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I. INTRODUCTION

Vertical-cavity surface-emitting laserssVCSELsd are
touted as key components for present and future data com-
munication systems. Due to their small cavity length and
quasicylindrical symmetry, VCSELs have only one longitu-
dinal mode, a superior beam quality, low power consump-
tion, a long lifetime, and can be manufactured in two-
dimensional arrays. All these characteristics are often cited
as substantial advantages over edge-emitting semiconductor
lasers. However, their polarization behavior is difficult to
predict due to their symmetrical structure. In the fundamental
transverse-mode regime, VCSELs exhibit two nearly degen-
erate linear polarization modes with polarization direction

along thef110g or f11̄0g of the III-V based materials, be-
tween which switching has been observed when the current
is changed. Different physical mechanisms have been intro-
duced to explain this current-driven polarization switching
sPSd. The first model is of thermal nature and attributes PS to
a spectral shift of the gain maximum with respect to the
cavity resonances for the two frequency-split polarization
modesf1g. Some of us have further elaborated on this idea
and have incorporated the temperature and frequency depen-
dence of both losses and gainf2g. Furthermore, the gain dif-
ferences that induce PS have been attributed to thermal lens-
ing in f3g or to the overlap of the modal profiles with the
carrier distribution in the devicef4g. Nonlinear gain contri-
butions, so-called gain saturation effects, can also be in-
volved in PSf5,6g. These nonlinearities can stem from spa-
tial hole burning effectsf7g, spectral hole burning effects
f8–10g, intersubband absorptionf11g, and carrier heating
f12,13g.

A distinctively different model for PS was developed by
San Miguel et al. f14g and was extended to include fre-

quency and gain anisotropies inf15g. The latter model, called
the spin-flip modelsSFMd, describes the active semiconduc-
tor quantum well in terms of a spin-split two level system,
where the two spin subsystems are coupled through spin-flip
processes.

In f16,17g, the SFM was extended by introducing an ap-
proximate frequency-dependent susceptibility for quantum-
well sQWd media. This approach permits one to include the
thermal shift of the cavity resonances over the gain spectrum
of the system, and has allowed reproduction of the experi-
mental observations of PSf17,18g, two-frequency emission
at thresholdf19g, and the emission of elliptically polarized
statesf20g. In all these modeling attempts, strain effects are
introduced phenomenologically through the dichroism and
birefringence parameters. These parameters, which describe
the residual anisotropies in the structure that may result from
unintentional residual strain left after the growth process or
from the electro-optic or elasto-optic effects in the VCSEL
cavity f21g play a key role in the preference for a particular
polarization orientation.

Indeed, inf22,23g it was shown that mechanical stress,
externally applied to the VCSEL package, dramatically alters
its polarization behavior. We considered a VCSEL operating
at the high-frequency side of the gain spectrum, so that at
threshold, the laser selects the low-frequency mode that
keeps lasing at every current above threshold. We then ap-
plied tensile stress and considered two cases: stress was ap-

plied either in thef110g or in the f11̄0g direction. In both
cases, the laser switches to the high-frequency modespolar-
ized perpendicular to the stress axisd at high switching cur-
rent. This switching current drops upon increasing the stress.
At lasing threshold, only the high-frequency mode lases. The
present paper aims at understanding this impact of in-plane
anisotropic stress on the quantum-well gain spectra.

Our starting point to study the effect of in-plane aniso-
tropic stress on the gain spectrum of GaAs quantum wells
was the Luttinger-Kohn Hamiltonian for the quantum-well
heavy-hole and light-hole bands and the introduction of the
strain contributions according to the Bir-Pikus theory
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f24,25g. The numerical studies by Buraket al. f26,27g have
provided valuable insight into the experimental results ob-
tained inf22g, demonstrating the changes induced in the gain
spectrum of the QW by the application of stress. However,
these numerical studies are complex and demanding from the
computational point of view. This fact stimulated the search
for simpler, analytical studies of the optical gain.

Here, we present an analytical study of the optical suscep-
tibility of a quantum-well laser at low temperature taking
stress effects into account. This work is performed in line
with the spirit of f16g. Its primary objective is to develop a
susceptibility function which retains the key features of the
semiconductor media including the changes due to stress.
Our analysis is based on a parabolic-band approach, with the
assumption that second-order contributions of the band-
mixing effects can be neglected. All parameters can be de-
termined from the band structure, except for the band gap
renormalization.

The paper is organized as follows. In Sec. II, we present
the model for the electronic band structure and the optical
susceptibility tensor of a stressed semiconductor quantum
well. In Sec. III, we gain more insight into the effect of the
stress-induced symmetry change in the system. This leads to
a stress-induced band mixing contribution, which is crucial
to explain the alignment of the eigenmodes with the stress
directions. The first approximation is made by neglecting
second-order contributions of the band mixing. In Sec. IV,
the low-temperature susceptibility is reduced to an analytical
formula using a parabolic band approach. In Secs. V and VI,
this analytical expression is discussed by studying the effect
of uniaxial planar stress on the spectra of the quantum-well
gain and refractive index. Section VII contains conclusions.

II. BAND STRUCTURE AND OPTICAL SUSCEPTIBILITY
OF STRESSED QW SEMICONDUCTORS

We consider a 8 nm In0.2Ga0.8As quantum well sand-
wiched between GaAsssee Table I: all band parameters are
taken fromf28gd. We have chosen the parameters such that
the one-bound-state approximation can be made. By this we
mean that we disregard all the states confined in the quantum
well except those with the lowest energy within each band.

