
PRL 95, 128701 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 SEPTEMBER 2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC
Scaling in the Structure of Directory Trees in a Computer Cluster

Konstantin Klemm,1 Vı́ctor M. Eguı́luz,2 and Maxi San Miguel2
1Department of Bioinformatics, University Leipzig, Härtelstrasse 16-18, 04103 Leipzig, Germany
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We describe the topological structure and the underlying organization principles of the directories
created by users of a computer cluster. Users create trees with a scale-free degree distribution whose
properties are reproduced by a growth and preferential attachment mechanism with a single parameter.
The degree distribution has a nonuniversal exponent associated with different values of the parameter.
However, the distribution of branch sizes has a universal exponent analytically obtained from the model.
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The processes of storing and retrieving information are
rapidly gaining importance in science as well as in society
as a whole [1–4]. A considerable effort is being under-
taken, first to characterize and describe how publicly avail-
able information, for example, in the World Wide Web
(WWW), is organized, and second to design efficient
methods to access this information. It seems clear that to
design methods for accessing information we first need to
know how information is stored or organized as it is being
produced.

Within this general framework a crucial step in building
general knowledge on these processes is the understanding
of how each of us organizes knowledge and information
produced by ourselves. To be specific, we pose the question
of general organizational principles in the managing of our
own electronic files. To answer this question, we analyze
the structure and organization of the files stored in a com-
puter cluster by the users of the computer facilities at a
research institute. Within the general study of complex
networks, we are here looking at trees and we report a first
observation of the scale-free property in trees. It is impor-
tant to point out that we are not studying a single large tree,
but rather we are considering a forest of many trees, each of
them being the result of an individual construction. We are
then able to consider samples of organizational schemes of
many different sizes, since each user has created a structure
with a different number of directories. This allows the
study of different samples of the same reality. We also
note that contrary to other networks, such as the WWW or
food webs, the structures considered here are not the out-
come of a collective action but the creation of a single
individual. Our research gives information about the man-
agement of information at the individual level.

Two a priori possible answers to the question posed are
that we follow a random process of file storing or that, on
the contrary, we implement a carefully planned structure as
we do when organizing the sections and chapters of a Ph.D.
thesis or a scientific paper. What we find is the signature of
a complex system halfway between these two possibilities,
but still with well defined patterns of organization. In this
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Letter, we report an extensive characterization of individ-
ual user computer directory trees, calculating a number of
quantitative measures. These include degree distributions,
average distance between directories [5–8], distribution of
branch sizes in the tree [9], and allometric scaling expo-
nents [10,11]. Our data turn out to be well described by a
directory attachment model for constructing the tree. The
model depends on a single parameter q that interpolates
between random placement of new directories and the
agglomeration into a star structure. The trees of the differ-
ent users are described by different values of the parameter
q: diversity in individual behavior here boils down to a
different value of a parameter.

Data analysis.—The data material under considera-
tion is taken from the computer facilities of the Cross-
disciplinary Physics Department of IMEDEA (Medi-
terranean Institute for Advanced Studies). The personal
accounts of the 63 users running Linux and UNIX have
been considered. The users include academic staff, post-
doctoral researchers, graduate students, and longtime vis-
itors. Each user is able to choose freely his or her own
organizational scheme without specific software. The
nodes in the directory tree of a given user are all directories
(file folders) stored in the user’s computer account. There
is a direct link between nodes i and j if directory i is a
subdirectory of directory j or vice versa. We consider the
trees as rooted with the home directory as the root. Some of
the users establish additional connections (so-called sym-
bolic links) between directories or files. We assume here
that the context indicated by these connections is much
weaker than for genuine links between directory and par-
ent. Therefore we neglect all symbolic links. In the pure
tree structures, we analyze the distributions of degree and
of branch sizes as well as the allometric scaling.

A local measure of the importance of a given node i is
the nodal degree ki counting the number of nodes directly
connected to i. In a tree of N nodes the average degree is
always hki � 2� 2=N. The distribution of the degree,
however, varies strongly across different types of struc-
tures. The distribution is narrow in simple chains and
1-1 © 2005 The American Physical Society
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binary trees, while it is broadest for a star (having N � 1
nodes with degree k � 1 and one center node with degree
k � N � 1). The degree distributions of the observed di-
rectory trees [Fig. 1(a)] lie in between these two extremes.
The probability of finding a node with degree k decays as a
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FIG. 1. Scaling in the distributions of branching ratio (degree)
and sizes of the branches (subtrees). (a) Cumulative degree
distributions for the ten largest trees. The dashed lines have
slopes�1 and�2 indicating degree exponents 2< �< 3. In the
whole data set, however, exponents � > 3 have been observed as
well. (b) Cumulative distributions of branch size plotted as in (a).
The dashed lines have slope �1 corresponding to branch size
exponent � � 2. The overall cumulative distribution of the sizes
of the 16 452 branches in all 63 directory trees (thick solid curve)
and the surrogate data from randomized trees (dot-dashed curve)
are shown as well. (c) Allometric scaling: Each data point (small
circle) shows cumulative branch size C (sum of sizes of all
subbranches) against the size A of the branch itself. Logarithmic
binning is applied to the original data (large circles) and the
surrogate data from randomized trees (squares). The inset shows
the binned original data rescaled with A (circles) and best fits for
logarithm (solid line) and power law (dotted curve). The surro-
gate data in (b) and (c) are taken from 6300 trees, 100 trees
obtained from each original tree by independent random rewir-
ing. Rewiring is performed by iteratively swapping two ran-
domly chosen node disjoint subtrees that do not contain the root.
This standard network randomization procedure [23], here ap-
plied to rooted trees, conserves the degree distribution.
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power law k�� with a cutoff at the maximum degree kmax

