of u towards a plateau of a = 0.94a* which it
reaches at p ~ 50, as can be seen in fig.

In view of the aforementioned insensitivity of a with
respect to the state point in the phase diagram, we can
simplify the calculation by fixing it to a constant value
a = a* for all state points (i, T') and recalculate the bulk
phase diagram under this constraint. Thereby, a slightly
higher chemical potential at freezing is obtained: For T' =
1, the value uy = 12.25, with coexistence densities of
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FIG. 3: The (constrained) bulk phase diagram for fixed lattice
constant a® and for the fixed fcc-lattice. Left panel: The
phase diagram at the (p, T')-representation. The lines are the
loci of the coexisting liquid- and fcc-densities and the gap in-
between denotes the coexistence region. Right panel: same
as the left one but at the (u,T)-representation.

pf =3.00 and p; = 3.58, and average cluster occupancy
ne = 5.74 results. The chemical potential 1y and the
densities of coexistence are plotted versus temperature
in fig. [3] [55].

Another constraint to the lattice geometry, which be-
comes important for the confinement studies, is the fol-
lowing: The distance of neighboring layers of hexago-
nally crystalline particles in the 111-direction of the fcc
crystal c is free to vary whereas the nearest-neighbor dis-
tance of particles within each plane is fixed to d = d*.
If we minimize the grand potential in this partially con-
strained fashion (d = d* only in the xy-plane of confine-
ment), we obtain yet a third value for the bulk freezing
chemical potential, p1y = 12.19, which lies in-between the
two bulk values py = 12.13 (free lattice constant a) and
py = 12.25 (fixed lattice constant a = a*). The optimal
distance of neighboring layers was then found to be given
by ¢ = 1.113 which exceeds the corresponding distance
¢* in an isotropic fce-crystal with lattice constant a* by
a factor 1.038. The bulk freezing parameters obtained
by DFT under the various constraint conditions on the
minimization procedure are summarized in table [[}

VI. REPULSIVE SLIT PORES

In the first setup we study the effect of the repulsive
confining walls. The latter are characterized by the ex-
ternal potential

e~ ? e—(Lz—z)
Vy(r) = 10 SR
v(r) [ z L,—z

], 0<z<L,, (9

where z is the component of the particle coordinate r per-
pendicular to the wall, measured with the origin on one

of the walls. The Yukawa form is motivated on the ba-
sis of results for the interactions of athermal dendrimers
(GEM-2-particles) with model planar walls [45] and is
confirmed by recent results of Lenz, et al. [46]. The pref-
actor 10 in eq. @D is so far arbitrary but should roughly
scale linearly with the number of monomers of a den-
drimer.

In the DFT, the zyz-periodic box for the density field
has the dimensions of L, x L, x (L. + 1), where neigh-
boring slits in the z-direction are separated by a large
additional barrier of width 1, which is wide enough to
obviate any mutual particle interactions across the wall.
The system volume itself is only of size L, X Ly, x L, ex-
cluding the barrier. The dimensions parallel to the walls,
L, and L,, are chosen to be commensurate with the fcc-
lattice of lattice constant a* either at the 100- or the 111-
direction perpendicular to the walls (100: L, = L, = a*,
111: L, = 27Y2a¢*, L, = \/3/2a*). The 110-orientation
is unfavorable due to inefficient packing and is therefore
not considered. As already mentioned in the determi-
nation of the bulk phase diagram, we did not vary the
nearest neighbor distance in the x- and y-direction in the
slit pore geometry. However, we left the system freedom
in adjusting its lattice constant in the z-direction, i.e.,
perpendicularly to the walls.

In confinement, freezing is defined at the point in which
a fully modulated density field p(r) yields a grand poten-
tial lower than that of the z-modulated fluid with den-
sity p(z): Qlp(r); L] < Q[p(2); L.] [56] and it occurs at
a corresponding freezing chemical potential in confine-
ment, p(L;). It will be shortly demonstrated that due to
the repulsive nature of the Yukawa walls, the bulk freez-
ing chemical potential iy can be independently obtained
as py = ps(L, — o0) by an appropriate extrapolation
procedure. Since we minimize the grand potential in a
partially constrained fashion (fixed d = d* only in the
zy-plane, which will turn out to be perpendicular to the
111-direction of the equilibrium fcc-crystal in slit pores
of large widths), the asymptotic value of pf(L, — o0)
should coincide with the bulk freezing chemical poten-
tial uy = 12.19 as obtained by applying the partially
constrained minimization procedure in Section [V] (cf. ta-
ble [Il line 4). The coincidence of the results obtained
by two independent routes for the determination of p
serves as a confirmation of the validity of the extrapola-
tion procedure to be employed.

