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Abstract 

 

The endolysin gene (lysH5) from the genome of the Staphylococcus aureus bacteriophage 

ΦH5 was cloned in Escherichia coli and characterized. The lysH5 gene encoded a protein 

(LysH5) whose calculated molecular mass and pI were 53.7 kDa and 8.7, respectively. 

Comparative analysis revealed that LysH5 significantly resembled other murein 

hydrolases encoded by staphylococcal phages. The modular organization of LysH5 

comprised three putative domains, namely, CHAP (cysteine, histidine-dependent 

amidohydrolase/peptidase), amidase (l-muramoyl-l-alanine amidase), and SH3b (cell wall 

recognition). In turbidity reduction assays, the purified protein lysed bovine and human S. 

aureus, and human Staphylococcus epidermidis strains. Other bacteria belonging to 

different genera were not affected. The lytic activity was optimal at pH 7.0, 37˚C, and 

sensitive to high temperatures. The purified protein was able to kill rapidly S. aureus 

growing in pasteurized milk and the pathogen was not detected after 4 h of incubation at 

37˚C. As far as we know, this is the first report to assess the antimicrobial activity of a 

phage endolysin which might be useful for novel biocontrol strategies in dairying.  
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Staphylococcus aureus is capable of producing enterotoxins responsible for 

staphylococcal food poisoning, one of the most prevalent causes of gastroenteritis 

worldwide (Dinges, Orwin & Schlievert, 2000). This pathogen is recognized as a frequent 

cause of subclinical intramammary infections in dairy cows (Gruet, Maicent, Berthelot & 

Kaltsatos, 2001) and is commonly isolated from raw milk of dairy cattle suffering from 

mastitis. Its presence in raw milk is a major concern for the safety and quality of 

traditionally produced cheeses (Delbes, Alomar, Chougui, Martin & Montel, 2006; 

Cremonesi et al. 2007). In this context, it is relevant to develop alternative strategies to 

ensure the hygienic quality of dairy products. 

Bacteriophage endolysins are mureolytic enzymes that directly target bonds in the 

peptidoglycan of the bacterial cell wall. They are encoded by the bacteriophage genome 

and are synthesised at the end of the phage lytic life cycle to lyse the host cell and release 

the newly produced virions. Besides this “lysis from within”, endolysins from phages of 

gram-positive hosts are also able to quickly lyse the bacteria when they are applied 

exogenously (Loessner, 2005). As potential antibacterials, endolysins possess several 

relevant features, namely, a distinct mode of action, highly specific, and active against 

bacteria regardless of their antibiotic susceptibility pattern (Borysowski, Weber-

Dabrowska & Gorski, 2006). On the other hand, there is a low probability of developing 

resistance against the activity of bacteriophage endolysins linked to the fact that they 

target unique and highly conserved bonds in the peptidoglycan (Loeffler, Nelson & 

Fischetti, 2001). Recombinant phage endolysins have been reported to inhibit a variety of 
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pathogens, and have recently been claimed as alternative antimicrobials for treatment of 

bacterial infections caused by gram-positive bacteria (Fischetti, 2003; Loessner, 2005). 

The effectiveness of phage lysins in clearing certain infections has been well documented 

in mouse models (Loeffler et al. 2001; Nelson, Loomis & Fischetti, 2001; Schuch, Nelson 

& Fischetti, 2002; Cheng, Nelson, Zhu & Fischetti, 2005; Rashel et al. 2007) as well as 

transgenic murine and bovine mammary glands (Kerr et al. 2001; Wall et al. 2005). S. 

aureus, Streptococcus uberis and Steptococcus agalactiae bacteriophage endolysins have 

also been characterized to be applied in mastitis cow’s treatment (Donovan, 
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Lardeo & 

Foster-Frey, 2006a; Donovan, Foster-Frey, Dong, Rousseau, Moineau & Pritchard, 

2006b; Celia, Nelson & Kerr, 2008). 