due to finite size. There is no indication of an upper bound
on the degree that would limit the scaling at large k. Given
trees generated by different users, the observed values of �
do not coincide in general. The degree exponent is not
universal. Often the degree distribution is also quantified
by the branching ratio, given by the average of the degree k
taken over all nodes with degree k � 2, i.e., neglecting the
leaves. In the present case of scale-free distributions, how-
ever, the exponent � is used as the leading observable.

An alternative characterization of the trees is obtained
by iterative decomposition into subtrees rather than single
nodes. Here we consider the branch structure of the trees.
For each node i, a branch Si is the subtree rooted at the
node i and all nodes below i. In the directory trees, a branch
Si is the tree formed by a directory i, all its subdirectories,
the subdirectories of these, and so forth. A branch Si is
again a rooted tree with node i as the root. Calculating the
sizes Ai � jSij of all branches for each tree, we find the
statistics in Fig. 1(b). The distribution of branch sizes
decays as a power law A��. The exponent � � 2 appears
to be universal. The scaling of branch size A is a property
independent of the scaling of the degree k. When the trees
are randomized under conserving degrees of all nodes, the
functional form of the branch size distribution changes and
obtains a scaling region with a larger exponent � > 2.

In order to capture also the correlations between branch
sizes, we perform allometric scaling analysis [11]. For
each branch Si we calculate the quantity Ci �

P
j2SiAj;

i.e., we sum up all the sizes of all branches contained in Si,
including Si itself. Figure 1(c) shows the data point �Ai; Ci�
for each branch i in the 63 trees. We find that the growth of
C with A is superlinear. The observations made for the
degree and branch size distributions and the allometric
scaling in the directory trees also hold for the file trees.
The latter are constructed by including the files stored in
the directories as additional leaves attached to them.

Modeling.—Let us now consider a possible mechanism
for the emergence of the common properties of directory
trees. Networks with a scale-free degree distribution can be
generated by growth and preferential attachment [12]. Here
we implement such a growth process for trees. In each
construction step a new node joins the tree by establishing
a link to one of the N existing nodes. A node with degree k
is chosen as the parent of the new node with probability

��k� � q
k� 1

N
� �1� q�

1

N
(1)

from the set ofN nodes in the tree. The growth is controlled
by a single parameter q 2�0; 1�. Using the formal equiva-
lence with the network model by Dorogovtsev et al. [13],
we find that the degree distribution is asymptotically scale-
free with exponent � � 2� a � 1� 1=q [rewrite Eq. (1)
as ��k� / kin � a with the number of links kin � k� 1
1-2
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FIG. 2 (color online). Estimating the model parameter q from
the empirical trees. (a) Independent estimates of q from the
moments hkni of the degree distribution coincide for each tree.
Estimates are plotted for n � 2 (diamonds), n � 3 (triangles),
and n � 4 (squares). Tree index reflects the ordering of the trees
with respect to the estimated q. (b) Comparing the q values
estimated from the average path length and the third moment of
the degree for each tree. For all estimates in (a) and (b) the
following method is used. Given an empirical tree of size N with
observable xemp, 105 parameter values q 2 	0; 1� are drawn
equally distributed. For each value drawn an artificial tree of
size N is generated by the model. The tree is accepted if its value
xmodel of the considered observable does not differ by more than
10% from the empirical value xemp. We take hqi as the average
over parameter values of all accepted trees. The range of an error
bar in (b) indicates the standard deviation of q across the
accepted trees.
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received after creation of the node and the ‘‘initial attrac-
tiveness’’ a � 1=q� 1 [13] ].

In the context of directory trees, Eq. (1) has an intuitive
interpretation. The first term describes creation of direc-
tories with functions similar to existing ones. Here the
probability of being the parent of a new directory is pro-
portional to the number k� 1 of existing subdirectories.
The second term is a fully random placement where all
directories have equal probability of becoming the parent
of new directories. The two processes occur at rates q and
1� q, respectively. The validity of this dynamical picture
may be assessed by observing the dynamics of the direc-
tory trees. The present work, however, is restricted to the
comparison between trees generated by the model and our
data set of snapshots of empirical trees.