In DFT, symmetry does not break spontaneously. To
avoid getting trapped in metastable minima of the free
energy landscape in our search for the true equilibrium
configuration, we iteratively solve eq. starting from
different initial density fields. In particular, we start both
from a purely z-modulated density field, which always
leads to a stable or metastable fluid state and from highly
modulated fields, which possess the symmetry of the fcc
crystal everywhere but very close to the confining walls,
trying different orientation and offsets. To be precise, we
start from 111- and 100-oriented crystals (with respect
to the walls), which have either a particle layer centered



TABLE I: Freezing parameters for the liquid-solid transition in the bulk obtained within mean field density functional theory
for different constraints to the lattice types of the crystalline phase (hcp, fce, distorted fce) and for different unit cell dimensions
(fixed vs variable spacing of neighboring hexagonal layers ¢ and fixed vs variable nearest-neighbor distance within each plane
d). The freezing parameters are the chemical potential 1 s, the densities of the coexisting liquid (py) and solid (ps), the in-plane
nearest neighbor distance d, the distance of neighboring planes ¢, and the average occupancy n..

lattice minimization py Pr Ps d/d*  c/c*  ne

hcp free 12.09 296 3.48 1.025 1.025 6.02
fce free 12.13 2,97 3.50 1.025 1.025 6.04
fec constrained® 12.25 3.00 3.58 1 1 5.74
distorted fcc constrained’” 12.19 2.98 3.54 1 1.038 5.89

%The (isotropic) lattice constant is held fixed (a = a*).

bThe nearest-neighbor distance within a plane of hexagonally
crystalline particles is held fixed (d = d*) but the inter-plane dis-
tance c is allowed to relax freely (cf. text).

about the middle of the box (2 = L,/2) or a particle layer
shifted by half an inter-plane distance from z = L, /2.
The 111-oriented fcc crystal always leads to a stacking of
hexagonally ordered clusters in the ABC ABC-fashion.
The ABAB-stacking resulting from an hcp-crystal is not
tested within the theory (see the above discussion of the
bulk phase behavior).

Due to the slow exponential decay of the wall-particle
potential, the clusters in the layers closest to the walls
are less populated and blurred compared to the middle
of the slit. This can be seen from the plots of the z- and
y-averaged density field p,,(2) = (LyL,) " [[ dz dy p(r)
for different average demsities p = L' [dzpgy(2) in
fig. [fl(a), as obtained from the DFT. We therefore intro-
duce the notion that the crystal freezes from the middle
under the influence of the repulsive, Yukawa walls. For
comparison, we present in fig. b) results from BD com-
puter simulations for the same parameters as in the DF'T,
which show the same quantitative behavior for p = 2 and
the same qualitative behavior for p = 4. For p = 3, the
DFT predicts a crystalline state whereas the system re-
mains fluid in the simulation. The difference in the den-
sity profiles for the states at p = 3,4 is associated with
a difference in the bulk liquid/solid coexistence densities
which has already been observed for the GEM-4 model
when applying the compressibility route to the Helmholtz
free energy [57].

The pronounced crystallinity in the central region of
the simulation box can be observed not only in the den-
sity profiles but is also confirmed by measurements of the
restricted pair-distribution function [I] in the xy-plane,

V/ I
950 (1)) = 72 < > 0 (ry = [y —I‘j||)> . (10)
P \Nii(i)

Here, r| denotes the lateral projection (onto the slit
plane), i.e., r =r—(r-&.)é., where &, is the unit vector
in the z-direction. The double sum in eq. runs over
all N particles ¢+ and j lying in the kth layer from the

wall (this restriction being denoted by the prime) with
volume Vj. Particles belong to the same layer if their po-
sition lies between the same two consecutive minima of
the respective laterally-averaged density profile pg, ().
We show ggg (r) for the first three layers from either
wall, £ = 1,2,3, in fig. [p| Peaks and minima of the pair
distribution function clearly become more pronounced for
increasing distance of the layer from the wall. Also, the
appearance of a shoulder at the third peak of ggg and gé‘?f))
indicates the strong crystallinity of the clusters within the

respective layers.

It is important to note that the ability of the particles
to form clusters has two profound consequences for the
interpretation of the density field p(r), qualitatively dis-
tinguishing them from ordinary colloidal crystals: First,
the decreased sharpness of the density peaks close to the
walls as compared to the central region of the slit is not
only to be interpreted as a fluctuation of the clusters’
center-of-mass position but also and rather as an increase
of the cluster radii, i.e., an increase of the mean distance
of the particles from their cluster’s center of mass. Sec-
ond, as was already mentioned in the introduction, the
different average numbers of particles occupying the clus-
ter peaks indicated by the numbers in fig. @ do not go
along with distortions of the lattice structure. In contrast
to freezing of usual colloidal systems in confinement, even
for the smallest average densities above freezing the av-
erage number of particles occupying a cluster is substan-
tially larger than 1. In fact, it is these features which
make the system very amenable to a mean field DFT-
treatment.