In spite of the high antimicrobial potential of phage endolysins, little has been 

done to assess their use for the biocontrol of pathogens in food. The heterologous 

production of a Listeria monocytogenes phage endolysin by starter lactic acid bacteria has 

been achieved. However, this approach was unsuccessful to effectively reduce L. 

monocytogenes growth (Gaeng, Scherer, Neve & Loessner, 2000; Turner, Waldherr, 

Loessner & Giffard, 2007). Transgenic plants carrying phage endolysins genes showed 

increased resistance to pathogen attack (de Vries et al. 1999). 

So far, a few staphylococcal phage endolysins have been characterized such as 

those of phages phi11 (Wang, Wilkinson & Jayaswal, 1991; Sass & Bierbaum, 2007), 

Twort (Loessner, Gaeng, Wendlinger, Maier & Scherer, 1998), 187 (Loessner, Gaeng & 

Scherer, 1999), P68 (Takac, Witte & Blasi, 2005), phiWMY (Yokoi et al. 2005), and 

phage K (O’Flaherty, Coffey, Meaney, Fitzgerald & Ross, 2005) but none have been 

tested as a biopreservative in foodstuffs. These staphylococcal endolysins have a modular 
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organization with enzymatic (d-alanylglycyl endopeptidase, l-muramoyl-l-alanine 

amidase, N-acetyl-glucosaminidase) and cell wall recognition domains (Navarre, Ton-

That, Faull & Schneewind, 1999; Loessner et al. 1998). 

We have isolated and characterized two staphylococcal bacteriophages, ΦH5 and 

ΦA72, from dairy samples which were able to inhibit S. aureus grown in milk and curd 

manufacturing processes (García, Madera, Martínez & Rodríguez, 2007). In this 

approach, we have cloned and heterologously overexpressed the endolysin gene of the 

bacteriophage ΦH5 in Escherichia coli for subsequent characterization of the lytic 

activity. The antimicrobial activity of the purified protein was assayed in pasteurized milk 

against S. aureus. 
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2. Materials and Methods 95 
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2.1. Bacteria, phages and growth conditions. 

The bacterial strains used in this study are summarized in Table 1. Additionally, 

21 S. aureus isolates from mastitic milks as well as 31 and 25 clinical human isolates of 

S. aureus and S. epidermidis, respectively, were also used in lytic assays. These clinical 

isolates were kindly supplied by Dr. Rodríguez and Dr. Delgado (Universidad 

Complutense, Madrid, Spain). E. coli transformants were selected with 100 μg/ml 

ampicillin and/or 25 μg/ml chloramphenicol, as appropriate. 

Bacteriophage ΦH5 was routinely propagated on S. aureus Sa9 (García et al. 

2007).  

 

2.2. DNA manipulations. 

Plasmid DNA was obtained by the alkaline lysis method (Birnboim & Doly, 

1979). Analytical and preparative gel electrophoresis of plasmid DNA and restriction 

fragments was carried out in 0.8% (w/vol) agarose–Tris-Acetate horizontal slab gels. 

Phage ΦH5 DNA was extracted and purified as described previously (García, Ladero & 

Suárez, 2003). The DNA was digested with EcoRI (Takara, Otsu, Shiga, Japan) and 

random fragments were cloned in pUC18 in E. coli DH10B. Plasmid DNA from ninety-

six white colonies were extracted and analyzed. Sequences obtained were BLAST 

searched against the NCBI protein database. 

 

2.3. Cloning and overexpression of the recombinant LysH5 endolysin. 
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A 1490-bp DNA segment containing the lysH5 gene was obtained by PCR 

amplification with the primers Ami1: 5’-ATTATGGAGGATCCGACAATGCAAG-3’ 

and Ami2: 5’-GACTCACTGCAGTTTTATATTAACGT-3’ and digested with the 

restriction enzymes PstI and BamHI (Takara, Otsu, Shiga, Japan). The amplification 

product was cloned in pUC18 for sequencing and in the expression vector pRSETB 

(Invitrogen, Carlsbad, CA). The plasmids, pUC18- lysH5 and pRSETB-lysH5 were 

electroporated in E. coli DH10B and in E. coli BL21(DE3)/pLys, respectively. pRSETB-

