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We present an exact solution of a one-dimensional Ising chain with both nearest-neighbor and random
long-range interactions. Not surprisingly, the solution confirms the mean-field character of the transition. This
solution also predicts the finite-size scaling that we observe in numerical simulations.
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I. INTRODUCTION

Physical interactions are usually of limited range. Never-
theless, there is a long history of study of the effect of infi-
nite range interactions in basic models of statistical physics
[1,2]. More recently, the work of Watts and Strogatz[3] on
small world networks brought renewed attention to this ques-
tion. Watts and Strogatz considered a quantitative model that
interpolates between a regular lattice and a random one.
They showed that the addition of a small fraction of random
long range links can dramatically change the connectivity
properties of the lattice. In particular, in a lattice ofN nodes
the averaged chemical distance, that is the averaged mini-
mum number of links between any two nodes, is of order
Osln Nd, rather thanOsNd, as in a regular lattice, regardless
of the numberpN of additional linkssp.0d, providedN is
large enough. Clearly, this change should be reflected in the
phenomenology of any physical models defined on such lat-
tices. Researchers were quick to grasp this opportunity and
many physical models and processes have been considered
in small-world networks, like cellular automata[4], diffusion
[5], neural networks[6], the spread of disease[7], and many
others[8].

The Ising model, the simplest paradigm of order–disorder
transitions, has been studied on small-world networks in one
dimension (1D) both numerically and analytically[9–12],
and in two(2D) and three dimensions(3D) numerically[13].
Some partial analytic results, based on the use of the replica
trick, were presented by Gitterman[11] and Barratt and
Weigt [10]. They are, however, contradictory(Gitterman pre-
dicts a ferromagnetic phase only forpù1/2) and, at any
rate, these results do not constitute a full solution of the
thermodynamics of the model. There is a consensus that the
ferromagnetic Ising model has a mean-field transition for any
finite value ofp even in 1D, even though Hastings predicts
the occurrence of anomalous scaling of the mean-field am-
plitudes withp→0 [14]. Dorogovtsevet al. [15] presented a
very general discussion, for networks that are locally tree-
like, based on the solution of the Ising model on a Bethe
lattice [16].

In this work, we present an explicit solution of the 1D
Ising model with additional random long-range bonds. We
are able to calculate not only the transition temperature, but

also the complete thermodynamics at all temperatures as a
function of p and of the strength of long range interactionsI
(though in this paper, we only present the results for the free
energy and specific heat, in zero field). The form of finite
size scaling corrections to the thermodynamics can also be
derived from our solution.

The following Sec. II presents a description of our spe-
cific model and the basic algorithm for its exact solution. The
combinatorial treatment of its constituents is given is Sec.
III. In Sec. IV, we analyze the resulting thermodynamics and
conclude on the mean-field character of the ordering transi-
tion. Section V shows how the finite size scaling properties
can be obtained within the same approach. Finally, the rela-
tion between our results and those of Dorogovtsevet al. is
discussed in Sec. VI.

II. MODEL

Watts and Strogatz originally considered a model in
which the bonds of a regular lattice are rewired at random
with a probabilityp. It is widely believed that the modified
model, in which random long-range bonds, orshortcuts, are
added to the regular lattice[7], is essentially equivalent.

The actual model consists of a chain ofN Ising spinssi,
with nearest-neighbor interactionsJ (chain bonds) and short-
cut interactionsI (long range bonds), both J and I being
positive, so that the Hamiltonian reads

H = − Jo
i=0

N−1

sisi+1 − I o
si j dPS

sis j − ho
i=0

N−1

si , s1d

with si = ±1 and periodic boundary conditions:s0=sN. The
set S containsNb=pN shortcut pairs of spins, and the last
term accounts for the effect of external magnetic field. We
present in detail the solution of a version of this model in
which the sites connected by shortcuts are equally spaced in
the regular lattice, a distance 1/2p apart, but the shortcuts
are randomly arranged among these spins. The solution of
the original model, in which the 2pN sites are randomly dis-
tributed along the lattice, turns out to be essentially the same,
and some results for this latter case are also presented in the
Appendix. In either case, the bond selection is such that no
spin is linked to more than one shortcut.
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We consider a transformation from site variables to bond
variables, which we formulate for a general Ising model in
zero-magnetic field,