In order to study the effects of band mixing and stress, it is
convenient to write the Hamiltonian on the basis of the en-
ergy eigenstatesukh± l and uk l ± l, rather than using the an-
gular momentum statesu±3/2l and u±1/2l. The heavy- and
light-hole states,ukh± l and uk l ± l, coincide with the pure
angular momentum states,u±3/2l and u±1/2l, only at the
band edge. Due to band mixing, the energy eigenstates will
be linear combinations of the angular momentum eigenstates
when the carrier momentumk differs from zero. This change
of basis is performed in Appendix A. In this case, the Hamil-
tonian of the QW system, including the interaction with a
semiclassical external optical fieldE, reads

Ĥ = o
k,s

Ecskdak,s
† ak,s + o

k,s
Esskdsck,s+

† ck,s+ + ck,s−
† ck,s−d

− P̂ ·E, s1d

P̂ = o
k

sdk,h+ak,1/2
† ck,h+

† + dk,l−ak,1/2
† ck,l−

† + dk,l+ak,−1/2
† ck,l+

†

+ dk,h−ak,−1/2
† ck,h−

† d + h.a. s2d

where h.a. denotes the hermitian adjoint.ak,ssak,s
† d is the an-

nihilation screationd operator for electrons in the conduction
band statesuksl with in-plane wave vectork, and spins
= ±1/2, which have energiesEcskd given by

Ecskd = Eg + E0e8 + s"2g/2m0dk2 + Aessf110g + sf11̄0gd, s3d

whereEg is the gap energy,E0e8 is the conduction band offset,
andm0/g is the effective mass in the conduction band states.
Analogously,ck,s±sck,s±

† d is the corresponding annihilation
screationd operator for holes in the valence band withs
=h, l for the heavy- and the light-hole band. The heavy-hole
and light-hole energies,Ehskd andElskd, respectively, are the
eigenenergies of the Luttinger Hamiltonian, whichsin the
basis of the electronic angular momentum eigenstates at
band edged readsf24g

T =1
Hh C 0 0

C* Hl 0 0

0 0 Hl C

0 0 C* Hh
2 . s4d

It is worth noting that in the experiments, tensile stress is

applied to the VCSEL structure in thef110g andf11̄0g direc-
tions ssf110g and sf11̄0g, respectivelyd. In addition, there is
some residual stresssz present in the growth direction
sf001gd. Therefore, the study of the effects of this externally
sor possibly internallyd applied stress, requires the rewriting
of the Hamiltonian in such a way that the dependencies on
the stress tensor are made clearssee Appendix Ad. The ele-
ments of the Luttinger Hamiltonian are

Hhskd = E0hh8 +
"2

2m0
sg1 + g2dk2 + Ahssf110g + sf11̄0gd, s5d

Hlskd = E0lh8 +
"2

2m0
sg1 − g2dk2 + Alssf110g + sf11̄0gd, s6d

TABLE I. The material parameters.

In0.2Ga0.8As GaAs

Eg seVd Band gap energy 1.13 1.42

1/g Conduction band effective mass 0.057 0.067

g1 Luttinger parameter 8.09 6.98

g2 Luttinger parameter 2.69 2.06

VBO seVd Valence band offset −0.70 −0.80

E0e smeVda Electron confinement energy 44.1 ¯

E0hh smeVdb Electron confinement energy 10.2 ¯

E0lh smeVdc Electron confinement energy 29.6 ¯

ae;electron.
bhh;heavy hole.
clh; light hole.
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Cskd = −
Î3"2

2m0
fg2skx

2 − ky
2d − 2ig3kxkyg + iAcssf110g − sf11̄0gd.

s7d

x, y, andz denote the main crystallographic axes whose ori-
entations define thef100g, f010g, andf001g directions of the
III-V semiconductor crystal, respectively. The effect ofsz is
included in E0e8 , E0hh8 , and E0lh8 ssee Appendix Ad, making
clear that its role is simply to shift the edges of the bands.
The stress potentialsAe,h,l,c are defined in Appendix A. The
stress- and strain-related material parameters are summarized
in Table II sparameters taken fromf28gd.

The valence and conduction band states are coupled when
an optical field is applied; assuming momentum conserva-
tion, the interaction among them is described bydk,s±, the
matrix element of the electric dipole moment. Since the cav-
ity axis is parallel to the quantization axis and the basis states
are eigenstates of thez-component of the angular momen-
tum, the optical transitions between the valence and conduc-
tion bands involve combinations of left- and right-circularly
polarized light, whose polarization state ise±
= 7 sex± ieyd /Î2. These selection rules impose that the only
nonvanishing dipole moments are

dk,h+ = gkmSe+ +
bk

*

Î3
e−D , s8d

dk,l− = gkmS− bke+ +
e−

Î3
D , s9d

dk,l+ = gkmS e+

Î3
− bk

* e−D , s10d

dk,h− = gkmSbk

Î3
e+ + e−D , s11d

with

bk =
C*

Eh − Hl =
C*

Hh − El , s12d

gk =
1

Î1 + ubku2
. s13d

wherebk is a measure for the strength of the band mixing.
Due to the presence of the optical fieldE, the otherwise

eigenstates of Eq.s1d evolve in time according to Heisen-
berg’s equation, thus determining the optical response of the
system in the one-bound-state approximation. In the general
case, the optical response of the QW medium includes the
simultaneous contribution of the heavy-hole and light-hole
states. The calculation of the optical susceptibility becomes
quite involved due to band mixing and the associated coher-
ence among the states in the valence band. These difficulties
can be overcome by considering those strained QW systems
where, due to the large energy splitting between the heavy-
hole and the light-hole band as compared to the linewidth of
a quasimonochromatic field, the light-hole band does not
contribute to the optical susceptibility. This approximation,
which is valid for GaAs QW media operating at 980 nm and
beyond, allows for a qualitative picture of the effects of
strain on the optical response of the system. It permits a first
evaluation and understanding of the effects of strain and
stress on the gain and refractive index spectra of the active
medium.

