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Abstract

A new method to determine the low-energy couplings of the ∆S = 1 weak Hamiltonian is

presented. It relies on a matching of the topological poles in 1/m2 of three-point correlators of

two pseudoscalar densities and a four-fermion operator, measured in lattice QCD, to the same

observables computed in the ǫ-regime of chiral perturbation theory. We test this method in a

theory with a light charm quark, i.e. with an SU(4) flavour symmetry. Quenched numerical

measurements are performed in a 2 fm box, and chiral perturbation theory predictions are

worked out up to next-to-leading order. The matching of the two sides allows to determine

the weak low-energy couplings in the SU(4) limit. We compare the results with a previous

determination, based on three-point correlators containing two left-handed currents, and

discuss the merits and drawbacks of the two procedures.
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1. Introduction

Understanding quantitatively or even just qualitatively non-leptonic kaon decays, K → ππ,

starting from the QCD Lagrangian, remains a formidable challenge despite decades of work.

The difficulty is that the non-perturbative low-energy dynamics of strong interactions plays an

essential role [1], yet it has turned out to be difficult to reduce the systematic errors of lattice

studies of these effects [2, 3] to a tolerable level, because of the prohibitive cost of treating

chiral symmetry, final state kinematics, and physical quark masses without compromises (for

the current status and references, see ref. [4]).

A somewhat less challenging approach amounts to abandoning the direct computation of

K → ππ decay amplitudes in favour of determining, via lattice simulations, the low-energy

couplings (LECs) of the effective chiral weak Hamiltonian that describes these decays [3].

This can be achieved by matching lattice measurements of suitable correlation functions to

the same correlation functions computed within chiral perturbation theory (χPT). Among the

simplifications thus achieved are that the matching does not necessitate physical kinematics,

and that physical quark masses are not needed either, as long as the regime of validity of

χPT is reached. This however requires sufficiently large volumes and small quark masses.

There are various possibilities for the order in which the volume is increased and the quark

masses are decreased. In fact, it turns out to be useful to approach the chiral limit by first

decreasing the quark masses. The reason is that in this parameter range, referred to as

the ǫ-regime of χPT [5] (see also ref. [6]), it is possible to work out next-to-leading order

corrections in χPT without introducing any more LECs than at the leading order, thereby

putting the χPT side of the matching well under control.

At the same time, carrying out lattice simulations in the ǫ-regime is quite demanding.

Fortunately, the advent of Ginsparg-Wilson formulations of lattice fermions [7]–[14], which

possess an exact chiral symmetry in the limit of vanishing quark masses, and many subsequent

developments on the numerical side [15], have made such simulations possible.

In ref. [16] a strategy based on these methods was proposed, with the goal of revealing the

role that the charm quark mass plays in K → ππ decays. The first step is the determination

of the leading-order weak LECs in a theory with a light charm quark, that is in a four-flavour

theory with an exact SU(4) chiral symmetry in the valence sector. The first results of this

computation, from simulations in the ǫ-regime, have been presented in ref. [17]. The next

step of the strategy is to increase the charm mass and monitor the LECs as we move towards

a theory with an SU(3) flavour symmetry [16, 18].

The observables used for performing the matching between lattice QCD and the chiral ef-

fective theory in ref. [17] were three-point correlators of two left-handed currents and a weak

operator. (The χPT side for these observables has also been worked out for SU(3) [19].) In

this paper we pursue the same goal by means of a different type of observable. Indeed, we

propose to consider a correlation function of two pseudoscalar densities and a weak operator.

The peculiarity of this correlator is that it has poles in 1/m2 in the ǫ-regime, when evalu-
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ated in sectors of non-vanishing topological charge (which we define à la ref. [20]). As we

will show, the residues of these poles are easier to compute numerically than the correlation

functions themselves, since they typically require fewer quark propagators, which are substi-

tuted by projectors on the zero-mode wave functions. We then use the residues to perform

the matching between the fundamental and effective theories and determine the SU(4) weak

LECs.

Let us stress that while the weak LECs themselves are universal, and can in principle be

determined with any method, it is difficult to know a priori which of the multitude of possible

strategies is the optimal one in practice. This depends, on one hand, on the numerical cost

of the measurements involved, and on the other, on how well chiral perturbation theory con-

verges for the observable in question. We will compare the two methods mentioned (ref. [17]

and the present one) on both accounts. The hope is that by carrying out this comparison

in the quenched approximation, it will become clear whether or not a particular strategy is

superior when one moves to the more expensive unquenched environment, or if it remains

the best policy to probe the LECs by a combination of independent techniques.

The paper is organized as follows. In Sec. 2 we introduce the observables to be computed

in the fundamental theory and present the results of a next-to-leading order computation of

the same observables in χPT, in the ǫ-regime. Besides the three-point functions previously

mentioned, we will consider two-point functions that we use for normalization. In Sec. 3, we

present the results of a quenched numerical computation of these amplitudes in a 2 fm box

and a new determination of the weak LECs in the SU(4) limit. We conclude in Sec. 4.