For all confinement lengths 2 < L, < 48 studied,
the freezing chemical potential in confinement is higher
than in the bulk, pf(L,) > py, see fig. @; freezing is
hindered by the confining Yukawa walls. On the other
hand, the fluid and the fcc solid average densities py(L.)
and ps(L,) at coexistence are smaller than the respec-
tive bulk values for L, > 1, as can be seen in fig.
The reason lies in the decreased probability density to
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FIG. 4: Yukawa walls: Laterally-averaged density profiles
pay(z) for different average densities (p = 4,3,2 from top
to bottom) for L. = 7 as obtained from the DFT, (a), and
the simulation, (b). (a) The fcc crystal in the DFT has the
100-orientation. The numbers over the peaks denote the av-
erage number of particles, n., occupying a cluster, for p = 4
(top value) and p = 3 (bracketed, lower value) from the DFT.
(b) The lateral dimensions of the periodic simulation box are
L. = L, = 20.43.

find a particle close to the walls. Both freezing chemi-
cal potential and fluid/solid densities at coexistence dis-
play pronounced oscillations while approaching the re-
spective bulk values with increasing L,. This effect is
clearly more pronounced for small wall-wall separations.
After each spike of juy(L.) in fig. [} a new layer of crys-
talline clusters is introduced into the box. The local min-
ima of py(L) correspond to crystalline states with op-
timal layer spacing in the z-direction. Concomitantly,
the wavelength of the oscillations equals the bulk value
of the distance of the crystalline particle layers in the
111-direction, ¢ = 1.04c* = 1.113 (cf. table [I} line 4).
This finding is qualitatively validated by the computer
simulations (see fig. E[) Here, a simple criterion to sepa-
rate crystalline from non-crystalline states was based on
the value of the first minimum of the laterally averaged
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FIG. 5: Yukawa walls: The lateral pair distribution function
gélg (r) for the first three layers of clusters on either of the
wall (k is counted from the wall) for the same confinement as
in fig. 4| at average density p = 4 (for the definition of layers

see main text).
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FIG. 6: Yukawa walls: Freezing chemical potential ps(L.) as
a function of the confinement width L. for the 111-orientation
(red/solid) and the 100-orientation (green/dashed). The
(blue) stars mark those points where the 100-orientation is
stable versus the 111-orientation. The horizontal line displays
the respective freezing value of the bulk system, py = 12.19.

pair distribution functions ggf)) (r) of the most central

layer k, which always freezes first among all layers. The

simulation points in fig. [7] display the states of constant

minimum gélg (Pmin) = 0.15.

The confining walls have a profound influence on the
grand potential of the system, especially for small val-
ues of L,. Despite the lower average density within
the slit pores, the grand potential density w(u;L,) =
Q[peq(r; 1, L)]/V, plotted as a function of p for different
confinement lengths L, in fig. [8] is higher in confinement
than in the bulk. In fig. [8] w(y;L.) is represented both
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FIG. 7: Yukawa walls: Fluid and solid densities ps(L.),
ps(L.) at coexistence. The open circles display the crys-
talline states which possess a 100-orientation with respect to
the walls. Shown are also the respective bulk values. The
DFT-results for the confined case are compared against the
locus of constant gé’g (rmin) = 0.15 from the simulation, where

k refers to the most central layer (see main text).
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FIG. 8: Yukawa walls: Grand potential density w(p) in the
fluid (solid lines) and the solid state (dashed lines) as a func-
tion of chemical potential for T'= 1 for different confinement
lengths L, = 3.5,7 and for the bulk (from top to bottom).

for the solid and the fluid state, the fluid being stable for
< py(L,) and metastable for p > ps(L;).

For the case of small confinement lengths, L, < 7,
the favorite orientation of the compressed/expanded fce
crystal is; except within some tiny L,-intervals, the 111-
orientation. As a consequence, the chemical potential at
freezing for the 100-crystal which is metastable within
the DFT, is almost always equal or higher than for the
111-crystal (cf. fig. [6)), within the accuracy of the DFT
calculation. This signifies that the system favors to have
a layer of hexagonally crystalline clusters close to the

= 30
>
a
T A NN
0 L L L
2 4 6 8

0

10
z

FIG. 9: Yukawa walls: Laterally-averaged density profiles
Pay(2) close to the left wall for L, = 48 for different chemical
potentials p = 16,13,12.5,12.24 (from top to bottom).

walls, this layer being clearly visible in the simulation
snapshots in fig. We note exemplary for L, = 7, for
which we find a stable 100-oriented crystal, that under
consideration of the non-Bravais hep lattice, the latter is
thermodynamically stable in comparison to the fcc one,
albeit with a small difference in grand potential, leading
again to a hexagonal cluster arrangement on the walls.
The stability of the hcp versus the 100-oriented fec lat-
tice is also most likely to be found for the other confine-
ment lengths but we did not check this in our study. For
very large L., the difference in grand potential density
between the 100- and the 111-orientations is decreasing
and we focus on the 111-orientation for L, > 24.