Since the mixed heavy-hole and light-hole states have
well separated energy levels and because we consider the
interaction with a quasimonochromatic field, we can con-
sider the case where the optical field only couples the heavy-
hole statesuh± l to the conduction band. In Appendix B, the
optical susceptibility is obtained in the slowly varying enve-
lope and rotating wave approximation when many-body ef-
fects are neglected. By using the standard definition of the
optical susceptibilityP=«0x%E, we can identify the optical
susceptibilityx% from Eqs.sB12d–sB15d fwritten in the circu-
lar basese+,e−dg:

x% svd = SG−svd + H+svd S+svd + S−svd

Ŝ+svd + Ŝ−svd G+svd + H−svd D , s14d

where we have defined

G±svd = −
im2

«0"V
o
k

ugku2
fk,h± + fk,±1/2

e − 1

g' + isvk
h − vd

, s15d

H±svd = −
im2

«0"V
o
k

ugku2
fk,h± + fk,±1/2

e − 1

g' + isvk
h − vd

ubku2

3
, s16d

S±svd = −
im2

«0"V
o
k

ugku2
fk,h± + fk,±1/2

e − 1

g' + isvk
h − vd

bk
*

Î3
, s17d

Ŝ±svd = −
im2

«0"V
o
k

ugku2
fk,h± + fk,±1/2

e − 1

g' + isvk
h − vd

bk

Î3
, s18d

with fk,±1/2
e and fk,h± the Fermi distributions for electrons and

holes, respectively, andg' the dephasing rate of the dipoles
due to intraband carrier-carrier scattering. The transition fre-
quencies are defined by"vk

h=Ecskd+Ehskd.

TABLE II. The stress-related material parameters.

ae seVd Hydrostatic deformation potential −6.33

a1 seVd Hydrostatic deformation potential −1.13

a2 seVd Shear deformation potential −0.98

a3 seVd Shear deformation potential −4.56

S11 s10−11 m2/Nd Compliance tensor element 1.26

S12 s10−11 m2/Nd Compliance tensor element −0.46

S44 s10−11 m2/Nd Compliance tensor element 1.79

Ae s10−11 eV m2/Nd Stress potential −2.84

Ah s10−11 eV m2/Nd Stress potential −2.14

Al s10−11 eV m2/Nd Stress potential 1.13

Ac s10−11 eV m2/Nd Stress potential −7.06
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From Eq. s14d, it can be seen that there exist different
contributions to the total optical susceptibility. The first con-
tributions are theunmixedsusceptibility functionsG±. They
describe the interaction between the circularly polarized
fields and their respective spin channels in the absence of any
band mixing; i.e., forbk =0. The other contributions describe
the effects of band mixing on the optical susceptibility of the
QW, and they are of two different types. The first one, given
by H±, describes how the changes in the electronic structure
due to band mixing modify the optical response of the elec-

tronic states. The second,S± and Ŝ±, make the susceptibility
nondiagonal, expressing that due to band mixing, the left-
and right-circularly polarized components are coupled to
each other; therefore, these terms describe the stress-induced
birefringence and dichroism in the optical response of the
QW medium. In the absence of stress, Eqs.s17d ands18d are
zero; as a result, the preferred base of the system is the
circularly polarized one, the response for the two circular
components being the same. However, when stress is applied
to the device, the coupling between both circularly polarized
fields is no longer negligible. This results in a new base of
eigenmodes for the system dependent on the direction of the
applied stress. For the experimental situation studied inf22g,
it resulted in a preference for the linear polarizations along

f110g and f11̄0g.

III. BAND MIXING IN A STRESSED QW

Equationss14d–s18d determine the optical response of the
QW medium. The effects of strain-induced band mixing on
the optical susceptibility appear in Eqs.s15d–s18d through
the functionbk. This function can be split in a natural band
mixing partbk,N, and in a strain-induced partbs, where

bk,N =
− sÎ3"2/2m0dfg2skx

2 − ky
2d + 2ig3kxkyg

Eh − Hl , s19d

bs = − i
Acssf110g − sf11̄0gd

Eh − Hl . s20d

It is worth noting that, due to the large splitting between
the heavy-hole and light-hole bands, the influence of the
mixing terms is strongly reduced; i.e., the effects of band
mixing can be included perturbatively. Up to first order in
bk, the susceptibility tensorsin the circular based has the
form

x% svd = S G−svd S+svd + S−svd
− S+svd − S−svd G+svd

D , s21d

whereG± is given in Eq.s15d, H± has been neglected be-
cause it is a second-order quantity inbk, and

S±svd = −
im2

«0"V
o
k

fk,h± + fk,±1/2
e − 1

g' + isvk
h − vd

bs
*

Î3
= − Ŝ±svd.

s22d

Moreover, the heavy-hole energy is simply given byEh

<Hh=E0hh8 +s"2/2m0dsg1+g2dk2+Ahssf110g+sf11̄0gd; hence,

"vk
h = Ecskd + Ehskd < Et +

"2k2

2m0
sg + g1 + g2d ; Et +

"2k2

2m
,

s23d

where the minimum transition energy is

Et = Eg + E0e + E0hh8 + sAe + Ahdssf110g + sf11̄0gd. s24d

Thus, since in our case the hydrostatic potentialsAe andAh
are negativessee Table IId, the stress dependence of the mini-
mum transition frequency will eventually lead to a redshift of
the gain spectrum.