lysH5 construction was used to overexpress lysH5. Exponentially growing cultures 

(OD
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600nm of 0.6-0.8) were induced with 1 mM IPTG (isopropyl- beta-D-

thiogalactopyranoside), followed by 18 h shaking at 19 ºC. Cells were pelleted, washed 

with lysis buffer (20 mM NaH2PO4, 500 mM NaCl, 20 mM Imidazole, pH 7.4) and 

frozen at -20 ºC. For protein purification, 500 ml culture cell pellets were resuspended in 

10 ml lysis buffer, sonicated (15x 5 s pulses with 15 s recovery on ice) and centrifuged at 

10.000 x g. The supernatant was added to 5 ml Ni-NTA (nickel matrix) slurry and eluted 

according to the manufacturer’s instructions (Qiagen, Valencia, CA). Fractions 

containing LysH5 were dialyzed against 20 mM NaH2PO4 buffer, pH 6.0. This sample 

was loaded onto a CM column (Pharmacia, Uppsala, Sweden) equilibrated with the same 

buffer and the protein eluted with a NaCl gradient (0 to 1 M). Protein fractions were 

analyzed in 15% (w/v) SDS-PAGE gels. Electrophoresis was conducted in Tris-Glycine 

buffer at 20 mA for 1 h in the BioRad Mini-Protean gel apparatus. The fractions 

containing pure LysH5 (as judged by SDS-PAGE) were pooled, diluted in glycerol (50% 

final concentration), and stored at -20 °C. Protein was quantified by the Quick Start 

Bradford Protein Assay (Bio-Rad, Hercules, CA).  
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2.4. Quantification of LysH5 activity.  

S. aureus Sa9 strain was grown to an OD600nm of 0.5, centrifuged, and suspended 

in 50 mM phosphate buffer, pH 7.0, to a final OD600nm of 1.5. Bacterial suspensions (0.1 

ml) were added to serial dilutions of purified LysH5 (0.1 ml) in sterile, uncoated 

polystyrene 96-well plates, and the decrease in OD600nm was monitored every 15 s for 15 

min, at 37°C, in a Microplate Spectrophotometer Benchmark Plus (BioRad, Hercules, 

CA). The activity of LysH5, expressed in units per millilitre (U/ml), was defined as the 

reciprocal of the highest dilution that decreased the OD by 50% in 15 min. Specific 

activity was calculated as the change in OD600nm per mg protein per min. The lytic 

spectrum of LysH5 was determined in a similar fashion using 15 U/ml. The enzyme 

activity was determined over a pH range 4.0 to 6.0 in 50 mM Na-acetate buffer, and pH 

7.0 to pH 8.0 in 20 mM Na-phosphate buffer and at temperatures ranging from 25 °C to 

45 °C. Temperature stability was determined by incubation of the protein at different 

temperatures prior to the standard activity assay. All these experiments were performed in 

triplicate. 

 

2.5. Antimicrobial activity in milk.  

The lytic activity of LysH5 on S. aureus was tested in commercial whole-fat 

pasteurized milk. Milk was inoculated with exponentially growing cultures of S. aureus 

Sa9 (106 and 103 CFU/ml) and purified LysH5 was added at 160, 80 and 45 U/ml. The 

cultures were incubated at 37 ºC without shaking. Samples were taken at different time 

intervals and scored for S. aureus viables on Baird Parker Agar plates supplemented with 
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egg yolk tellurite (Scharlau Chemie, S.A. Barcelona, Spain). The absence of S. aureus in 

non-inoculated milk was verified by direct plating. 
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2.6. Statistical analysis. 

The results were compared using one-way ANOVA analysis (SPSS 11.0 software for 

windows; SPSS, Chicago,IL, USA). 