For large wall-wall separations, L, > 1, as the bulk
freezing chemical potential is approached from above
(0 > py = 12.19), the blurred clusters on the walls
melt and a fluid layer grows on each wall. The walls
enforce the growth of a liquid film, a property referred
to as premelting. The number of molten layers N, on
each wall increases continuously with decreasing differ-
ence in chemical potential Ay = u — pf, as can be seen
from the zy-averaged demsity profiles in fig. [J] for the
confinement length of L, = 48. In fig. we show the
number of molten layers on the walls as a function of
Ap for two different confinement lengths, L, = 24 and
L, = 48. Here, a layer of what used to be crystalline
clusters, is defined to be molten once the density within
it exceeds the threshold value of p(r) > 0.15 for all z and
y. This criterion has been used for the absence of knowl-
edge about the pair-correlations, which was the basis for
the simulation-results above. The z-position of a layer is
defined by the z-position of the respective maximum of
the x- and y-averaged density field. After growing up to
a maximum finite number of molten layers on each wall,
NE (L), the system turns completely fluid due to cap-
illary melting at py(L,), as is also visualized in fig.
by the black vertical bars. At the melting transition, the
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FIG. 10: Yukawa walls: The number of molten layers N, (Apu)
on either Yukawa-wall as a function of the difference in chem-
ical potential Au. The black bars indicate the points of cap-
illary melting, py(L.). The points to the left of the bars cor-
respond to metastable crystalline states with the minimum
grand potential among all possible crystalline states. We
did display Ny, only for those chemical potentials for which
at least one other still crystalline state with a higher num-
ber of molten layers was found to be metastable (see main
text). Inset: The corresponding width A(Apu) of the fluid sys-
tem close to the wall for L, = 48, evaluated at the kinks of
N, (Ap). The dashed line is the least-square logarithmic fit
—&¢ In(Ap) + const.

number of molten layers at each wall is still substantially
smaller than the number of crystalline layers in the cen-
tral region of the slit. In particular, we find for the max-
imum wall-wall-separation under study, L., = 48, that
NE (L, = 48) = 4 which is still microscopic. For L, = 24
we find N&, (L, = 24) = 2.

The occurrence of capillary filling when a system close
to its bulk phase transition is confined between two par-
allel walls is a well-known phenomenon in the the context
of liquid-gas phase coexistence of ordinary fluids [24} [47].
Here, we establish the existence of capillary melting from
the walls for a system that forms crystalline layers in
the middle of the slit pore. For the liquid-gas coexis-
tence, capillary condensation precludes the wetting tran-
sition that takes place between two semi-infinite bulk
phases [24]. Wetting can be studied within DFT if
one employs a semi-infinite system with the appropri-
ate boundary condition at a distance z — oo from the
wall and it is straightforward to implement for the case
of uniform phases [58]. In our case, however, this would
correspond to fixing a periodic crystal at z — oo, whilst
the chemical potential p is lowered towards its bulk value
py from above. This renders the DFT-calculation very
complicated, therefore we will resort to a different ap-
proach in arguing that in the limit of infinite wall-wall
separation, the fluid completely wets the Yukawa wall as
w — u}". The approach is based on general, thermo-
dynamic considerations that lead to scaling laws for the
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width of the wetting layer, which diverges at the bulk
phase transition. Thus, the walls drive the system to the
molten state.

In the limit of large wall-wall separation and for macro-
scopically thick fluid films of width 1 < A(Au) < L, on
either wall, the grand potential per unit surface area A
of the short-range interacting system can be written as
[47, [59]

Q(Ap)
A

A
=2 (’wa + ’st) + w(uf)LZ + 2€1 exp [_ff:|
— (L = 2X\)ps + 20pf] Ap+ O(Ap?)