H = − o
si,jd

Jijsis j , s2d

where Jij can be chosen arbitrary(though in what follows
they are only 0,J, or I). The partition function for tempera-
ture T=b−1 is given by

Z = Trhsj expsbo
si,jd

Jijsis jd=Trhsjp
si,jd

expsbJijsis jd. s3d

We can use the known identity

expsbJijsis jd = coshbJijs1 + sis j tanhbJijd, s4d

and then represent the latter factor as a sum in a discrete
“bond variable”bij =0,1:

1 + sis j tanhbJij = o
bij=0,1

ssis j tanhbJijdbij , s5d

to write the partition function as

Z = Sp
si,jd

coshbJijD s6d

3Trhsjo
hbj

p
si,jd

ssis j tanhbJijdbij .

s7d

When we trace over any spin variablesi, in a product with
fixed configurationhbj of bond variablesbij , we get zero if
the ith spin multiplicity in this product,o j bij , is odd, and a
factor of 2 if it is even. Therefore, we can trace over the spin
variables to obtain

Z = 2NSp
si,jd

coshbJijD s8d

3o
hbj

p
si,jd

stanhbJijdbij , s9d

where the sum overhbj is restricted to configurations with
only eveno j bij for all i.

As an example, we can derive from Eq.(9) the partition
function of the Ising chain(Jij =J, for nearest neighbors).
Since each spin there has only two bonds, this implies that
eitherbij =0 for all the bonds orbij =1 for all the bonds, and
these two alternatives contribute in the partition function

Zchain= s2 coshbJdNs1 + tanhN bJd s10d

as expected.
The restriction of the sum in Eq.(9) to configurations

such thato j bij is even, allows a reduction of the number of
required variables. If the sitei has no shortcut bonds, then
this condition reduces tobi−1,i +bi,i+1 being an even number,
that is,bi−1,i =bi,i+1 (sincebij =0,1). On the other hand, ifi is
a shortcut site, with an associated additional bond variable,
the sum in Eq.(9) gets only nonvanishing contributions
when bi−1,i =bi,i+1, if the additional bond variable is 0, or

whenbi−1,i =1−bi,i+1, if the additional bond variable is 1. In
any case, the knowledge of one chain bond variable(say
b0,1) and the shortcut variables is enough to determine all the
terms that give a nonzero contribution to Eq.(9). Hence, the
partition function can be written as an unrestricted sum over
b0,1 and Nb shortcut bond variables which, in order to sim-
plify notation, we denote simply byb0,b1, . . . ,bNb

:

Z = ZchaincI
pN o

hb0,. . .,bNb
j
tJ
LfbgtI

Mfbg, s11d

where cI ;coshbI, tJ; tanhbJ, tI ; tanhbI, M =oi=1
n bi is

the number of shortcut bonds withb=1, andL the number of
chain bonds withb=1. We calculate it as follows: Given a
configuration ofNb shortcuts and a choice ofM from them
with bi =1, the chain gets divided into 2M segments between
consecutive spins connected to one ofM bonds. These seg-
ments have lengthsl1, . . . ,l2M. Whenb0=0, the valueLfbg is
the sum of even lengths,l2+ l4+¯ + l2M. Otherwise, it is the
sum of the odd ones,l1+ l3+¯ + l2M−1.

Our solution is based on the observation that Eq.(11)
permits explicit separation of two extensive thermodynami-
cal variablesLfbg andMfbg [both beingOsNd] from Nb mi-
croscopic variablesbi. The latter only define a temperature
independent prefactorVsM ,Ld at the producttJ

LtI
M with given

L and M. A similar situation(but with a single variabletJ
L)

was already addressed by Saul and Kardar for the problem of
Ising spin glasses[17]. Instead of the numerical procedure
for the prefactor employed in Ref.[17], we are able here to
calculate analytically the sum over all the bond configura-
tions in Eq.(11). DenotingVsM ,Ld=expfSsM ,Ldg the num-
ber of choices ofM segments giving a fixed value ofL, we
get

Z = ZchaincI
pNo

b0

o
M,L

expsS− L/jJ − M/jId, s12d

wherejJ=1/ lns1/tJd is the Ising chain correlation radius and
jI =1/ lns1/tId.