2. Low-energy couplings from zero-mode wave functions

In the ǫ-regime and in a fixed topological sector, correlation functions involving quark propa-

gators may contain poles in 1/(mV )n, where n is some integer, whenever the contribution of

the zero-modes to the spectral representation of the quark propagator gives a non-vanishing

contribution to the correlation function. For a number of reasons the residues turn out to

be easier to compute than the correlation functions themselves. The idea, explored in detail

in ref. [21], is then to use the residues of the topological poles to perform the matching be-

tween QCD and χPT, instead of the full correlation function. Given a correlation function

Cν(x1, x2, ...), the residue can be isolated by

Cν(x1, x2, ...) ≡
Resn

(mV )n
+ ... , Resn = lim

m→0
(mV )nCν(x1, x2, ...) . (2.1)

In ref. [21] the two-point function of the pseudoscalar density was considered in this context.

The presence of a pole in 1/(mV )2 implies that the corresponding residue can be computed

fully in terms of the zero-mode wave functions: no propagator computation is required. On

the effective theory side, the same pole does appear and, up to a certain order, the residue is a

function of only the pseudoscalar decay constant, F , and the volume (in the quenched theory
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additional couplings appear). An exploratory numerical study in the quenched approximation

was presented and the principal usefulness of the method to extract the low-energy coupling

F was confirmed. Similar investigations have also been reported in refs. [22].

In the present work, we extend this idea to the computation of three-point functions from

which the weak low-energy constants can be determined. In particular, we consider three-

point functions of two pseudoscalar densities and a weak four-fermion operator. It is easy to

see that such correlation functions do have poles in 1/(mV )2 when computed in non-trivial

topological sectors in the ǫ-regime, as we now show.

2.1. Correlators in the fundamental theory

Following the strategy of refs. [16, 17], we consider a theory with four light and degenerate

flavours such that mu = md = ms = mc = m, which we refer to as the GIM limit. After inte-

grating out the W± to first order in the weak coupling, g2
w, the resulting Weak Hamiltonian

is given by

Hw =
g2
w

4M2
W

V ∗
usVud

{

k+
1 Z+

11Q
+
1 + k−

1 Z−
11 Q−

1

}

, (2.2)

where the operators Q±
1 transform in the 84 and 20 representations of SU(4):

Q±
1 = ([O1]suud ± [O1]sudu) − (u → c) , (2.3)

[O1]rsuv ≡ (Ψ̄rγµP−Ψ̃u)(Ψ̄sγµP−Ψ̃v) . (2.4)

Here k±
1 are Wilson coefficients at the scale MW , and Z±

11 are the corresponding renormal-

ization factors. We will follow the renormalization prescription of refs. [16, 17], that is we

will use the RGI scheme, in which these factors are known non-perturbatively [23]. For any

unexplained details we refer the reader to these references.

Deep in the non-perturbative regime this effective Hamiltonian admits an expansion in

terms of the Goldstone boson fields and can be represented as

Hw =
g2
w

4M2
W

V ∗
usVud

{

g+
1 Q+

1 + g−1 Q−
1 + ...

}

, (2.5)

where Q±
1 are operators made out of the Goldstone field, and terms of higher order in the

chiral expansion have been omitted. Our task is to match for the coefficients g±1 in the chiral

limit, by comparing lattice simulations with χPT predictions.

Now, given that QCD dynamics itself respects chiral symmetry, the results of such a match-

ing are independent of the precise flavour indices appearing in eq. (2.3), as long as the op-

erators remain traceless and have the correct symmetry properties. In practice, it is indeed

convenient to consider the operators

O±
1 ≡ [O1]rsuv ± [O1]rsvu , (2.6)
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with all indices different, rather than Q±
1 ; these operators are automatically traceless, and

no subtraction of the type in eq. (2.3) is needed. The results for the matching of g±1 are

nevertheless guaranteed to be identical.

We want to carry out the matching in a finite volume through the computation of the

following bare three-point functions in a fixed topological sector of charge ν:

A±
ν (x0 − z0, y0 − z0) ≡ − lim

m→0
(mV )2

∫

x

∫

y

〈∂x0
P a(x)O±

1 (z)∂y0
P b(y)〉ν , (2.7)

where the bare pseudoscalar density reads P a ≡ iΨ̄γ5T
aΨ̃, and m is the bare quark mass.

These amplitudes get contributions from two possible contractions, colour-disconnected, Āν ,

and colour-connected, Ãν :

A±
ν = (T a

urT
b
vs + T a

vsT
b
ur ± T a

vrT
b
us ± T a

usT
b
vr)

[

Āν ± Ãν

]

, (2.8)

where

Āν ≡ lim
m→0

(mV )2
∫

x

∫

y

∂x0
∂y0

Tr [Sm(x, z)γµP−Sm(z, x)γ5] Tr [Sm(y, z)γµP−Sm(z, y)γ5] ,

Ãν ≡ − lim
m→0

(mV )2
∫

x

∫

y

∂x0
∂y0

Tr [Sm(x, z)γµP−Sm(z, y)γ5Sm(y, z)γµP−Sm(z, x)γ5] .

(2.9)

Here Sm is the massive quark propagator.