It is noteworthy that all the effects of natural band mixing
have disappeared becausebk,N is antisymmetric upon ex-
change ofkx andky while the other terms depend only onk2.
Hence, the first order contributions involvingbk,N vanish
upon summation over the Brillouin zone and the transition
probabilities become constant, effectively simplifying the
problem.

IV. ANALYTICAL APPROXIMATION TO STRESS-
DEPENDENT OPTICAL SUSCEPTIBILITY

Neglecting the second-order band-mixing effects in Eqs.
s14d–s18d results in a great simplification of the optical sus-
ceptibility of the QW medium. Yet, the summations over the
first Brillouin zone that define the different contributions
cannot be performed analytically in the general case. How-
ever, we can consider the low-temperature limit as inf16g,
which has proven to give a useful qualitative description of
the optical response. This approximation provides us with a
qualitative picture of the effects of strain on the optical re-
sponse of the system that allows us to understand more eas-
ily the effects of strain and stress on the gain and refractive
index spectra of the active medium. This approximation al-
lows to describe the optical response of the system in depen-
dence of the densities of electrons in each spin orientation
normalized to the transparency carrier densityD±. We can
approximate the susceptibility tensor as followsssee Appen-
dix Cd:

x% sD+,D−,ud = S G−sud S+sud + S−sud
− S+sud − S−sud G+sud

D , s25d

with

G±sud = −
x0

2
lnS su + i − 2D±dsu + i − D+ − D−d

su + idsu + i − bd D , s26d

S±sud = iS0

sf110g − sf11̄0g

u − us

fG±sud − G±susdg. s27d

with

u = D + rsD+ + D−d1/3, s28d

where D=sv−vtd /g' is the detuning between the optical
frequencyv and the nominal transition frequencyvt normal-
ized to the linewidth, andr describes phenomenologically
the effective band-gap shrinkage with the total carrier den-
sity. b measures, in units ofg', the total energy spread where
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optical transitions from the the heavy hole and to the con-
duction band may occur, and

us = − i −
g + g1 + g2

2g2

E0hh8 − E0lh8 + sAh − Aldssf110g + sf11̄0gd

"g'

s29d

=− i − us0 − us1ssf110g + sf11̄0gd, s30d

which corresponds to the reduced intraband energy gap. All
model parameters are summarized in Table III and their defi-
nitions can be found in Appendix C.

In a steady state with equal spin populationsD±=D,
G±sud=Gsu,Dd andS±sud=Ssu,Dd. Hence the susceptibility
tensor can be diagonalized in the bases±iE++E−d /Î2,

x% su,Dd = SGsu,Dd + i2Ssu,Dd 0

0 Gsu,Dd − i2Ssu,Dd
D .

s31d

This base corresponds tosf11̄0g ,f110gd. Thus, the externally

applied stress in thef11̄0g or f110g, transforms the eigensys-
tem of the optical interaction of the quantum well, to overlap
with the direction in which the stress is applied. Indeed, this
result does not rely on the first-order limit, but only on the
equality of the occupancies for the two spin orientations and
the antisymmetric character ofbk: when stress is applied
along the direction of the crystallographic axes off110g,
f11̄0g, f100g, or f010g, the eigenmodes will always be trans-
formed to a linearly polarized base with appropriate direc-
tions. For a stress direction that is in between, the eigen-
modes will in general be elliptically polarized. On the other
hand, in the same limit, the resulting modal susceptibilities
are formally the same. We would like to point out that,
within the SFM, when the spin-flip rate is very high, the
differenceD+−D− relaxes to zero on very fast time scales,
leading to equal spin populations even when the system is
not in a steady state. In this case, the diagonalization to the
linearly polarized base determined by the applied stress can
be always performed.

V. MATERIAL GAIN SPECTRUM

In the following sections, we will always assume that a
steady state is reached such thatD+=D−=D. In that case, the
susceptibility tensor can be diagonalized in a linearly polar-

ized base along the crystallographic axesf110g and f11̄0g.

Moreover, due to the carrier-induced band-gap shrinkage, we
will express the frequency dependence of the optical re-
sponse withD instead ofu. The material gain spectrum is
determined from the imaginary part of the susceptibility as

gf110gsD,Dd = − ImfGsD,Ddg + 2 RefSsD,Ddg, s32d

gf11̄0gsD,Dd = − ImfGsD,Ddg − 2 RefSsD,Ddg. s33d

In Fig. 1, we plot the gain spectra, both for linearly polarized

light along thef110g sdashedd and f11̄0g ssolidd directions,
for different values of the tensile stresssf110g in the f110g
direction. The characteristics of the gain spectrum with a
zero stress have been extensively studied and commented on
in f16g. When stress is applied in thef110g direction, the two

gain spectra split with a higher gain for thef11̄0g polarized
electric field and a lower for the field polarized inf110g. This
result is in agreement with the experiments off22g, where
the mode favored by the tensile stress has a polarization di-
rection orthogonal to the direction of stress. Qualitatively,
this result can be explained by inspection of the dipole mo-
mentsdk,h± fin Eqs.s8d and s11dg under uniaxial stress. Due
to the stress-induced band mixing, applying stress in the
f110g direction reduces the dipole moment alongf110g, while
enlarging it in the orthogonal direction. Thus, the mode po-
larized orthogonally to the stress direction can be expected to
have the higher gain. This stress-induced change in the di-
pole matrix elements is modeled by the functionS in Eq.
s31d. In addition, a shift of the gain peak is noticeable. This
shift of the gain peak and the gain splitting suggest to study
the change in gain peak position, in peak gain, and in trans-
parency carrier density.