(11)

where ~yf,, is the fluid-wall surface tension, ~y¢, is the
fluid-solid surface tension, and e; is the prefactor of
the interaction between the fluid-wall and the fluid-solid
interfaces, which decays exponentially on the range of
the correlation length of the fluid that wets the wall
[47, 59). As thermodynamic quantities on the right-
hand side are evaluated at phase coexistence, use has
been made of the identity Owys/Ou = —py,s, where
wy,s are the grand potential densities of the fluid and
the crystal at coexistence, respectively. The correla-
tion length &, of the fluid is obtained as the inverse
of the smallest imaginary part of the pole of the static
structure factor S(k) = [1 — prp(k)]~! closest to the
real axis, i.e., &y = [Im(k)]™! = 1.20, where £ fulfills

1—pré(k) =0 [58]. In the case of complete wetting, i.e.,
for

Ysw > Viw T Vfs» (12)

where 4, is the wall-solid surface tension, two scaling be-
haviors follow from this ansatz. At first, upon approach-
ing py from above, the width of the fluid film A(Ap)
grows logarithmically as a function of Apu:

AMAp) ~ —&¢ In(Ap) + const, (13)

as long as A < L, holds, i.e., as long as both walls be-
have each as single walls in contact with a semi-infinite
crystal. Growth is indeed observed in our results but it is
interrupted at the freezing transition ps(L,) by capillary
melting, which leads us to the second scaling relation: at
the point of capillary melting, the net contribution of the
fluid region in the middle of the slit pore to the grand
potential per unit area, (wy —wy)(L, — 2X) equals twice
the liquid-solid surface tension 7y, which yields the fol-
lowing relation:

Z’st

L, =2\ (uy(L.)) ~ (ps — ps) (pp(Lz) — pg)

(14)

For the maximum confinement-width studied (L, = 48),
we found NS, =4 at p = ps(L,) = 12.24 corresponding
to A = 4.1, which is too small to accurately be fitted
to a logarithmic function and to extract p;(L,). Never-
theless, within the DFT it is possible to avoid the tran-
sition to the stable, capillary-molten phase, and remain



instead in a partly crystalline setup also for p < py(L.)
by iterating eq. () with an appropriate initial density
field p(r), which already has a given number of molten
layers. For a single wall, in which case capillary melt-
ing is absent, the system will choose the crystalline state
with the lowest value of Q[p(r)]. Accordingly, we focus
on the state that fulfills the same condition, among all
metastable crystalline states, in the presence of two walls.
However, we do consider only those chemical potentials
for which at least one other state, which is still crys-
talline and has a higher number of molten layers, was
found to be metastable, i.e., non-collapsed to a fluid. In
this way, further growth of the fluid layer is observed up
to a point where the crystalline slab in the middle of the
slit becomes unstable towards collapse (see fig. . By
performing a least-square fit of the whole growth (be-
tween N,,, = 1 and N,,, = 6) to the logarithmic growth of
eq. (13)), we obtain the bulk freezing chemical potential
pr = 12.19 independently of the already known value
from Section [V] (see inset of fig. [10). In fact, the width
AMAp) was taken to be the distance of the most distant
molten layer from the wall. As expected, for large num-
bers of molten layers we find A(Au) ~ c¢Np,(Ap), with
the layer separation ¢ = 1.04¢* = 1.113, as discussed
above. The independently obtained freezing chemical
potential py = 12.19 agrees perfectly with the freezing
chemical potential obtained from the partly constrained
bulk measurement in Section [V] This finding constitutes
a strong confirmation of the validity of the complete wet-
ting scenario.

The second scaling relation, eq. , serves as a check,
again for the largest confinement length L, = 48. The in-
gredient we are still missing is the surface tension -, at
coexistence. The latter quantity can be obtained within
DFT by comparing the grand potential 2 of a bulk sys-
tem at p = p1y with that of a system that contains stripes
of equally sized liquid and crystalline parts that form two
planar liquid-solid interfaces within the periodic 'box’ of
size Ly x L, x L,. We have performed this calculation
using a box with the same z- and y-dimensions as in the
confining case and a longer z-length, L, = 96; clearly,
there is no external potential in this case. In this way,
we obtain ¢y = 0.49, where the crystal is oriented in the
111-direction at the interface. Insertion of 7ys, together
with ps — py = 0.56 and py¢(L. = 48) — py = 0.05 into
eq. , yields L, — 2\ =2 35.3, which agrees reasonably
well with L, —2X\ = 39.9 from the direct comparison of the
grand potential densities of the capillary-molten or crys-
talline states in confinement. It must be noted that we
disregarded widths of the interfaces in our crude, ‘sharp-
kink’ treatment of the interfaces that led to eq. . In
reality, the widths of the fluid-wall and of the fluid-solid
interfaces are of the order of ~ 20, which helps in ex-
plaining the discrepancy.