It is convenient to normalize these three-point functions with bare two-point functions of

the form

−iTr [T aT b]Bν(x0 − z0) ≡ lim
m→0

(mV )

∫

x

〈∂x0
P a(x)Lb

0(z)〉ν , (2.10)

where the bare left current reads La
0 ≡ Ψ̄γ0P−T aΨ̃. Carrying out the contractions, we get

Bν(x0 − z0) = lim
m→0

(mV )

∫

x

∂x0
Tr [Sm(x, z)γ0P−Sm(z, x)γ5] . (2.11)

Note that the two-point function in eq. (2.10) can be related through the non-singlet axial

Ward identity to the two-point function of two pseudoscalar densities, considered in ref. [21]:

Tr [T aT b]ZABν(x0 − z0) = i lim
m→0

(mV )∂x0

∫

x

〈P a(x)ZALb
0(z)〉ν

= −i lim
m→0

(mV )∂z0

∫

z

〈P a(x)ZALb
0(z)〉ν

= lim
m→0

(m2V )

∫

x

〈P a(x) P b(z)〉ν , (2.12)

where ZA denotes the renormalization constant of the currents La
0. Here we made use of the

fact that the product mP a does not require renormalization.
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Now, let us see why it is useful to consider the quantities in eqs. (2.9), (2.11). The point

is that Āν , Ãν and Bν are zero, unless some of the quark propagators are saturated by zero

modes. Let us denote by vi(x) ∈ K the zero-mode wave functions (recall that the dimension

of the kernel of the Dirac operator is dim(K) = |ν|) that are normalized as

∫

x

v†i (x)vi(x) = V . (2.13)

The spectral representation of the quark propagator then reads

Sm(x, y) =

|ν|
∑

i=1

vi(x)v†i (y)

mV
+ ... . (2.14)

We can define the sources

ηi(z;x0) ≡ ∂x0

∫

x

P−χSm(z, x)Pχvi(x) ,

η†i (z;x0) = −∂x0

∫

x

v†i (x)PχSm(x, z)P−χ , (2.15)

where χ is the chirality of the zero-modes. Given that γµP− = P+γµP−, we note that,

depending on chirality, only some of the propagators can be saturated with zero-modes: for

ν < 0, the ones multiplying P−, and for ν > 0, the ones multiplying P+. If ν > 0, the

disconnected and connected amplitudes of the three-point functions thus become

Āν(x0 − z0, y0 − z0) = lim
m→0

1

L3

∫

z

〈

|ν|
∑

i=1

v†i (z)γµηi(z;x0)

|ν|
∑

j=1

v†j(z)γµηj(z; y0)
〉

ν
,

Ãν(x0 − z0, y0 − z0) = − lim
m→0

1

L3

∫

z

〈

|ν|
∑

i,j=1

v†i (z)γµηj(z; y0)v
†
j(z)γµηi(z;x0)

〉

ν
, (2.16)

while for ν < 0 we get

Āν(x0 − z0, y0 − z0) = lim
m→0

1

L3

∫

z

〈

|ν|
∑

i=1

η†i (z;x0)γµvi(z)

|ν|
∑

j=1

η†j(z; y0)γµvj(z)
〉

ν
,

Ãν(x0 − z0, y0 − z0) = − lim
m→0

1

L3

∫

z

〈

|ν|
∑

i,j=1

η†i (z;x0)γµvj(z)η†j (z; y0)γµvi(z)
〉

ν
. (2.17)

For the two-point function of eq. (2.11), the positive chirality case ν > 0 yields

Bν(x0 − z0) = lim
m→0

1

L3

∫

z

〈

|ν|
∑

i=1

v†i (z)γ0ηi(z;x0)
〉

ν
, (2.18)
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while for ν < 0 we arrive at

Bν(x0 − z0) = lim
m→0

1

L3

∫

z

〈

|ν|
∑

i=1

η†i (z;x0)γ0vi(z)
〉

ν
. (2.19)

Finally, the Ward identity of eq. (2.12) implies

ZABν(x0 − z0) = Dν(x0 − z0) ≡
1

V

|ν|
∑

i,j=1

∫

x

〈

v†j(x)vi(x)v†i (z)vj(z)
〉

ν
. (2.20)

Here the limit m → 0 has been taken analytically on the right-hand side, while it needs to be

taken numerically on the left-hand side (cf. eqs. (2.18), (2.19)); therefore eq. (2.20) provides

a non-trivial test on our ability to approach the limit needed in eqs. (2.16)–(2.19).

It is clear from eqs. (2.16)–(2.19) that a number of inversions equal to twice the topological

charge, i.e. 2|ν| (since x0 and y0 need to be fixed), is sufficient for constructing the correlation

functions, whilst averaging over all the spatial positions of the three sources. When employing

the method of refs. [16, 17], which is based on the left-handed current, the summation over

the spatial positions of the three sources is only possible through low-mode averaging (LMA)

[24, 25], and only for the contributions of the low modes. The price of LMA is 12 + 2×Nlow

inversions, where Nlow was the number of low modes treated separately. Typically Nlow can

be as large as 20 for 2 fm boxes, and hence the numerical cost can be quite substantial.

On the other hand, if the low modes of the Dirac operator are known, as for example would

be the case if low-mode preconditioning [15] is used, it is possible to perform an additional

averaging over time translations for the low-mode contributions to the correlation functions

defined above. It is important to stress however that this extra low-mode averaging does not

involve any additional inversion, therefore the overhead is not proportional to Nlow, as in the

standard case [24]. We will describe briefly how this works in section 3.1.