The crucial property of the exponential function under
sum in Eq. (12) is that it has, as will be seen below, an
extremely sharp maximum at somemacroscopicallygreat
values ofL and M. This reduces the calculation of its con-
tribution to the free energy,F=−T ln Z, to the logarithm of
its maximum. The latter turns out to beOsNd and thus a
self-averaging quantity, that is coinciding, for(almost) any
random realization of the disordered system, with its average
value [18].

Passing to the intensive thermodynamical variablesl
;L /N, n;M /Nb, and to the intensive functionssl ,nd
=SsL ,Md /N, we rewrite Eq.(12) as

Z = 2ZchaincI
pNo

l,n
expfNss− l/jJ − pn/jIdg, s13d

and in the thermodynamic limitN→`, the sum converts into
integral which can be done by steepest descent. The values
b0=0 and 1 give identical contributions, hence the factor 2.
The free energy per spin isf =F /N=−sT/Ndln Z
=−sT/Ndln Z0Za= f0+ fa, where

VIANA LOPES et al. PHYSICAL REVIEW E 70, 026112(2004)

026112-2



f0 = − Tflns2 coshbJd + p ln coshbIg s14d

and the “anomalous” termfa (if exists, see below) is given
by simple minimization with respect tol andn of the follow-
ing function:

fsl,nd = Tf− ssl,nd + l/jJ + pn/jIg. s15d

The task that remains is to calculate the configurational en-
tropy ssl ,nd; ln VsL ,Md /N (for L ,M =OsNd).

III. COMBINATORICS OF BONDS

The calculation ofVsL ,Md can be formulated in the fol-
lowing way.

We are given a chain ofN sites h0,1,2, . . . ,N−1j with
periodic boundary conditions. The shortcut sites are evenly
spaced forming a regular lattice with coordinates
hd,2d, . . . ,Nj, where d=1/2p. A number pN of shortcuts
connectpN pairs, randomly chosen from these sites. If we
chooseM of these bonds(those for whichb=1) from the
total of pN, the corresponding shortcut sites(the filled dots in
Fig. 1) will have coordinates, in increasing order
hr1,r2, . . . ,r2Mj# hd,2d, . . . ,Nj. These site coordinates will
divide the lattice into 2M segments of lengthsdl1, . . . ,dl2M
where

l i =
r i − r i−1

d
, i Þ 1,

l1 =
N − r2M + r1

d
, s16d

and oi=1
2M li =N/d. Then VsL ,Md is the number of possible

choices of theM bonds such that

l2 + l4 + l6 + ¯ + l2M = L/d. s17d

We are asking in how many ways one can divide the
interval f0,N/dg into 2M +1 integer lengths,hl1, . . . ,l2M+1j,
where only l2M+1 may be zero, so that even lengths are
summed to

l2 + l4 + ¯ + l2M = L/d. s18d

Then, clearly, the odd lengths should sum to

l1 + l3 + ¯ + l2M+1 =
N − L

d
. s19d

Therefore,VsL ,Md is just the number of ways of dividing
the intervalf0,L /dg into M segments of integer length, times

the number of ways of dividingf0,sN−Ld /dg into M +1 in-
teger segments(the last of them possibly zero):

CM
sN−Ld/dCM−1

L/d−1 s20d

(whereCm
n =n! / fm! sn−md ! g, a binomial coefficient).

Note, however, that our choice of 2M coordinates
hr1, . . . ,r2Mj is constrained by the fact that the original prob-
lem hasbondsconnecting pairs of sitesqk,qm. Therefore, if
qkP hr1, . . . ,r2Mj so mustqm. To take this fact into account,
we multiply the previous factor by the normalizing factor,

CM
pN/C2M

2pN, s21d

which refers to the self-averaging property in the thermody-
namic limit: That(almost) all possible pairings between the
sites hd,2d, . . . ,Nj give the sameVsL ,Md. The result for
VsL ,Md is, then:

VsL,Md = CM
2psN−LdCM−1

2pL−1CM
pN/C2M

2pN. s22d

At this point, it is important to specify the variation range
for the variablesL andM. Clearly, 0,M ,pN. On the other
hand, since eachr i −r i−1 measures at leastd=1/2p, we must
have 2pLùM andpN−2pLùM, i.e., the before defined in-
tensive variablesn=M /pN and l =L /N should belong to the
triangle

n ø 2l , n ø 1 − 2l , 0 ø n ø 1, s23d

shown in Fig. 2.
For our purposes, all that will be required is the leading

OsNd term in ln VsL ,Md. Using Stirling’s formula

n ! < Î2pnSn

e
Dn

, s24d

we arrive at

ln VsL,Md = Nssl,nd s25d

with

FIG. 1. VsL ,Md is the number of possible choices ofM bonds,
terminating in filled dots, frompN fixed bonds, which have a given
value of the suml2+ l4+¯ + l2M =L /d.

FIG. 2. Trajectories of the maxima of the exponent in Eq.(13)
in the domainhl ,nj, as temperature varies fromT=0 (central point),
to Tc (lateral vertices,b0=0 or b0=1) at particular choices of pa-
rameters:(1) p=0.01,I =1; (2) p=1/2, I =1; (3) p=0.1, I =0.1; and
(4) p=1/2, I =0.1. For each temperature, there are two equal con-
tributions to free energy resulting fromb0=1,0.
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ssl,nd = pfs2 − 2ldlns2 − 2ld + 2l lns2ld+ s1 − ndlns1 − nd

− n ln n− s2l − ndlns2l − nd

− s2 − 2l − ndlns2 − 2l − ndg s26d

[dropping the termsOsln Nd].
In order to confirm the basic assumption of self-

averaging, involved in the calculations leading to Eq.(26),
we performed multicanonical Monte Carlo simulations on
the variablesl andn. For the sampling probability distribu-
tion of a statei (characterized by a set of values for the
variableshbj), we usedpi =1/VsLi ,Mid. The Monte Carlo
move is given by:

(1) From an initial statei, propose a new statej , differing
from i by the value of a randomly chosen bond(with prob-
ability 1/Nb).

(2) Accept the new state with the usual probabilityWij
=minf1,VsLi ,Mid /VsLj ,Mjdg. This procedure ensures(by
detailed balance and ergodicity of the algorithm) that the
asymptotical sampling probability ispi. The asymptotical
histogram of frequencies in ansl ,nd point should, then, be
given by

Hsl,nd ~ VasL,Md
1

VsL,Md
,

whereVasL ,Md is the actual number of states, with given
sL ,Md, of the sample that we are using in the simulation. If
VasL ,Md=VsL ,Md, the histogram should be flat in all the
range ofsl ,nd.

The corresponding histograms(shown in Fig. 3, for a
single disorder realization) are indeed quite flat, confirming
that the entropies we calculated are apparently exact in the
thermodynamic limit and very accurate for the moderate
tested sizes. Recall thatVsL ,Md~expfNssl ,ndg and, for

large N, even small deviations of lnVasL ,Md from Ssl ,nd,
would result in simulations which do not cover the entire
spectrum, as ours do.

IV. THERMODYNAMIC BEHAVIOR

The necessary conditions for the exponent in Eq.(13) to
be maximum:]fsl ,nd /]n=]fsl ,nd /]l =0, define from Eq.
(26) the following equations for the coordinatesn* and l* of
this maximum

n*s1 − n*d
s2 − 2l* − n*ds2l* − n*d

= tI ,

s2l* − n*ds1 − l*d
l*s2 − 2l* − n*d

= tJ
d, s27d

sd;1/2pd. These equations are easily solved:

l* =
1 − tJ

d − 2tItJ
d

s1 − tJ
dd2 − 4tItJ

d , s28d

n* = l*S1 +
tI − tJ

d

1 + tI
D , s29d

and, fortI, tJ varying with temperature, these are parametric
equations for a certain trajectory of the maximum of the
exponent in then, l plane[within the admissible range, Eq.
(23)]. At zero temperature, whentI = tJ=1, it locates atl*