We have plotted the position of the gain peakDp in Fig.
2sad. Our observation of the shift of the gain maximum is
confirmed. The gain related to the electric field polarized in

the f11̄0g direction ssolid linesd has its peak at lower detun-
ing with increasing stress. The same holds for the perpen-
dicular direction but at a faster pace. We study the gain peak
in Fig. 2sbd. Again, our observation is confirmed. The gain

TABLE III. The model parameters.

S0 s10−8 m2/Nd Gain splitting strength −3.25

b Reduced total energy spread 23104

us0 Reduced intraband energy gap −15.42

us1 s10−8 m2/Nd Reduced stress-induced
intraband energy gap

−2.60

r Band-gap renormalization 0.2

FIG. 1. Gain spectra as a function of detuning for different
values ofsf110g. gf11̄0g is plotted with solid lines, whilegf110g is
dashed.D=1.5 and all other parameters are as in Table III.
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maximum becomes larger forgf11̄0g, while the other goes
down.

The differential gain at the gain peak can be found in Fig.
3. In Fig. 3sad, we see that the dependence on carrier density
of the differential gain is typical. The transparency carrier
density is lower forgf11̄0g then forgf110g and the differential
gain is also higher. In Fig. 3sbd, we have plotted the differ-
ential gain as a function of applied stress. The differential

gains split with the one related tof11̄0g being the larger.
Lastly, the transparency carrier density is plotted in Fig. 3scd.
It is clear that the transparency carrier density forgf11̄0g be-
comes lower, while the other becomes larger. This is in cor-
respondence with all prior results. Similarly, this theory also
predicts a lower threshold current for the mode favored by
stress. This effect is also observed experimentallyf22g.

VI. CARRIER-INDUCED DISPERSION AND LINEWIDTH
ENHANCEMENT FACTOR

Another important characteristic of semiconductor lasers
is the strong dispersive effect accompanying material gain.

The refractive index change is associated with the real part of
the susceptibility.

In Fig. 4, we have plotted the refractive index spectra. It
can be seen that the refractive index spectra become polar-
ization dependent. We can say that for the detuning region,
where there is positive gain, the refractive index experienced

by an electric field polarized alongf11̄0g will be smaller with
respect to the orthogonal polarization. This large dispersive
effect leads to a high degree of coupling between amplitude
and frequency modulation. The latter effect is described by
Henry’s linewidth enhancement factora, which describes the
changes in refractive index of the system with respect to the
changes in the gain as the carrier densityD varies:

asD,Dd =
Res]x/]Dd
Ims]x/]Dd

. s34d

The linewidth enhancement factor will also split up for the
two polarizations when stress is applied, with a highera for
the mode polarized along the direction of stressssee Fig. 5d.

VII. SUMMARY

We have studied the effect of uniaxially planar stress on
the gain and refractive index spectra of a quantum well. To
simplify the microscopic theory and to be able to obtain an
analytical expression for the optical susceptibility, we have
made the approximation that the band mixing contributions
are small in second order. Assuming equal spin populations,
our results not only showed that the eigenmodes associated
with the quantum well become linearly polarized along the
direction of stress, but we have found that the quantum well
gain for the mode polarized perpendicular to the stress direc-
tion experiences higher gain that the one along the direction
of stress. As a result, the transparency carrier density for the
mode polarized perpendicular to the direction of stress is
lower. In this way, it is possible to lower the threshold cur-
rent by applying stress to the VCSEL package. Splitting of
the gain curves leads to a splitting in the refractive index

FIG. 2. sad The gain peak positionDp as a function of applied
stresssf110g. Dp,f11̄0g is plotted as a solid line, whileDp,f110g is
dashed.sbd The gain peakgp as a function of applied stresssf110g.
gp,f11̄0g is plotted as a solid line, whilegp,f110g is dashed.D=1.5 and
all other parameters are as in Table III.

FIG. 3. sad Differential gain at gain peak as a function of carrier
density and forsf110g=107. sbd Differential gain at gain peak as a

function of stress andD=1.5. The differential gain related tof11̄0g
is a solid line, while the one related tof110g is dashed.scd The
transparency carrier density as a function of stress. All other param-
eters are as in Table III.

FIG. 4. Refractive index spectra for different values ofsf110g.
nf11̄0g is plotted as a solid line, whilenf110g is dashed.D=1.5 and all
other parameters are as in Table III.
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spectra and linewidth enhancement factor. Generalization of
this work to study dynamics of a diode laser system under
stress is in progress.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN

The Hamiltonian of the QW system, including the inter-
action with a semiclassical external optical fieldE, reads
f24g

Ĥ = H0 − P̂ ·E sA1d

=o
k,s

Ecskdak,s
† ak,s

+ o
k,j ,j8

Tjj 8skdbk,j
† bk,j8

− E · o
k,s,j

sms,jak,s
† bk,j

† + h.a.d,

sA2d

where ak,ssak,s
† d is the annihilationscreationd operator for

electrons in the conduction band statesuksl with in-plane
wave vectork and spins= ±1/2, which have energiesEcskd.
Tjj 8skd is the matrix element of the Hamiltonian between

states in the valence band,uk jl, wherej = ±3/2,±1/2denotes
the z-component of the valence band angular momentum,
andbk,jsbk,j