 

3. Results 

 

3.1. Identification and sequence analysis of the bacteriophage ΦH5 endolysin. 

Twenty recombinant plasmids were randomly chosen from a shotgun library of 

ΦH5 DNA and sequenced. One of the plasmids carried a partial insert (1.5 kbp) highly 

homologous to a phage-related amidase encoded by the S. aureus RF122 prophage 

genome (accession number AJ938182.1). Based on the known sequence of RF122, 

oligonucleotides were designed to amplify the whole putative ΦH5 endolysin gene 

(lysH5) by PCR, cloned into pUC18 and sequenced (GeneBank Accession number 

EU573240). lysH5 (1446 bp) was identical to the putative endolysin gene of the S. aureus 

RF122 prophage. Analysis of the amino acid sequence (481 aa) revealed that LysH5 is a 

modular enzyme with three distinct domains, namely, an N-terminal CHAP (cysteine, 

histidine-dependent amidohydrolase/peptidase) domain with hydrolytic function, a 

central amidase domain (N-acetylmuramyl-L-alanine amidase), and a C-terminal SH3b 

domain which might be involved in cell wall recognition (Fig. 1A). Comparative 

sequence analysis with other phage endolysins found in the databases indicated that 
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LysH5 clustered together (≥ 97% identity) with others encoded well-characterized 

staphylococcal phages such as phiNM2, phi11, phi29 and phage 80 alpha (Fig 1B). Other 

S. aureus endolysins from phage Twort, phage K
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, S. warneri phage phiWMY, phi 12, 

phiPVL, phiSLT were less related to LysH5.  

 

3.2. Overexpression and characterization of the bacteriophage ΦH5 endolysin. 

The recombinant phage endolysin was synthesized as an N-terminally 6x-His-

tagged fusion which allowed the purification by immobilized metal chelate affinity 

chromatography. An extra cation exchange chromatographic purification step was 

necessary to remove contaminants. The active fractions were pooled and analyzed by 

SDS-PAGE (Fig. 2). A major protein band of an estimated molecular mass of 55 kDa was 

observed which correlated well with the calculated molecular mass for LysH5 (53.7 

kDa). Yields of 3.6 U per ml of induced E. coli cultures were routinely achieved with a 

specific activity of 1.8 U/µg. The recombinant LysH5 was able to lyse resting S. aureus 

cells. The initial OD600nm dropped to baseline within 6 min, indicating a rapid rate of cell 

lysis (Fig. 3). 

Purified preparations were assayed at different pHs and temperature conditions. 

As shown in Fig. 4A, the highest specific activity was obtained at relatively neutral pH. 

The enzyme was slightly inactivated at pH 6.0 and significantly reduced at lower pHs. 

Levels of 48% and 1% activity were detected at pHs 5.0 and 4.0, respectively. The lytic 

activity was also temperature-dependent. The protein efficiently lysed the cells in a 

temperature range from 30 ºC to, at least, 45 ºC but decreased at lower temperatures (Fig. 

4B). Stability of LysH5 was also tested under different heat treatments (Table 2). The 
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endolysin was very sensitive to high temperatures and standard pasteurization processes, 

i.e. 30 min at 63 ºC and 1 min at 72 ºC fully inactivated the protein. After -20 ˚C storage 

without any cryoprotectans, a 32% decrease of specific activity was observed.  

 

3.3. Lytic spectrum of the bacteriophage ΦH5 endolysin. 

In addition to killing the host bacterial strain, LysH5 was able to lyse all the other 

S. aureus strains irrespectively of their bovine or human origin, including those not 

infected by ΦH5 (Fig. 5). However, LysH5 had a significant (p<0.001) different killing 

effect on S. aureus depending on the strain origin. Higher susceptibility to the endolysin 

was observed on S. aureus bovine strains with an average specific activity of 11.3±1.7 

while on clinical strains this value was 7.5±2.9. A larger variability was also observed 

within the clinical strains. S. epidermidis isolated from humans were also sensitive 

although the lytic activity of LysH5 was significantly lower (4.6±2.4). No lytic activity 

against several lactic acid bacteria and strains belonging to Bacillus, Streptococcus, 

Clostridium, Listeria, and Enterococcus was detected (data not shown). 