Capillary melting is a first-order phase transition,
which comprises the possibility of non-equilibrium states
close to or at the transition remaining metastable. In
the DFT calculations, the metastability of non-molten
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FIG. 11: Yukawa-walls: The average number of molten layers
on each wall for the same confinement as in fig. [12| as a func-
tion of average density p, and as obtained from the computer
simulations. The averages are performed over the left and the
right wall.

states beyond equilibrium capillary melting has already
been exploited for extracting the logarithmic growth of
the wetting layer [see fig. [10] and eq. (13)]. In computer
simulations of systems in the NVT-ensemble, metastable
states may persist in small periodic simulation boxes and
for average densities lying within two coexisting densities
of a first-order phase transition. Here, free energy contri-
butions of phase-separating interfaces are comparable or
larger than bulk contributions [60]. This behavior is also
observed in computer simulations of the GEM-8 model in
a relatively large planar confinement of L, = 24, where
the lateral dimensions of the zy-periodic simulation box
L, =L, =9.29 are comparatively small. Consequently,
by continuously varying the density of the system a con-
tinuous growth of a liquid layer on each Yukawa wall up
to complete filling of the box is observed (see fig. .
Snapshots of the simulation are exemplarily shown for
three different average densities p = 3.5,3.7,4.0 in fig.

The average number of molten layers on each wall,
Np(p) in fig. has been determined by analyzing
the lateral pair distribution function gop(r|) (not shown
here) for a total of 22 crystalline layers in parallel to the
walls, occurring for large densities. As for the narrow
confinement of L, = 7 above, the range of each layer in
the z-direction is determined by two consecutive minima
of the respective density profile pg,(2) (also not shown
here). A layer is defined to be molten/crystalline once
the first minimum of gop(r)) is larger/smaller than 0.15.
Clearly, the system separates along the z-axis and does
not show an indication of capillary melting. However,
and as already argued above, we have strong evidence
that the observation of states with a large number of
molten layers is a finite-size effect in the simulations.



FIG. 12: Yukawa walls: Simulation snapshots for L, = 24
and average densities of p = 3.5, 3.7,4.0 (from top to bottom).
The boundaries of the box (L, = L, = 9.29) are indicated
by thin lines. The Yukawa-walls are situated at the left and
at the right boundaries, respectively. The simulation boxes
are oriented differently for better visibility of the crystalline
region in the middle of the box.

VII. ATTRACTIVE WALLS

In the second setup, we study the effect of attractive
Lennard-Jones walls. The corresponding external poten-
tial is taken to have the form

1 1 1 1
=1 _—— —

O0<z<L,.
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FIG. 13: Lennard-Jones walls: Laterally-averaged density
profiles pqy(z) for three different densities above (p = 2,3)
and below (p = 1) the freezing transition for L, = 7 as ob-
tained from the DFT, (a), and the simulation, (b). The num-
bers over the peaks denote the average number of particles,
ne, occupying a cluster, for p = 3 (top value) and p = 2 (in
parentheses, lower value). (b) The lateral dimensions of the
periodic simulation box are L, = L, = 20.43.

Recent numerical simulations by Lenz et al [46] have in-
deed shown that amphiphilic dendrimers of the second
generation, demonstrated to be GEM-particles of the
QT -class in ref. [36], together with an attractive core
wall-particle interaction lead to very similar effective in-
teraction potentials. The precise shape of the wall po-
tential depends, of course, on the different molecular in-
teraction parameters. However, a range of the attraction
of the order of ¢ and a depth of the order of few kgT
is certainly a reasonable assumption. Here, the mini-
mum value of the Lennard-Jones potential for large L is
VLJ(Zmin = 12) =~ —3.85.

In contrast to the setup with repulsive, Yukawa walls
of Section [V} the system now freezes at the walls be-
fore freezing in the middle region of the confinement, as
can be seen for L, = 7 in fig. Note the big differ-
ence of cluster population close to the wall and in the



g(zk% ()

FIG. 14: Lennard-Jones walls: The lateral pair distribution
function ggf)) () for the first three layers of clusters on either
of the wall (k is counted from the wall) for the same confine-
ment as in fig. [13| at average density p = 3 (for the definition

of layers see main text).

middle of the slit by more than 2 particles per cluster.
As for the Yukawa setup, we present in fig. b) re-
sults from BD computer simulations for the same param-
eters as in the DFT, which show the same quantitative
behavior for p = 1 and the same qualitative behavior
for p = 2,3. The reversal of the dependence of crys-
tallinity on the layer-distance from the walls is confirmed
by measurements of the restricted pair-distribution func-

tion, gé’g (), eq. lj shown for the first three layers
from either wall in fig. Peaks and minima of the pair
distribution function clearly become less pronounced for
increasing distance of the layer from the wall.