† d is the corresponding annihilationscreationd op-
erator for holes in the valence band. The valence and con-
duction band states are coupled when an optical field is ap-
plied; assuming momentum conservation, the interaction
among them is described byms,j, the matrix element of the
electric dipole moment between stateuksl and uk jl, and h.a.
denotes the hermitian adjoint. The selection rules impose that
the only nonvanishing dipole moments arem1/2,3/2, m1/2,−1/2,
m−1/2,1/2, andm−1/2,−3/2 f29g:

m1/2,3/2= me+, sA3d

m1/2,−1/2=
m

Î3
e−, sA4d

m−1/2,1/2=
m

Î3
e+, sA5d

m−1/2,−3/2= me−. sA6d

If the in-plane component of the carriers’ wave vector is
small with respect to the orthogonal oneswhich is in the
direction of the welld, the band energies can be calculated
using a perturbation analysissk ·p theoryd. In this approxi-
mation, the wave vector dependence ofms,j can be neglected.
In addition, the energy of the states in the conduction band is
given by

Ecskd = Eg + E0e + s"2g/2m0dk2 + aes«xx + «yy + «zzd,

sA7d

whereEg is the gap energy,E0e is the conduction band offset,
andm0/g is the effective mass in the conduction band states.
The valence band energies can be calculated from the Lut-
tinger Hamiltonian. In the basis of the electronic angular
momentum eigenstates at band edge this Hamiltonian is
block diagonalf24g

T =1
Hh C 0 0

C* Hl 0 0

0 0 Hl C

0 0 C* Hh
2 , sA8d

where, in the Pikus-Bir approximationf25g, Hh, Hl, and C
are given by

Hhskd = E0hh +
"2

2m0
sg1 + g2dk2 + «zzsa1 − 2a2d + s«xx + «yyd

3sa1 + a2d, sA9d

Hlskd = E0lh +
"2

2m0
sg1 − g2dk2 + «zzsa1 + 2a2d

+ s«xx + «yydsa1 − a2d, sA10d

FIG. 5. The linewidth enhancement factor for different values of
sf110g. af11̄0g is plotted as a solid line, whileaf110g is dashed.D
=1.5 and all other parameters are as in Table III.
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Cskd = −
Î3"2

2m0
fg2skx

2 − ky
2d − 2ig3kxkyg − Î3a2s«xx − «yyd

+ 2Î3ia3«xy. sA11d

In these equations,a1 represents the hydrostatic deformation
potential,a2 anda3 are the shear deformation potentials, and
«i j are elements of the strain tensor.x, y, and z denote the
main crystallographic axes whose orientations define the
f100g, f010g, andf001g directions of the III-V semiconductor
crystal, respectively.

In the experiments, tensile stress is applied to the VCSEL

structure in thef110g andf11̄0g directions and there is some
residual stress present in the growth directionsf001gd. The
stress tensor written in the base of the directions of applied
stress reads

s% = 1sf11̄0g 0 0

0 sf110g 0

0 0 sz

2 . sA12d

Hence, in the the crystallographic basehx,y,zj it becomes

s% CCS= Rs% R† =1
sf110g + sf11̄0g

2

sf110g − sf11̄0g

2
0

sf110g − sf11̄0g

2

sf110g + sf11̄0g

2
0

0 0 sz

2 .

sA13d

Using the compliance tensorsSijd f30g it is possible to calcu-
late the components of the strain tensor:

1
«xx

«yy

«zz

2«yz

2«xz

2«xy

2 =1
1

2
sS11 + S12dssf110g + sf11̄0gd + S12sz

1

2
sS11 + S12dssf110g + sf11̄0gd + S12sz

S12ssf110g + sf11̄0gd + S11sz

0

0

1

2
S44ssf110g − sf11̄0gd

2 .

sA14d

From this easy calculation, we can see that the change in
symmetry of the unit cell when applying stress in thef110g
andf11̄0g is due to a shear strain. Defining the stress poten-
tials

Ae = sS11 + 2S12dae, sA15d

Ah = S12s2a1 − a2d + S11sa1 + a2d, sA16d

Al = S12s2a1 + a2d + S11sa1 − a2d, sA17d

Ac =
Î3a3

2
S44, sA18d

we can rewrite the expressionssA7d and sA9d–sA11d as

Ecskd = Eg + E0e8 + s"2g/2m0dk2 + Aessf110g + sf11̄0gd,

sA19d

Hhskd = E0hh8 +
"2

2m0
sg1 + g2dk2 + Ahssf110g + sf11̄0gd,

sA20d

Hlskd = E0lh8 +
"2

2m0
sg1 − g2dk2 + Alssf110g + sf11̄0gd,

sA21d

Cskd = −
Î3"2

2m0
fg2skx

2 − ky
2d − 2ig3kxkyg + iAcssf110g − sf11̄0gd.

sA22d

The effect ofsz is included inE0e8 , E0hh8 , and E0lh8 , making
clear that its role is simply to shift the edges of the bands,
indeed:

E0e8 = E0e + sS11 + 2S12daesz sA23d

E0hh8 = E0hh + fS11sa1 − 2a2d + sS11 + S12dsa1 + a2dgsz

sA24d

E0lh8 = E0lh + fS11sa1 + 2a2d + sS11 + S12dsa1 − a2dgsz.