Summarizing, in order to perform the matching between the fundamental weak Hamilto-

nian and the effective one, we will be considering the bare ratios

R±
ν ≡ Āν(x0 − z0, y0 − z0) ± Ãν(x0 − z0, y0 − z0)

Bν(x0 − z0)Bν(y0 − z0)
. (2.21)

The renormalized ratios needed for matching the LECs in eq. (2.5) are then obtained by

multiplying these correlators by the renormalization factors Z±
11/Z

2
A (cf. eq. (2.41) below);

the procedure is identical to the one in ref. [17] and we refer to that reference for details.

2.2. Correlators in chiral perturbation theory

We now present the results for the observables just defined in the Chiral Effective Theory.
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2.2.1. Two-point function

The two-point correlation function that needs to be computed in χPT, corresponding to

eq. (2.10), is given by

−iTr [T aT b]Bν(x0 − z0) ≡ lim
m→0

(mV )∂x0

∫

x

〈Pa(x) J b
0 (z)〉ν , (2.22)

where

J a
µ =

F 2

2
Tr

[

T aU∂µU †
]

+ ... , (2.23)

Pa = i
Σ

2
Tr

[

T a(U − U †)
]

+ ... , (2.24)

and contact terms have been omitted from eq. (2.22).

Since the mass is taken to zero in eq. (2.22), the computation is carried out according to

the rules of the ǫ-expansion [5]. We work up to next-to-leading order (NLO). The results for

the contributions of the individual graphs, as well as the various zero-mode and spacetime

integrals appearing, are listed in appendix A.

Defining τx ≡ (x0 − z0)/T and ρ ≡ T/L, and considering the unquenched theory, the final

result from eq. (A.29) becomes, after replacing E(x) = G(x)/Nf and using eq. (A.27),

TBν(x0 − z0) = |ν|
{

1 +
2ρ

(FL)2

(

|ν| + 1

Nf

)

h1(τx)

}

, (2.25)

where

h1(τ) ≡ 1

2

{

[

(τ mod 1) − 1

2

]2

− 1

12

}

. (2.26)

In Fig. 1 we show this result for different values of |ν| in a symmetric box of size T = L = 2 fm.

The LO results are constants at |ν|, so that all time dependence results from the subleading

corrections.

In the quenched case we consider the ǫ-counting described in ref. [21], introduced in order

to set up a parametrically convergent perturbative series. As explained there, three new

couplings can in principle appear at NLO: α,m2
0,K. The effect of α is to replace 1/Nf →

α/2Nc; however, this contribution is suppressed in the counting of ref. [21] and will be omitted.

Similarly, contributions from m2
0 are also suppressed and omitted. On the other hand, effects

from the coupling K could be of order unity, and need to be studied explicitly.

The coefficient K has two main effects. First of all, the pseudoscalar density is modified to

P a = i
Σ

2
Tr

[

T a(U − U †)
]

− KΦ0Tr
[

T a(U + U †)
]

+ ... , (2.27)

where we have for brevity kept the notation of the unquenched theory, usable in the replica

formulation of quenched χPT [26]; for the notation in the supersymmetric formulation [27],
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Figure 1: The two-point correlation function TBν(x0 − z0) for Nf = 2 (solid) and Nf = 0

(dotted) as a function of τx = (x0 − z0)/T , for T = L = 2 fm. The pion decay constant F

has been fixed to 93 MeV for Nf = 2 and to 110 MeV for Nf = 0.

see eq. (3.2) of ref. [21]. In eq. (2.27), Φ0 = F
2 Tr [−i ln U ] is the singlet field. Second, the

zero-mode integration measure is modified:

〈...〉qν =

∫

U0∈U(N)(...) detνU0 exp
[

µ
2Tr (U0 + U †

0) + 2ν mKNc

m2

0
F

Tr (U0 − U †
0)

]

∫

U0∈U(N) detνU0 exp
[

µ
2 Tr (U0 + U †

0 ) + 2ν mKNc

m2

0
F

Tr (U0 − U †
0 )

] . (2.28)

To first order in K, the effects come from the standard tree-level contribution computed with

the modified weight of eq. (2.28), and from a new tree-level term containing the K-term from

eq. (2.27).

The results for the two new contributions are given in eqs. (A.14), (A.15) of appendix A.

However, inserting the zero-mode integrals from eqs. (A.24), (A.25), these contributions

cancel against each other. Therefore,

TBq
ν(x0 − z0) = |ν|

{

1 +
2ρ|ν|
(FL)2

h1(τx)

}

, (2.29)

and the result is very close to that in the full theory (were it not that F is different). Some

examples are shown in Fig. 1.
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2.2.2. Three-point function

Next we consider the three-point function corresponding to eq. (2.7) in χPT :

A±
ν (x0 − z0, y0 − z0) ≡ − lim

m→0
(mV )2

∫

x

∫

y

〈∂x0
Pa(x)O±

1 (z)∂y0
Pb(y)〉ν . (2.30)

Here, like in eq. (2.6),

O±
1 ≡ [O1]rsuv ± [O1]rsvu , (2.31)

where the weak operators are given by

Orsuv =
F 4

4

(

∂µUU †
)

ur

(

∂µUU †
)

vs
+ ... . (2.32)

Again, contact terms have been omitted from eq. (2.30).