=1/2, n* =1/2 (the central point in Fig. 2), corresponding to
the maximum configurational entropyssl ,nd. As T increases,
the maximum moves toward the originn= l =0 (or to n=0,
l =1), as shown in Fig. 2. The trajectory reaches the very
origin at a finite temperatureT=Tc, given by the condition

tJ
ds1 + 2tId = 1. s30d

It is important to notice that below this critical temperature,
when the reduced temperaturet;T/Tc−1 is nonzerost,0d,
no matter how smallutu is, the coordinates of maximum
sl* ,n*d Eqs.(28) and (29), are also finite:l* ,n* ,utu. Hence,
the corresponding numbersL* = l*N andM* =pn*N are mac-
roscopic:L* ,M* =OsNd. On the other hand, the width of the
maximum, estimated from the second derivatives
]2s/]l2ul* ,n* ,]2s/]n2ul* ,n* ,1/l* , is OsÎl* /Nd and tends to
zero in the thermodynamic limit, that is the probability dis-
tribution in macroscopic variablesl ,n tends to ad-function
with an amplitude which can only depend on macroscopic
parameters of long-range links(p and I) but not on their
specific realization. This justifies the above used assumption
of self-averaging for the probability distribution and relates it
to the known self-averaging property for observable values
[18].

AboveTc, the maximum of the exponent in Eq.(13) goes
away from the physical region, Eq.(23), while its highest
value in this region is zero, attained at the origin. Hence, the
last factor of the Eq.(13) turnsOs1d, and it gives no contri-
bution to the free energy in the thermodynamic limit. There-
fore, the free energy aboveTc is simply f0, Eq. (14), but it

FIG. 3. Histogram of occurrences ofl values for several fixed
values ofn, obtained in multicanonical simulations with the entropy
of Eq. (26) as sampling distribution for a sample withp=1/4 and
N=512.
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gets an extra term belowTc: f0+ fa, wherefa is given by Eq.
(15) with l and n are given by Eqs.(28) and (29). These
equations combined provide a complete description of the
thermodynamics of the model at all temperatures in zero
field.

The dependence of transition temperatureTc, defined
from Eq. (30), on the system parametersp, J, and I, can be
easily analyzed in characteristic limits.

If shortcut bonds are much stronger than chain bonds,
then for any finitep andI →`, the critical temperature tends
to a finite value:Tc→J/ sarctanh 9−pd. Since shortcut spin
pairs in this limit should be considered as single spins, the
above value defines also the transition temperature for a ran-
dom graph with connectivity 4 made of Ising chains of
length d=1/2p. In the limit of small concentration,p!1,
this critical temperatureTc turns small compared toJ, the
energy scale for Ising chain:

Tc =
2J

lnf1/sp ln 3dg
, s31d

and suchI-independent behavior holds as well for moderate
shortcut strength(unlessI is too small:I !J/ ulnsp ln 3du). At
last, in the limit where the shortcuts are much weaker than
the chain bonds,pI!J, we have within logarithmic accuracy

Tc =
2J

lnfTc/s2pIdg
<

2J

lnhJ/fpI lnsJ/pIdgj
. s32d

The above relations define the system phase diagram in
p,I ,T variables, as shown in Fig. 4.

It is of interest to compare these formulas to the finite
critical temperatures, resulting from breaking down the
Mermin–Wagner theorem for a two-dimensional Heisenberg
magnet in the presence of(small) anisotropy DJ!J:Tc
<Jz/ lnsTc/DJd (z is the coordination number). They can
also be referred to the percolation thresholdpc for the one-
state limit of the Potts model[19]: Tc=2J/ lns1−pcd.

The nontrivial thermodynamics follows from the observa-
tion that close to the critical point, 0,−t!1, both variables
l andn areOsutud, while the trajectorynsld reaches the origin
with asymptotic slopedn/dl→4/s1/tI +2d,4/3, that is, al-
ways within the triangle, Eq.(23). Using Eqs.(28) and(29),

the additional termfa in the free energy can be simplified to:

fa = Tp ln
s2 − 2l* − n*d2

s1 − n*ds2 − 2l*d2 , s33d

and its leading terms in the critical region are clearly of order
Ost2d. Hence, the specific heat per spin,cv=−T]2f /]T2, has a
finite jump DC at the critical point. As an example, we
present in Fig. 5 the calculated exact specific heat forp
=1/4 andI =J, together with the results of simulations on
samples of various sizes. This behavior permits one to clas-
sify the considered transition as second-order mean-fieldlike,
with a critical exponenta=0. In the case ofp!1 with Tc
given by Eq.(31), the jump is proportional top3 ln2sp ln 3d,
and is also independent of the shortcut bond strengthI. When
the shortcuts are much weaker than the chain bonds,pI!J,
with Tc by Eq. (32), we find the specific heat discontinuity
proportional topsI /Jd2 ln4sJ/pId. The above results indicate
a nonanalyticdecayof this mean-field amplitude atp→0,
specific for the considered one-dimensional system. It is of
interest to compare this to a power-lawdivergencein p of the
mean-field amplitudes for systems where a second-order
transition at nonzero temperature exists in absence of long-
range links[14].

V. FINITE SIZE SCALING

It was shown that the self-averaging property invoked for
our calculation ofVsL ,Md is true in the thermodynamic
limit, and flatness of the histograms in the multicanonical
simulations suggests that the calculatedVsL ,Md is accurate
(see Fig. 3). Nevertheless, there are visible deviations from
flatness near the edges of the spectrum, which diminish with
growing system sizeN. One can therefore ask whether our
solution also contains the correct finite size scaling proper-
ties of this model.

To answer this question, the numerical sum of Eq.(12)
was performed for different temperatures. The factorials
were substituted by the Stirling’s approximation and the spe-
cific heat was then obtained by numerical differentiation. The

FIG. 4. Behavior of the critical temperature(in units of J) as a
function of I for several values of the concentrationp of shortcuts

FIG. 5. Specific heat obtained by Monte Carlo simulations for
four sizes of samples, withp=1/4 andI =1 in comparison with the
theoretical curves`d. Inset shows the collapse of the four curves
when plotted in function oftN1/2.
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comparison between the two independent calculations is pre-
sented in Fig. 6. Despite the fact that the Monte Carlo simu-
lation was made for a unique sample(without disorder aver-
aging), the agreement between these calculations is very
good.

To derive the analytic form of the finite size scaling func-
tion, we approximated the sum in Eq.(12) by an integral in
the intensive variablesl and n. Then, after the change of
variablessl ,nd→ sl ,ud where u=n/ l, the partition function
for a finite sizeN of the sample becomes

ZN = expf− bNsf0 + fadgZFSS s34d

where

ZFSS=
N

2pp
E

0

+`

dlE
0

2

du gsl,udexpspNhsl,udd s35d

defines the contributions,OsN−1 ln Nd into free energyf,
with

gsl,ud =Î 2s1 − ld
s2 − ls2 + udds2 − ud

s36d

and

hsl,ud = 2s1 − ldlnS 1 − l

1 − l*
D + s1 − uldlnS 1 − ul

1 − u* l*
D

− s2 − udl lnS 2 − u

2 − u* D − ul lnS u

u* D
− s2 − ls2 + uddlnS 2 − ls2 + ud

2 − l*s2 + u*dD . s37d

The function hsl ,ud has a maximum atsl* ,u*d. When T
→T c

−, we havel* →0+ andu* →2/f1+cothsbcId /2g,4/3.
The integral in the Eq.(35) is dominated by the vicinity of

the maximum. To obtain the leading order terms in 1/N and
t we may expandhsl ,ud around the maximum,

hsl,ud < − c1sl − l*d2 − c2lsu − u*d2, s38d

with definite constantsc1,2,Os1d, and replacegsl ,ud by
gs0,u*d. With a suitable change of variables, we obtain

ZFSSszd <
N1/4

k1
E

0

`

dxE
−y*

s2/u*−1dy*

dy e−sx − k2zd2−xy2
,

s39d

werez= tN1/2, y* ~N1/4, and the constantsk1,2 are related to
c1,2. Since the finite size scaling limit isN→` and t→0 (at
fixed z,0), the limits of integration iny tend to infinity and
we get

ZFSSszd <
ÎpN1/4

k1
E

0

` e−sx + k2zd2 dx
Îx

. s40d

This leads to a correction in the additional free energy:

fa → fa − Tc
t2

z2ln ZFSSszd, s41d

and, sincefa is also proportional tot2, the scaling form for
the specific heat becomes:

CNsTd
C`sTd

= cstN1/2d. s42d

Thus the specific heat curves for finite size systems,CNsTd,
when scaled byC`sTd and plotted as a function oftN1/2,
should collapse to a single curve. The results of the Monte
Carlo simulations are consistent with this prediction(see the
inset of Fig. 5). An excellent accordance between the ana-
lytic behavior and the results of direct summation in Eq.(12)
and of Monte Carlo simulations is shown in Fig. 6.