sA25d

A complete diagonalization of the HamiltonianĤ0 in Eq.
sA1d can be accomplished by a suitable change of basis from
the pure heavy-and light-hole states to mixed statesukh± l
and uk l ± l, which are the eigenstates of the Luttinger hamil-
tonian associated with the degenerate eigenvalues

Ehskd =
1

2
fHh + Hl − ÎsHl − Hhd2 + 4uCu2g sA26d

Elskd =
1

2
fHh + Hl + ÎsHl − Hhd2 + 4uCu2g. sA27d

These mixed states are referred to as the mixed heavy-hole
and mixed light-hole states and are found to bef24,31g:

ukh + l = gkSUk
3

2
L + bkUk −

1

2
LD , sA28d

uk l − l = gkS− bk
*Uk

3

2
L + Uk −

1

2
LD , sA29d

uk l + l = gkSUk
1

2
L − bkUk −

3

2
LD , sA30d
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ukh − l = gkSbk
*Uk

1

2
L + Uk −

3

2
LD , sA31d

where

bk =
C*

Eh − Hl =
C*

Hh − El , sA32d

gk =
1

Î1 + ubku2
. sA33d

The annihilation operators of the mixed statesck,h± andck,l±
are

ck,h+ = gksbk,3/2+ bk
* bk,−1/2d, sA34d

ck,l− = gks− bkbk,3/2+ bk,−1/2d, sA35d

ck,l+ = gksbk,1/2− bk
* bk,−3/2d, sA36d

ck,h− = gksbkbk,1/2+ bk,−3/2d. sA37d

while the mixed dipole moments become

dk,h+ = gkmSe+ +
bk

*

Î3
e−D , sA38d

dk,l− = gkmS− bke+ +
e−

Î3
D , sA39d

dk,l+ = gkmS e+

Î3
− bk

* e−D sA40d

dk,h− = gkmSbk

Î3
e+ + e−D . sA41d

Therefore, the total Hamiltonian can now be rewritten as

Ĥ = o
k,s

Ecskdak,s
† ak,s + o

k,s
Esskdsck,s+

† ck,s+ + ck,s−
† ck,s−d

− P̂ ·E, sA42d

wheres=hh, lj denotes the mixed heavy-hole and light-hole
states. The interaction with the optical field is determined by
the optical polarization of the QW medium,

P̂ = o
k

sdk,h+ak,1/2
† ck,h+

† + dk,l−ak,1/2
† ck,l−

† + dk,l+ak,−1/2
† ck,l+

†

+ dk,h−ak,−1/2
† ck,h−

† d + h.a., sA43d

which describes the optical response of the system.

APPENDIX B: DERIVATION OF THE OPTICAL
SUSCEPTIBILITY

We introduce the slowly varying envelopes of the electric
field and of the microscopic polarizations, defined by

E = Ẽe−ivt + c.c., sB1d

kck,h±ak,±1/2l = pk,h±e−ivt, sB2d

and the carrier populations

nk,±1/2
e = kak,±1/2

† ak,±1/2l, sB3d

nk,h± = kck,h±
† ck,h±l. sB4d

In the slowly varying and rotating wave approximations, the
Heisenberg equations for these quantities becomef31g

dnk,±1/2
e

dt
= Lk,±1/2 −

nk,±1/2
e − fk,±1/2

e

te
−

nk,±1/2
e − nk,71/2

e

t je

+ iVk,h±pk,h±
* + c.c., sB5d

dnk,h±

dt
= Lk,h± −

nk,h± − fk,h±

th
−

nk,h± − nk,h7

t jh
+ iVk,h±pk,h±

*

+ c.c., sB6d

dpk,h±

dt
= − fg' + isvk

h − vdgpk,h± − iVk,h±snk,h± + nk,±1/2
e − 1d.

sB7d

Here, we have phenomenologically included the pump rates
of each statesLd, the relaxation terms describing the evolu-
tion of the carrier distribution to their quasi-equilibrium
value sthe Fermi distributions for electronsfk,±1/2

e and holes
fk,h±d with time constantste andth, respectively, the spin-flip
processes that mix the states within the valence and conduc-
tion bands with time scalest j, and the dephasing of the di-
poles due to intraband carrier-carrier scattering with charac-
teristic rate g'. We have also defined the transition
frequencies"vk

h=Ecskd+Ehskd and the Rabi frequencies

"Vk,h±=dk,h± ·Ẽ. By using the basis of circularly polarized

light states,Ẽ=E+e++E−e− and noting thate± ·e±=0, e± ·e7

=−1, ande±=−e7
* 1, the Rabi frequencies read

"Vk,h+ = − gkmSE− +
bk

*

Î3
E+D , sB8d

"Vk,h− = − gkmSE+ +
bk

Î3
E−D . sB9d

Due to the large intraband carrier-carrier scattering rates,
the carrier populations are driven into the quasi-equilibrium
Fermi distributions within very short time scaless,0.1 psd.
the same is true for the microscopic polarizations. Hence, we
have that the microscopic polarizations are stationary and
that sB7d becomes

1These expressions might seem contradictory to the definition of
the scalar product in a two-dimensional Hilbert space. However,
this scalar product has to be interpreted within the domain of nor-
mal Euclidian space.
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pk,h± = − iVk,h±
fk,h± + fk,±1/2

e − 1

g' + isvk
h − vd

. sB10d

The macroscopic polarizationP can be calculated using

P =
1

V
o
k

sdk,h+
* pk,h+ + dk,h−

* pk,h−d. sB11d

There are four different contributions:

Ph+,+ = −
im2

"V
o
k

ugku2
fk,h+ + fk,+1/2

e − 1

g' + isvk
h − vd S ubku2

3
E+ +

bk
*

Î3
E−De+,

sB12d

Ph+,− = −
im2

"V
o
k

ugku2
fk,h+ + fk,+1/2

e − 1

g' + isvk
h − vd Sbk

Î3
E+ + E−De−,

sB13d

Ph−,+ = −
im2

"V
o
k

ugku2
fk,h− + fk,−1/2

e − 1

g' + isvk
h − vd SE+ +

bk
*

Î3
E−De+,

sB14d

Ph−,− = −
im2

"V
o
k

ugku2
fk,h− + fk,−1/2

e − 1

g' + isvk
h − vd Sbk

Î3
E+ +

ubku2

3
E−De−,

sB15d

wherePb,p indicates a contribution to the leftsp=−d or right
sp= +d polarized polarization field induced by the transition
between conduction band and mixed heavy-hole band with
either positivesb=h+d or negative spinsb=h−d. By using
the standard definition of the optical susceptibilityP=«0x%E,
it can be identified from Eqs.sB12d–sB15d.

APPENDIX C: DERIVATION OF THE APPROXIMATED
SUSCEPTIBILITY

The unmixed susceptibilityG± given in Eq.s15d can be
split into three different contributions,G=Ge+Gh−Gb, i.e.,

Ge± =
m2

«0V"
o
k

fk,e±

v − vk
h + ig'

, sC1d

Gh± =
m2

«0V"
o
k

fk,h±

v − vk
h + ig'

, sC2d

Gb =
m2

«0V"
o
k

1

v − vk
h + ig'

. sC3d

Proceeding as inf16g, we can perform the summations over
the in-plane wave vector, leading to

Ge±svd = −
x0

2
lnS1 −

2De±

u + i
D , sC4d

Gh±svd = −
x0

2
lnS1 −

2Dh±

u + i
D , sC5d

Gbsvd = −
x0

2
lnS1 −

b

u + i
D , sC6d

where

x0 =
mm2

«0Wp"2 , sC7d

b =
"

2mg'

kb
2, sC8d

u =

v −
Et

"

g'

. sC9d

In the above equations,W is the thickness of the QW. The
reduced mass ism=m0/ sg+g1+g2d. b measures, in units of
g', the total energy spread where optical transitions from the
the heavy-hole and to the conduction band may occur; thus
Gbsvd describes the optical response of the system when
there are no carriers in the bands. Finally,u measures the
detuning of the optical field with the minimum transition in
units of g', and Deshd± stand for the densities of electrons
sholesd in each spin orientation normalized to the transpar-
ency carrier density,

Deshd± =
Neshd±

Nt
, sC10d

Nt =
mg'

p"W
. sC11d

Therefore, the unmixed susceptibility is finally given by

G±sud = −
x0

2
lnS su + i − 2De±dsu + i − 2Dh±d

su + idsu + i − bd D .

sC12d

The nondiagonal part of the susceptibility,S± is given by Eq.
s22d. Again, it can be split into three different contributions,
S=Se+Sh−Sb, i.e.,

Se± = i
m2

Î3V"«0
o
k

fk,e±

v − vk
h + ig'

Acssf110g − sf11̄0gd

Eh − Hl ,

sC13d

Sh± = i
m2

Î3V"«0
o
k

fk,h±

v − vk
h + ig'

Acssf110g − sf11̄0gd

Eh − Hl ,

sC14d

Sb = i
m2

Î3V"«0
o
k

1

v − vk
h + ig'

Acssf110g − sf11̄0gd

Eh − Hl .

sC15d

To first order in band mixing, we have that
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Eh − Hl < Hh − Hl = E0hh8 − E0lh8 + sAh − Aldssf110g + sf11̄0gd

+
"

m0
g2k

2. sC16d

Hence, the nondiagonal part of the susceptibility can finally
be computed, the result being

S±sud = iS0

sf110g − sf11̄0g

u − us

fG±sud − G±susdg, sC17d

where we have defined

S0 =
Ac

Î3"g'

g + g1 + g2

2g2
, sC18d

us = − i −
g + g1 + g2

2g2

E0hh8 − E0lh8 + sAh − Aldssf110g + sf11̄0gd

"g'

sC19d

=− i − us0 − us1ssf110g + sf11̄0gd. sC20d

As a final step, we note that the spin relaxation rate for the
holes is usually quite largef32g and thusDh+<Dh−. If charge
neutrality is assumed,De++De−=Dh++Dh−, we can replace
the hole densities by

Dh± <
De+ + De−

2
. sC21d

This approximation allows us to describe the optical re-
sponse of the system, dependent on the densities of electrons

in each spin orientation, hence, in the following we will drop
the subscripte in the electron populationssD±=De±d. We can
now rewrite the susceptibility tensor as follows:

x% sD+,D−,ud = S G−sud S+sud + S−sud
− S+sud − S−sud G+sud

D ,

sC22d

with

G±sud = −
x0

2
lnS su + i − 2D±dsu + i − D+ − D−d

su + idsu + i − bd D ,

sC23d

S±sud = iS0

sf110g − sf11̄0g

u − us

fG±sud − G±susdg. sC24d

Last, we phenomenologically include the band-gap shrinkage
due to many-body effectssthe so-called band-gap renormal-
izationd, which leads to

u = D + rsD+ + D−d1/3, sC25d

where D=sv−vtd /g' is the detuning between the optical
frequencyv and the nominal transition frequencyvt normal-
ized to the linewidth, andr describes the effective band-gap
shrinkage with the total carrier density.
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