Freezing in terms of breaking the xy-symmetry of the
system is now mainly a single-wall effect, which is slightly
disturbed by the interaction of the two crystalline layers
on either wall with each other. This is at odds with
freezing at the Yukawa setup, which is a bulk-dominated
phenomenon disturbed by the walls. On these grounds,
we denote the surface freezing chemical potential for the
Lennard-Jones setup as % (L), in order to distinguish it
from the respective capillary freezing chemical potential
wyr(L,) (see below). The bulk phase diagram only enters
the stage once the bulk freezing chemical potential, uy, is
approached from below. Interactions between crystalline
layers on either wall are subdominant for wall separa-
tions as small as L, ~ 5. This can be ascertained from
the dependence of the surface-freezing chemical potential
u;(Lz) on L., fig. which monotonically approaches a
plateau value of % = pj(L, — oo) already from L, =5
on. By extrapolating the phase diagram of fig. to
L, — oo we find p} = 7.7 which corresponds to a bulk
fluid density of p = 1.90. This value, of course, depends
on the depth of the external potential.

Contrary to Yukawa walls, this setup shows capillary
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FIG. 15: Lennard-Jones walls: Surface freezing chemical po-
tential u} (L.) as a function of the confinement width L. for
the attractive Lennard-Jones walls.

freezing from the walls. Whereas at u3(L.) surface-
induced freezing sets in, capillary freezing occurs at a
significantly higher value p1(L,), which now approaches
py from below as L, grows, i.e., pip(L, — 00) = py. We
note also that freezing on the walls is not only observed
for the prefactor 10 in eq. but for any prefactor,
i.e., for a vanishing attractive part of Vij(r), implying
that surface-induced freezing is an intricate effect which
sensitively depends on the nature of the wall-particle in-
teraction. In particular, for the system under study the
question whether surface-induced freezing or melting is
observed, seems to be mostly a matter of the range or
softness of the wall-particle potential. Our results sug-
gest that there is surface-induced freezing for a hard wall
(as for the Lennard-Jones walls) whereas there is surface-
induced melting for a soft wall (as for the Yukawa-walls).

For small values of L., the two minima of the external
potential merge and the system behaves qualitatively the
same as for the repulsive Yukawa walls. We therefore re-
strict our analysis to L, > 4. Due to the relatively strong
attraction of the walls, the system favors a hexagonal pat-
tern of clusters on the planar surfaces. The equilibrium
orientation of the (distorted) fcc lattice in confinement
is therefore always the 11l-orientation. As the chemi-
cal potential is increased beyond p3(L.) and as the bulk
freezing chemical potential 115 is approached from below,
the number of crystalline layers on either wall grows con-
tinuously, as can be seen from the density profiles for
L, =24 in fig.

Upon approaching puy from below, we find for the
Lennard-Jones walls that the number of crystalline lay-
ers on the walls, N (), grows continuously and nearly
logarithmically with |Ap| = |p — py| (cf. fig. for
L, = 24,48). This growth is eventually interrupted by
capillary freezing, which occurs at a chemical potential
pr(L;). The surface- and bulk-freezing chemical po-
tentials for attractive walls order as p3(L.) < pf <



Pyy(2)

FIG. 16: Lennard-Jones walls: Laterally-averaged density
profiles pay(z) close to the left wall for L. = 48 for different
chemical potentials p = 12.125,12.1,12,11,7.75 (from top to
bottom).
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FIG. 17: Lennard-Jones walls: The number of crystalline lay-
ers on the walls, N.(u), as a function of the difference between
the bulk freezing chemical potential, Ay and for two differ-
ent confinement widths. Note that gy > p here. Inset: the
adsorption of a crystal layer ~, eq. , as a function of |Apl.

pr(Ls) < py-

As for the case of the Yukawa walls, we studied two
large confinement lengths L, = 24 and L, = 48. We
found py(L, = 24) = 12.12 and py(L. = 48) = 12.16. In
the limit of large L, and large crystalline film thickness A,
still substantially smaller than L, /2, the (local) density
of the fluid in the middle of the confining region is very
close to the fluid density of a semi-infinite fluid reservoir
on a single Lennard-Jones wall at infinity, which allows
us to define the adsorption as

L./2
7= /0 dz [pay(2) = pay(L=/2)] (16)
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which is plotted as a function of |Au| in the inset of
fig.