Like for the two-point function, we work up to NLO. The results for the contributions of

the individual graphs, as well as the various zero-mode and spacetime integrals appearing,

are listed in appendix B.

The result obtained after summing together all the graphs can be written as

A±
ν = (T a

urT
b
vs + T a

vsT
b
ur ± T a

vrT
b
us ± T a

usT
b
vr)

[

Āν ± Ãν

]

, (2.33)

where, inserting E(x) = G(x)/Nf into eq. (B.33) and using eq. (B.28), one obtains

Āν ± Ãν =
(

1 ∓ 1

|ν|
)

{

Bν(x0 − z0)Bν(y0 − z0)

± ν2

F 2V

[

2β1ρ
− 3

2 + f1(τx) + f1(τy) − h1(τx) − h1(τy) +
(

1 ∓ 2

Nf

)

H(τx, τy)
]

}

. (2.34)

Here τx ≡ (x0 − z0)/T , τy ≡ (y0 − z0)/T , ρ ≡ T/L, β1 is a shape coefficient depending on the

value of ρ [28, 29], the function h1 is defined in eq. (2.26), and

H(τx, τy) ≡ h′
1(τx)h′

1(τy) − h1(τx − τy) −
[

h′
1(τx) − h′

1(τy)
]

h′
1(τx − τy) , (2.35)

f1(τ) ≡
[

h′
1(τ)

]2
+

∑

p6=0

[

|p|2Cp(τ)2 + C ′
p(τ)2

]

. (2.36)

Furthermore, p = 2πρn with n = (n1, n2, n3) being a vector of integers, and

Cp(τ) ≡ cosh
{

|p|
[

(τ mod1) − 1
2

]}

2|p| sinh(|p|/2) , C ′
p(τ) =

sinh
{

|p|
[

(τ mod 1) − 1
2

]}

2 sinh(|p|/2) . (2.37)

The first term in eq. (2.34) has the form of a factorized contribution. We can cancel out

this term by taking the ratio of the three-point function with respect to the product of two

two-point functions, in analogy with eq. (2.21):

R±
ν ≡ Āν(x0 − z0, y0 − z0) ± Ãν(x0 − z0, y0 − z0)

Bν(x0 − z0)Bν(y0 − z0)
(2.38)

≡
(

1 ∓ 1

|ν|
)[

1 ± r±(z0)
]

. (2.39)
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We have adopted a notation here where x0, y0 are assumed fixed, so that r± is a function of

z0 only. Inserting the tree-level result Bν = |ν|/T in the numerators when dividing the NLO

correction, we then obtain from eq. (2.34) that

r±(z0) =
ρ

(FL)2

[

2β1ρ
− 3

2 + f1(τx) + f1(τy) − h1(τx) − h1(τy) +
(

1 ∓ 2

Nf

)

H(τx, τy)
]

. (2.40)

Note that r± is independent of ν, i.e. the topology and volume dependences have completely

factorized at this order. The low-energy couplings g±1 can now be obtained from the matching

g±1 R±
ν = k±

1

Z±
11

Z2
A

R±
ν , (2.41)

at sufficiently large distances between the sources.

The quenched result in the counting of ref. [21] is obtained by simply leaving out the term

1/Nf , because terms involving α and m2
0 are of higher order, like for the two-point correlator,

and effects from the coupling K cancel at this order, as demonstrated in appendix B (cf.

eqs. (B.13), (B.14), (B.20), (B.21)):

rq
±(z0) =

ρ

(FL)2

[

2β1ρ
− 3

2 + f1(τx) + f1(τy) − h1(τx) − h1(τy) + H(τx, τy)
]

. (2.42)

The most efficient way of evaluating numerically the amplitudes Āν and Ãν is by fixing the

temporal position of the sources, x0 and y0, so that the three-point correlator is measured

as a function of the temporal position of the weak operator, z0. In order to maximize the

separation between the three operators we take x0 ∼ T/3 and y0 ∼ T −x0. The signal should

be best when the weak operator is near the origin, and simultaneously the NLO correction

r±(z0) is minimized. The corresponding values of (FL)2rq
±(0) for various box shapes are given

in Table 1. There is a very strong dependence on z0 (cf. Fig. 2) which results from the fact that

the functions f1(τx) and f1(τy) are divergent at τx = 0 and τy = 0, respectively, while they

fall off exponentially, ∼ exp(−2πρτx), ∼ exp(−2πρτy), away from these points1. Thereby

a way to decrease these corrections is to increase ρ = T/L 2. In this respect the situation

is opposite to that in ref. [17] where left-handed currents appear in place of pseudoscalar

densities; then the NLO corrections increase rapidly with T/L>∼ 2 [16].

Fig. 2 shows the result for 1 ± rq
± for various box volumes, for x0 = T/3, y0 = 2T/3.

Unfortunately, NLO corrections seem to be rather large at L = 2 fm.