 

3.4. Antimicrobial activity of LysH5 on S. aureus in milk.  

The effect of purified LysH5 was tested against an exponentially growing S. 

aureus Sa9 strain in milk at two contamination levels (Fig. 6). At higher contamination 

levels (106 CFU/ml), the addition of 160 U/ml (88 μg/ml) of LysH5 to pasteurized milk 

reduced the viable counts to undetectable levels in 4 h. The inhibitory effect of the 

endolysin was already significant (p<0.05) after 60 min and the counts were more than 1 

log unit below the control culture. When less LysH5 was used, the inhibitory effect was 

 11



only observed in the first 60 min (Fig. 6A). At lower contamination levels (103 CFU/ml), 

the addition of 45 U/ml eliminated S. aureus in 4 h (Fig. 6B). These results showed that 

LysH5 was capable of killing staphylococci which are actively multiplying in milk in 

these conditions. 
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4. Discussion 

 

In this work, phage endolysin LysH5 was cloned in E. coli and the lytic activity of 

the purified protein was characterized. Preliminary experiments showed also that LysH5 

was able to inhibit S. aureus growth in pasteurized milk. While a number of 

staphylococcal endolysin have been characterized, to our knowledge, none has been 

assessed as an antimicrobial additive for preventing the growth of S. aureus in dairy 

products.  

LysH5 displayed a modular organization similar to other staphylococcal 

endolysins previously described (Navarre et al. 1999; Yokoi et al. 2005; O’Flaherty et al. 

2005). According to the domains found, LysH5 should display a cysteine, histidine 

dependent amidohydrolases/peptidase (CHAP) endopeptidase activity that cleaves at D-

alanyl-glycyl moieties and an amidase domain that cleaves at N-acetylmuramyl-L-alanyl 

bonds but this has not been experimentally proved yet. The SH3b domain, thought to be 

involved in cell wall recognition, was also detected. Several phage endolysins of Gram-

positive bacteria carry a SH3b domain in their C-terminal (Sugahara et al. 2007; Donovan 

et al. 2006b; Porter et al. 2007). In L. monocytogenes phage endolysins Ply118 and 
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Ply500 the C-terminal cell wall binding domains confer the specificity necessary to direct 

the murein hydrolases to the bacterial cell wall (Loessner, Kramer, Ebel & Scherer, 2002; 

Kretzer et al. 2007).  

The ΦH5 endolysin protein showed substantial similarity to those of S. aureus 

phages and even to the S. warneri phage phiWMY. However, in contrast to the endolysin 

LysWMY that exhibits lytic activity against other Gram positive genera (Yokoi et al. 

2005) LysH5 is only active against Staphylococcus indicating distinct cell-wall-

recognition signals. The full-length and 182-amino-acid C-terminally truncated S. 

agalactiae bacteriophage B30 endolysins also displayed lytic activity against 

Streptococcus thermophilus and Leuconostoc cremoris strains (Donovan et al. 2006b). 

The narrow spectrum of LysH5 is of practical relevance for its deliberate use in 

biopreservation of dairy products. Several dairy products are fermented by lactic acid 

bacteria that are mostly responsible for their organoleptic properties. In this scenario, it is 

crucial to specifically target the undesirable bacteria, leaving the natural microbial 

communities undisturbed. 

Although LysH5 lysed human S. aureus and S. epidermidis, its activity is 

remarkable lower compared to S. aureus of bovine origin which were highly susceptible. 