Following the same reasoning as for the Yukawa walls,
the slopes of the logarithmic growths of N, and y are now
given by the correlation length of the (bulk) solid phase
&, that wets the wall:

N, ~ —éln(|A,u|)—i—const7 (17)
c
Y = —(pe— pp)eIn(jAnl) + const,  (18)
where ¢ = 1.113 is the distance of neighboring layers

of the constrained bulk fcc crystal, again. By fitting
a logarithmic curve to the N.-data at intermediate N,
we roughly obtain £, = 2, roughly twice as large as the
fluid correlation length ;. As for the specular case of
the Yukawa-walls, we cannot rule out the possibility of a
non-continuous growth of the crystalline layer in a single-
wall setup. However, our results for the two confinement
widths of L, = 24,48 suggest that the crystal completely
wets the Lennard-Jones walls and that the growth of the
crystalline film is only interrupted by capillary freezing.

We present snapshots of BD-computer simulations of
the system in planar Lennard-Jones confinement of L, =
24 for different average densities in fig. For the small-
est density of p = 2.5 the system is only crystalline on
the walls. For intermediate density, p = 4.0, the sys-
tem displays two equally large crystalline layers on both
walls, and for p = 5.0 the system turns completely crys-
talline. This behavior is again quantified through the

analysis of gég () for all crystalline/fluid layers paral-
lel to the confining walls, as in Section [VI] The resulting
average number of crystalline layers on each wall, N.(p),
is plotted as a function of average density in fig.

VIII. CONCLUSIONS

In conclusion, we studied the effect of repulsive and
attractive slit-pore confinement on freezing and melting
of cluster-forming, ultrasoft, repulsive particles of the
GEM-8-class. For repulsive Yukawa-walls we found that
the system freezes from the middle of the slit whereas
for attractive Lennard-Jones walls it freezes at the walls
before freezing in the middle. For small confinement-
widths the respective freezing chemical potentials and
liquid-solid coexistence densities display strong oscilla-
tions with varying slit width—the wavelength being equal
to the distance of crystal layers in the bulk. However,
whereas the oscillations are very pronounced for L, < 15
in the case of the Yukawa-walls, they are damped al-
ready for L, ~ 5 in the case of the Lennard-Jones walls.
In the case of large confinement-widths we could find
strong indications that upon approaching the bulk freez-
ing chemical potential from above the Yukawa-walls are
completely wetted by fluid whereas upon approaching the
bulk freezing chemical potential from below the Lennard-
Jones walls are completely wetted by the crystal.
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FIG. 18: Lennard-Jones walls: Simulation snapshots for

L. = 24 and average densities p = 2.5,4.0,5.0 (from top to
bottom). The boundaries of the box (L, = L, = 9.29) are
indicated by thin lines. The Lennard-Jones walls are situated
at the left and at the right boundaries, respectively. The sim-
ulation boxes are oriented differently for better visibility of
the crystalline region in the middle of the box.

Different modifications to the slit-pore geometry and
to the particle-wall interactions are of interest: Whereas
in this work both confining walls were of the same kind,
it would be interesting to study the influence of “com-
peting walls” [34]. Further, the crystal arrangement at
the walls is very sensitive towards structured/patterned
substrates [61], 62 63], [64]. Moreover, slit pore confine-
ment is a reference model for more complicated geome-
tries such as porous media [65]. Confinement has also
intriguing implications for the diffusive dynamics in and
out of equilibrium. For equilibrium fluids in planar con-
finement, it has been recently demonstrated that both
lateral and perpendicular diffusivities, D and D, are
enhanced at z-positions of higher average one-particle
density pg,(2) as compared to the regions of lower den-
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FIG. 19: Lennard-Jones-walls: The average number of crys-
talline layers on each wall for the same confinement as in
fig. [L8] as a function of average density p, and as obtained
from the computer simulations. The averages are performed
over the left and the right wall.

sity [66, 67]. For cluster-forming, GEM-n particles, dif-
fusive dynamics features novel characteristics, since even
crystals now display nonzero long-time diffusivities, due
to the presence of activated hopping processes [48][49]. It
would be interesting to examine the behavior of D) and
D, in confinement, calculated separately for each layer,
for the case at hand. Bulk studies [48], 49] have revealed
an essentially Arrhenius-type behavior, D ~ exp(—SE4),
of the long-time diffusivity, with an activation energy F 4
proportional to p. It is interesting to find out to what
extent this law holds also locally for each layer formed in
slit-pore confinement. Recently, the relaxation dynamics
of a fluid of Gaussian particles in a temporally oscillat-
ing, spherical, harmonic trap has been studied using com-
puter simulations and dynamical density functional the-
ory [68]. The latter method is an extension of the DFT
to overdamped non-equilibrium dynamics [69), [70] [71],
which has recently also been used to study crystal growth
in 2D [72]. It would be interesting to employ dynamical
density functional theory to study the relaxation of clus-
ter crystals upon sudden or temporally periodic changes
of the slit-pore confinement.
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