1These terms could be decreased by increasing τx, τy towards 1/2, since nothing dramatic happens as

τx → τy according to NLO expressions (cf. Table 1). However, this situation may be specific to the SU(4)

case, where there are no quark propagators connecting the pseudoscalar densities, while in the physical SU(3)

case it is probably reasonable to keep the pseudoscalar densities somewhat apart from other.
2Note however that increasing ρ takes us closer to the so-called δ-regime [30].
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V x0/a y0/a τx τy (FL)2rq
±(0)

164 4 12 0.25000 0.75000 0.89309

164 5 11 0.31250 0.68750 0.62839

164 6 10 0.37500 0.62500 0.51281

164 7 9 0.43750 0.56250 0.41875

16332 11 21 0.34375 0.65625 0.45251

16332 12 20 0.37500 0.62500 0.43174

16332 13 19 0.40625 0.59375 0.38822

16332 14 18 0.43750 0.56250 0.32157

16332 15 17 0.46875 0.53125 0.23162

244 8 16 0.33333 0.66667 0.58270

244 9 15 0.37500 0.62500 0.51281

244 10 14 0.41667 0.58333 0.45099

244 11 13 0.45833 0.54167 0.38435

Table 1: Examples of values of (FL)2rq
±(0) for various box shapes. Note that in the quenched

limit, rq
±(0) is independent of the channel ±, cf. eq. (2.42).

β r0/a V Nlow |ν| N
|ν|

conf
x0

a
, y0

a
ZA am

A1 5.8458 4.026 164 20 1-5 118,94 5,11 1.710 0.0015,0.0025,

99,73,65 0.005

A2 6.0735 6.072 244 20 2-5 92,63 8,16 1.505 0.002, 0.0033,

51,55 0.0067

Table 2: Parameters of the simulations.

3. Numerical results

We have carried out a numerical test of the method outlined above, in the quenched approx-

imation. Table 2 shows the simulation parameters. We have considered a symmetric lattice

T = L ≃ 2 fm at two different lattice spacings in order to test for scaling violations in these

observables.

To evaluate the correlation functions of eqs. (2.16)–(2.19), we have computed chiral quark

propagators on quenched background gauge configurations, using the Neuberger-Dirac op-

erator with s = 0.4. For all details of the numerical implementation we refer the reader to

refs. [15, 24, 16], whose techniques we adopt.

Before presenting the actual data, let us describe how low-mode averaging (LMA) can be
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Figure 2: The functions 1± r± (eq. (2.39)) for Nf = 2 (left) and Nf = 0 (right) as a function

of τ0 ≡ z0/T , for x0 = T/3, y0 = 2T/3. The pion decay constant F has been fixed to 93 MeV

for Nf = 2 and to 110 MeV for Nf = 0. The solid line corresponds to T = L =2 fm, the

dashed to T = L = 3 fm, and the dotted to T/2 = L =2 fm.

used to reduce statistical fluctuations in the signal.

3.1. Low-mode averaging

Our observables, eqs. (2.16)–(2.19), involve both zero-mode wave functions and actual quark

propagators. Since we employ low-mode preconditioning [15] for determining the quark prop-

agators, which requires the computation of a few lowest eigenvectors of the Dirac operator, we

can use these in order to perform an extra averaging over time translations of the low-mode

contribution to eqs. (2.16)–(2.19). In other words, the LMA technique [24, 25] gives only an

extra averaging over time in our case, but is nevertheless helpful as we will see, since the

numerical overhead involved is negligible.

The main idea of LMA is to substitute the chiral propagator in eqs. (2.16)–(2.19) by

P−χSm(z, x)Pχ =

Nlow
∑

k=1

Ψk(z) ⊗ Ψ†
k(x) + P−χSsub

m (z, x)Pχ , (3.1)

where Ssub
m (z, x) is the inverse of the massive Dirac operator in the subspace orthogonal to

the eigenspace of the approximate low-modes, and the chiral components of Ψk are given by

P−χΨk(x) = wk(x), PχΨk(x) =
1

αk
Pχγ5DP−χwk(x) , (3.2)

12



where wk(x) are the approximate eigenfunctions of the operator D†D for the eigenvalue λk,

while αk =
√

λk. We indicate how this works with the two-point correlator.

The LMA evaluation of eq. (2.18) is based on the separation

Bν = Bl
ν + Bh

ν , (3.3)

where the “high-mode part” reads

Bh
ν (x0 − z0) = lim

m→0

1

L3

∫

z

〈

|ν|
∑

i=1

v†i (z)γ0η̃i(z;x0)
〉

ν
, (3.4)

with

η̃i(z;x0) ≡ ∂x0

∫

x

P−χSsub
m (z, x)Pχvi(x) , (3.5)

while the low-mode contribution is

Bl
ν(t) = lim

m→0

|ν|
∑

i=1

Nlow
∑

k=1

1

V

∫

x,z

δ(x0 − z0 − t)
〈

v†i (z)γ0P−Ψk(z)∂x0

[

Ψ†
k(x)P+vi(x)

]〉

ν
.

(3.6)

The LMA evaluation of the three-point function is carried out in complete analogy.