A similar scaling is observed in the susceptibility(not
shown here) and has been observed by other authors in 1D
[12] and also in 2D and 3D[13] (whereN=Ld is the number
of spins, not the linear dimensionL of the lattice).

This is the expected form of scaling for a situation in
which the dimensionality isgreater than the upper critical
dimension and hyperscaling is violated[20]. It is observed in
all these small-world models for any dimension of the under-
lying regular lattice[12,13]. A similar steepest descent solu-
tion probably applies also in all of these cases.

VI. RELATION TO BETHE LATTICE APPROACH

The local environment of a spin in our model looks like
the Cayley tree in Fig. 7. The vertical links are shortcuts(of
strength Id and the longer ones segments of the one-
dimensional chain, containingd=1/2p links of strengthJ.
Since a shortcut from a given spin has an equal chance of
linking it to anywhere in the lattice, we do not expect to find
closed loops until we goOsln Nd links away. Based on this
insight, Dorogovtsevet al. [15] developed a description of
the Ising model on such lattices based on the Bethe lattice
solution. Their detailed results(namely for Tc) are not di-
rectly applicable to our lattices(which are not maximally
random because of the strong correlation between shortcut

FIG. 6. Comparison between the Monte Carlo simulation for a
sample ofN=8192 andp=1/4, the numerical sum Eq.(12) and the
analytical result(because of the small sizes, it was necessary to
include corrections ofOsN−1/4d to the finite size scaling).
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sites). But their insight certainly is, and, since our results are
not based on the Bethe lattice solution, and our lattice has a
well defined thermodynamic limit, it is interesting to con-
sider the relation between the two approaches.

In a Bethe lattice there is only one path to link two spins,
as a result the correlation function is of a one-dimensional
character. Therefore, the correlation between any two spins
ks0srl decays exponentially with the distance at any finite
temperature(even atTc). But the number of spinssr at a
given distance,r, from a given one,Nssrd, grows exponen-
tially with distance, not as a power law, as in a regular lat-
tice. The functionks0srlNssrd has a decay length that di-
verges at the ordering temperature of the Bethe lattice. It is
straightforward to derive the exact transition temperature of a
Bethe lattice of coordinationq, bc J=lnsq/ sq−2dd /2, from
this condition.

In our model, the chemical distance between two spins
can be taken asL8+M, whereM is the number of shortcuts
and L8ùM is the number of one-dimensional chain seg-
ments withd bonds each, which connect these spins. Then,
the one-dimensional correlator is

ks0ssL8,Mdl = eL8d ln tJ+M8 ln tI . s43d

The total number of spins with this separation from a given
one, is

NssL8,Md = 2MCM
L8, s44d

therefore

ks0ssL8,MdlNssL8,Md = e−ksx,TdsL8+Md, s45d

where the decay constantksx,Td, with x;L8 / sL8+Md, is

ksx,Td = s1 − xdlns1 − xd + s2x − 1dlns2x − 1d−s1 − xdln 2

− x ln x− x ln tJ
d − s1 − xdln tI . s46d

Minimizing ksx,Td with respect tox, we find that this mini-
mum valueksTd=minx ksx,Td decreases with temperature
and turns zero just atT=Tc given by Eq.(30). At any tem-
perature aboveTc the function in Eq.(45) decays exponen-
tially and there is no possibility of long-range order. In the
language of the Bethe lattice, the occurrence of an extra term
in the free energy belowTc, expresses the effect of bound-
aries, which is never negligible, no matter what the lattice
size is, when the function in Eq.(45) does not decay with
distance.