It appears that endolysins derived from phages isolated from the dairy environment have 

co-evolved with their hosts. Therefore, they would specifically target the S. aureus clones 

most commonly found in the dairy environment and would be more suitable as 

antimicrobials to be used in biopreservation of milk and dairy products. Nevertheless, the 

specific action of LysH5 on S. aureus and S. epidermidis of human origin should not 

preclude other potential applications as disinfectants and even in human therapy against 
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multiple-drug-resistant Staphylococcus. Bacterial biofilm formation is another pathogenic 

factor often shown by both bacteria. Recently, it has been shown that the phi11 endolysin 

lyses the complex structure of staphylococal biofilms (Sass & Bierbaum, 2007). 
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Our results have shown that staphylococcal phage endolysins encoded by phages 

of dairy origin might be useful as an additional hurdle to prevent S. aureus in milk and 

presumably in dairy products. The in vitro activity assays performed with purified LysH5 

under several conditions of pH indicated that LysH5 could be active during the milk 

coagulation process but not below pH 5 as the activity was seriously compromised. The 

endolysin was sensitive to high temperature. Therefore, it should be added after heat 

treatment of milk. On the other hand, the protein remained active at 4 ºC. In case of 

temperature abuse, the presence of the endolysin could presumably hamper S. aureus 

growth and prevent enterotoxin production. Further biochemical characterization of 

LysH5 is in progress to optimize and define the scope of application in dairying.  
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7. Figure legends 

 

Figure 1. Sequence analysis and phylogenetic position of the phage H5 endolysin. A) 

Domain organization of LysH5 as displayed by SMART (http://smart.embl-

heidelberg.de) containing CHAP (cysteine, histidine-dependent amidohydrolases/ 

peptidases), Ami_2 (N-acetylmuramyl-L-alanine amidase) and SH3b (bacterial cell 

recognition). Numbers indicate the amino acid positions in LysH5. B) Phylogenetic 

position of LysH5 compared to several phage endolysins. The tree was constructed using 

the Neighbor-Joining method. The phylogenetic tree was linearized and drawn to scale. 

The evolutionary distances were computed using the Poisson correction method and are 

expressed in the units of the number of amino acid substitutions per site. All positions 

containing gaps and missing data were eliminated from the dataset. Phylogenetic analyses 

were conducted in MEGA4 (Tamura, Dudley, Nei & Kumar, 2007).   

 

Figure 2.- Purification of the recombinant LysH5 endolysin from E. coli 

BL21(DE3)/pLys pRSETlysH5. Lane 1: Standard molecular weight marker in kDa 

(Broad Range Prestained SDS-PAGE Standards, BioRad); lane 2, supernatant of the 

lysate induced culture; lane 3, fraction eluted from cation exchange chromatography 

containing purified LysH5.  

 

Figure 3.- Lysis of S. aureus Sa9 cells by exogenously added recombinant LysH5. The 

decrease in optical density (OD) (y axis) over time (x axis) following addition of the 
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enzyme (5 U/ml) to a standardized cell suspensions is shown. Symbols: * S. aureus plus 

LysH5; ♦ negative control (no enzyme added).  
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Figure 4.- Influence of pH (A) and temperature (B) on the specific activity of the ΦH5 

endolysin. The endolysin (5 U/ml) was tested at various pHs in 50 mM sodium acetate 

(pH4-pH6) and in 20 mM sodium phosphate buffer (pH7-pH8) under standard assay 

conditions. Values are the mean of three independent experiments. Error bars are also 

shown. 

 

Figure 5.- Lytic spectrum of the endolysin LysH5. A) S. aureus bovine strains. B) S. 

aureus clinical strains. C) S. epidermidis clinical strains. Values are the mean of three 

independent experiments. Error bars are also shown. 

 

Figure 6.- Killing of S. aureus Sa9 with purified LysH5 in pasteurized whole milk. A) ♦, 

cell numbers of S. aureus Sa9; ■, cell numbers of S. aureus Sa9 plus LysH5 (160 U/ml); 

▲, cell numbers of S. aureus Sa9 plus LysH5 (80 U/ml). B) ♦, cell numbers of S. aureus 

Sa9; X, cell numbers of S. aureus Sa9 plus LysH5 (45 U/ml). Values are the means of 

two independent experiments with standard deviation indicated by vertical bars. 

 

Figure 1 
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Figure 3. Obeso et al.,
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 Figure 4. Obeso et al.,
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Figure 5. Obeso et al.,
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Figure 6. Obeso et al.,
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