3.2. Two-point function

In Fig. 3 we show results for the two-point correlator Bν(t) (cf. eqs. (2.18), (2.19)) in different

topological sectors at the lightest quark mass. The open/full symbols corresponds to the

results without/with LMA. There is a strong dependence on |ν|, as expected from χPT.

Since there is clear evidence for NLO corrections, we consider a two-parameter fit of the

form

TBν(t) = αν + 2βνh1 (τ) , τ =
t

T
, (3.7)

where h1 is from eq. (2.26). The temporal dependence in all sectors is perfectly compatible

with the function h1(τ) as illustrated by the solid lines in Fig. 3, which are the results of the

fits in the time interval ∆t = 5a− 11a. The small dependence on the quark mass is perfectly

linear, so the values of αν and βν are linearly extrapolated to the zero mass limit. The results

for αν and βν in the chiral limit are summarized in Table 3. The jackknife procedure has

been used to estimate the errors.

In Fig. 4 we show the results for αν and βν as a function of |ν|, together with the NLO

expectations. In the case of αν , the NLO prediction αν = |ν| is extremely well reproduced at

the per cent level. The prediction for βν , on the other hand, depends on F . The dashed line in

the figure corresponds to a fit to the NLO prediction leaving F as a free parameter. The best

fit values are (FL)A1
= 1.19(2) and (FL)A2

= 1.14(2) with χ2/d.o.f ∼ 9 and 12, respectively,

13
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Figure 3: The measured TBν(t) for lattice A1 and quark mass am = 0.0015. Open/full

symbols correspond to data without/with LMA. Error bars are in most cases smaller than

the symbol sizes.

which are rather bad. Clearly the |ν| dependence is not properly reproduced at NLO, however

it seems that the discrepancy could be ascribed to higher order chiral corrections.

We have seen that the Ward identity, eq. (2.12), relates Bν(t) to the topological zero-mode

contribution in the correlator of two pseudoscalar densities. This quantity was studied in

ref. [21], and actually the chiral corrections were computed to one order higher than here.

Although the expressions are rather complicated and involve new time-dependent functions,

a convenient way to try to include these corrections is to consider a Taylor expansion around

the middle point, t = T/2. From the results of ref. [21], we expect that

TBν(t) = γν + δν

(

t

T
− 1

2

)2

+ ... , (3.8)

where3

δν =
ρ

(FL)2

{

ν2 +
ρ|ν|

(FL)2

[

−β1ρ
− 3

2 − 1

24

(

7

3
+ 2ν2 − 2〈ν2〉

)

+
γ1

2

]}

. (3.9)

For a symmetric box with T = L the shape coefficients read ρ = 1, β1 = 0.14046098, and

γ1 = −0.05712765.

Numerically the results for δν in a fit of the form in eq. (3.8) are identical to those for βν

in Table 3. The solid line in the lower plot of Fig. 4 corresponds to the prediction of eq. (3.9)

3We have set α = 0, since this parameter was consistent with zero in the analysis of ref. [21].
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|ν| αν(A1) βν (A1) αν(A2) βν (A2)

1 1.00(1) 1.4(3)

2 1.98(2) 3.9(4) 2.02(2) 4.5(4)

3 3.02(3) 7.3(4) 3.00(3) 8.8(5)

4 4.00(4) 11.6(5) 3.97(4) 11.9(5)

5 5.01(5) 15.8(6) 5.00(4) 17.7(6)

Table 3: Results for αν and βν from a fit to eq. (3.7) of the measured two-point correlator,

subsequently extrapolated to the zero-mass limit.

using 〈ν2〉 = χtV = 0.059V/r4
0 [31] and leaving F as a free parameter. The result of the fit

is (FL)A1
= 1.12(2) and (FL)A2

= 1.07(2) with χ2/d.o.f = 0.2, 1.3, respectively. The results

for F are essentially the same as the central values in ref. [21] (this is almost trivial in the

light of Sec. 3.3 below)4; however, the current error bars are much smaller, because higher

topological sectors which are less noisy have been considered. Besides, we have not assigned

any errors to α and χt, as we did in [21]. The results are in reasonable agreement also with

the determination of F from the left-current two-point correlator in ref. [24], although it must

be noted that the box size was significantly smaller there.

3.3. Ward identity and chiral extrapolation

The Ward identity of eq. (2.12) is a good test of the extrapolation m → 0 needed for the

correlator Bν(t).

In Fig. 5 we show results for the ratio ZA ≡ Dν(t)/Bν(t) (notation as in eq. (2.20)) as

a function of am for the different topological sectors, normalized to the value ẐA obtained

by conventional means in ref. [32]. In the limit m → 0, the ratio should approach unity in

all topological sectors. The level of agreement between the different sectors and with ẐA is

shown in Table 4. Given that only the zero-mode contributions to both sides of the Ward

Identity are included, this is a strong check of the whole procedure, and furthermore indicates

that the small residual extrapolation to zero quark mass is under good control.

3.4. Three-point function

In Fig. 6 we show one example of a Monte Carlo history for the three-point functions Āν±Ãν ,

eqs. (2.16), (2.17), with and without LMA. Clearly LMA improves the signal significantly.