The evolution of branch sizes is described by the
probability

~��A� � q
A� 1

N
� �1� q�

A
N
�
A� q
N

(2)

that the next node is attached to one of the nodes of a
given branch of size A, thereby incrementing A. From a
continuous rate equation approach [12] we obtain Ai�N� �
�1� q�N=i� q as the expected size of branch Si in a tree
of size N. The index i is the time step of creation of the
branch as a single node with A � 1. The linear growth
of A with N implies that the branch size distribution of
the model decays asymptotically as A�� with universal
(q-independent) exponent � � 2, in agreement with the
data.

For an estimate of the allometric scaling, first note the
general property Ci � Ai �

P
j2Sidij, where the chemical

distance dij is the number of nodes contained in the direct
path between nodes i and j. Adding a new node j� to
branch Si, the expected distance hdij� i from node i is
Ci=Ai � 1 for preferential and Ci=Ai for homogeneous
attachment. Thus on average C grows as dC=dA � 1�
C=A� q, where the finite difference has been approxi-
mated by the derivative and the index i is suppressed. For
the initial condition C�1� � 1 we obtain the solution
C�A� � A	�1� q� lnA� 1�. The allometric scaling of the
model trees is linear with logarithmic correction. In order
to compare with the observed trees, we replot the binned
data as �Ai; Ci=Ai� in the inset of Fig. 1(c). The data are
captured well by a logarithmic dependence (best fit C=A �
0:59 lnA� 0:99, correlation coefficient r � 0:997) in good
agreement with the prediction of the model.

In order to provide a more stringent check of the validity
of the model [Eq. (1)], we first project the trees into a space
of four observables, namely, the second, third, and fourth
moments of the degree distribution and the average chemi-
cal distance between nodes. For a given value x of an
observable and given tree size N we estimate the most
likely parameter value qx by weighting all possible values
q 2 	0; 1� with the probability that they produce x up to a
12870
small error. Figure 2 shows the results and gives details of
the method in the caption. For almost all trees there is
excellent agreement between the four parameter estimates
based on different observables. Note that for different one-
parameter models the agreement between parameter esti-
mates cannot be obtained. For instance, random (maxi-
mum entropy) ensembles of trees with given branching
ratio have very narrow degree distributions. Thus estimates
of the branching ratio based on different moments of the
broad empirical degree distribution do not agree. Random
ensembles with given scale-free degree distributions still
fail because their average distances are larger than in the
empirical trees. These ‘‘failing’’ examples illustrate that
the agreement between the model and the empirical trees
due to parameter estimates is not trivial. We thus have
strong evidence that the proposed growth mechanism
[Eq. (1)] produces statistically the same structures as
seen in the directory trees. The parameter q is the appro-
1-3
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priate quantity to consider because differences between
trees can be captured mainly by variation of q.

Discussion.—The structure of directory trees has been
characterized from a statistical point of view. Our main
result is the striking structural similarity between trees
created by independent users in the absence of regulations.
Users create trees with a broad, scale-free degree distribu-
tion with a nonuniversal exponent. The distribution of
branch sizes, however, scales with a universal exponent
� 
 2. The allometric scaling is linear with a logarithmic
correction. Branch structure and allometric scaling are
significantly different in random surrogate trees with the
same degree distribution. The statistical properties of the
empirical trees are reproduced by a model that generates
trees by adding nodes iteratively. The model has a single
parameter q controlling the tendency to accumulate many
subdirectories in the same parent directory. By varying q,
the degree exponent can be tuned in the empirically ob-
served range. The exponent � � 2 and the allometric scal-
ing C� A lnA have been derived analytically and are
independent of the parameter q. The validity of the model
has been evidenced further by determining the most likely
value of the parameter q. For a given tree, estimates based
on different moments of the degree distribution as well as
the diameter coincide, while estimates vary across trees.
Consequently, directory trees can be distinguished by their
specific value of the growth parameter q.

A generally interesting question is to decide about uni-
versal properties and universality classes of different natu-
ral and artificial or man-made complex networks. The
branch distribution exponent � ’ 2 that we find for our
directory trees is in agreement with the one reported for the
Internet [14,15] and for the communities of scientific
collaborations [16,17]. However, a different class is formed
by river networks [18–20], informal networks in organi-
zations [9], and jazz musician networks [17], where the
corresponding exponent gives a value �� 1:45 [15]. These
examples seem to belong to the class of efficient networks
obtained from an optimization principle in which transpor-
tation costs are minimized [10]. For the class of efficient
networks, one can prove [10,21,22] that allometric scaling
is given by a power law dependence C� A�, with a
universal exponent � � �D� 1�=D, where D is the em-
bedding dimension. At difference with the prediction from
efficiency, we find C� A lnA for the directory trees as
reproduced by our growth model. This result is also com-
patible with effective (apparent) exponents observed in
food webs [11].

We have shown that directory trees as individually
man-made but not designed objects are an interesting
12870
direction of further research into hierarchical networks.
Finding common statistical features of directory trees of-
fers improved insight into how people naturally structure
information.
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