This analysis sheds some light on the previously stated
violation of hyperscaling, which arises from the fact that the
finite size corrections are not determined by the length that
characterizes the decay of correlation functions. In fact, we
have argued above that the spin–spin correlation function
decays exponentially with the distance measured on the
equivalent Bethe lattice, i.e., with the chemical distance on
the original lattice. Thus, for the instance ofI =J, we have
j=−1/ ln tJ and

ks0ssL8,Mdl = e−sL8d+Md/j. s47d

It is well known that the chemical distance between any two
randomly chosen spins is of orderOsln Nd so the correlation
between two spins at a distance of orderN along the one-
dimensional chain is at least of orderN−1/j; it does not decay
exponentially withN as the lattice and the distance between
spins grow.

One interesting question that remains unanswered is
whether one can modify the model in order to effectively be
at or below the upper critical dimension, and therefore ob-
serve a non-mean-field behavior.

VII. CONCLUSIONS

In summary, we have been able to derive an exact solution
of an Ising model on a lattice with long range disordered
interactions. This solution expresses the free energy in terms
of the density of states as a function of two macroscopic
variables of orderOsNd, which therefore is self-averaging.
Hence no disorder averaging is required in this approach. We
obtained the thermodynamics in theN→` limit and also the
finite size scaling behavior.
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APPENDIX

The model in which the positions of the shortcut sites are
randomly chosen can be solved along the same lines of the

FIG. 7. The Bethe lattice that describes the local environment of
any spin in the model: Shortcuts(double lines) between the sites
divide the Ising chain into equal segments withd (here,d=3) chain
bonds(single lines).
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model considered in the main text. We denote the coordi-
nates of the shortcut sites, in increasing order, by
hq1,q2, . . . ,q2pNj with q1.0 (allowing for q2pN=0). The dis-
tances between consecutive sites are

di = qi − qi−1, i Þ 1,
sA1d

d1 = N − q2pN + q1,

so thatoi=1
2pN di =N. If we chooseM bonds(those for which

b=1) from the total ofpN, the corresponding shortcut sites
hr1,r2, . . . ,r2Mj# hq1,q2, . . . ,q2pNj will divide the lattice into
2M segments of lengthsl1, . . . ,l2M where

l i = r i − r i−1, i Þ 1,
sA2d

l1 = N − r2M + r1,

and oi=1
2M li =N. Then, VsL ,Md is the number of possible

choices of theM bonds such that

l2 + l4 + l6 + ¯ + l2M = L. sA3d

We define

VsL,Md = VsMdPsLuMd, sA4d

whereVsMd is the number of choices ofM shortcuts with
b=1 from a total ofpN fVsMd=CM

pNg, and PsLuMd is the
probability that any such choice ofM bonds will selectL
chain bonds withb=1.

It should be stressed again that, for a given realization of
disorder, this probability must be calculated in the event
space consisting of the choices ofM shortcuts from the spe-
cific set of pN random shortcuts. However, it follows from
the self-averaging property in the thermodynamic limit that
any statistically significant configuration of shortcuts leads to

the same probabilityPsLuMd. In that case we can calculate it,
enlarging the space of events to includeall the configurations
of shortcuts.

We are therefore led to ask in how many ways one can
choose 2M sites,hq1,q2, . . . ,q2Mj# h1, . . . ,N−1j, such that
the sum of even lengths in this series isl2+ l4+ l6+¯ + l2M
= l. We have seen above that it is given by

CM
N−LCM−1

L−1 . sA5d

Since the total number of such choices isC2M
N , we have

PsLuMd = CM
N−LCM−1

L−1 /C2M
N , sA6d

so that

VsL,Md = CM
pNCM

N−LCM−1
L−1 /C2M

N . sA7d

With the same definitions as above, we get

ssl,nd = − pnsln n/4d − ps1 − ndlns1 − nd

+ s1 − 2pndlns1 − 2pnd− s1 − l − pndlns1 − l − pnd

− sl − pndlnsl − pnd+ s1 − ldlns1 − ld + l ln l . sA8d

The equation for the transition temperature is

tJs1 + 4ptId = 1, sA9d

with the characteristic limits

Tc =
2J

lns1/2pd
, p ! 1, I .

J

lns1/2pd
,

sA10d

Tc =
2J

lnsTc/2pId
, pI ! J.

The resulting thermodynamic behavior is essentially the
same as in the model considered in the main text.
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