4Note that a similar physical box size was used in ref. [21] as in the present study.
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Figure 4: Top: αν/|ν| versus |ν| for lattice A1 (left) and lattice A2 (right). The dashed line

is the NLO expectation. Bottom: βν versus |ν| for the same lattices. The dashed line is

the best fit NLO prediction, the solid line is the best fit NNLO prediction. In both cases

open/full symbols correspond to without/with LMA.

|ν| ZA/ẐA(A1) ZA/ẐA(A2)

1 1.000(6)

2 1.009(4) 0.991(3)

3 0.999(4) 0.995(3)

4 1.008(3) 0.999(3)

5 1.000(3) 1.002(3)

Table 4: The ratio ZA ≡ Dν/Bν (cf. eq. (2.20)), obtained from the saturation with zero modes

of the Ward Identity (with LMA treatment of the non-zero mode part of Bν), normalized to

the conventionally determined ẐA [32]. The errors do not include the error on ẐA which is

about 3 per mille.

The improvement is more pronounced for the smaller topologies and masses as expected. In

all of the following we consider only the LMA results.

In Figs. 7, 8 we show the results for the bare ratios R±
ν (x0−z0, y0−z0)/(1∓1/|ν|) on lattice
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Figure 5: Chiral extrapolation of the time-averaged ratio Dν(t)/Bν(t) (cf. eq. (2.20)) nor-

malized to ẐA from ref. [32], for lattice A1.

A1 as a function of τ = z0/T , at fixed x0 = 5a, y0 = 11a. The quark mass is am = 0.0015.

There is a clear signal near τ = 0. However, the temporal dependence does not seem to be

as pronounced as expected from NLO χPT. The pattern is similar for the lattice A2.

An interesting combination to consider is the product R+
ν R−

ν , since NLO corrections cancel

in this quantity (cf. eq. (2.39)). Writing the weak LECs as

g±1 = [g±1 ]bare k±
1 Z±

11

Z2
A

, (3.10)

eqs. (2.39) and (2.41) imply that we may expect:

R+
ν R−

ν = [g+
1 g−1 ]bare

(

1 − 1

|ν|2
)

+ . . . . (3.11)

The results for the lattice A1 are shown in Fig. 9. A constant fit around z0 = 0, followed

by a chiral extrapolation in each topological sector, gives the values shown in Table 5. The

agreement with the result obtained from the left-current three-point functions [17] is quite

good. Note that the renormalization factors for the lattice A1 are the same as those in

ref. [17] and therefore the bare couplings can be compared directly. Those for the lattice A2

have not been evaluated. However, the difference is expected to be well below the statistical

uncertainty. Indeed a LO computation in bare perturbation theory yields variations at the

1–2% level, and the results of ref. [23] indicate that this perturbative estimate is realistic.

In order to then estimate [g+
1 ]bare and [g−1 ]bare individually, we consider the following fits

of the LMA data:
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Figure 6: The Monte Carlo history of the three-point correlators Āν − Ãν (top) and Āν + Ãν

(bottom), at z0 = 0, normalized to the average, on the lattice A1, for |ν| = 3 and am = 0.0015.

The dark line corresponds to the LMA and the light one to the non-LMA amplitude.

|ν| [g+

1 g−1 ]bare (A1) [g+

1 g−1 ]bare (A2) [g+

1 g−1 ]bare [17]

2 0.73(53) 0.72(39)

3 0.94(20) 1.10(34)

4 1.37(20) 1.60(36)

5 1.64(20) 1.50(17)

w.a. (|ν| > 2) 1.32(11) 1.45(14) 1.47(12)

χ2/d.o.f. 3.1 0.7

Table 5: Values of the product of the bare couplings obtained from fits to a constant in the

time interval |z0| ≤ a for lattice A1 and |z0| ≤ 2a for A2. The last row shows the weighted

averages (w.a) over topological sectors |ν| > 2 for the two lattices and also the result obtained

in ref. [17] with a different method.
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Figure 7: R+
ν /(1 − 1/|ν|) in different topological sectors for the lattice A1 as a function of

z0/T for fixed x0 = 5a, y0 = 11a, at the smallest quark mass am = 0.0015. The horizontal

lines represent the 1σ boundaries of a LO fit, while the curved line is the best NLO fit.

Fit A. At LO we expect (cf. eq. (2.39))

R±
ν = [g±1 ]bare

(

1 ∓ 1

|ν|

)

, (3.12)

therefore we fit R±
ν /

(

1 ∓ 1
|ν|

)

to a constant around z0 = 0. The results are shown as the

bands in Figs. 7, 8.

The results for the bare couplings are listed in Table 6. The results on the lattices A1 and

A2 are again perfectly compatible, which implies that scaling violations are well below the

statistical uncertaintities. There is a significant difference with the [g±1 ]bare obtained from a

LO matching of left-current three-point functions in ref. [17]: while our [g−1 ]bare is smaller,

our [g+
1 ]bare is larger. This is, however, not unexpected, given that chiral corrections tend to
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Figure 8: R−
ν /(1 + 1/|ν|) in different topological sectors for the lattice A1 as a function of

z0/T for fixed x0 = 5a, y0 = 11a, at the smallest quark mass am = 0.0015. The horizontal

lines represent the 1σ boundaries of a LO fit, while the curved line is the best NLO fit.

decrease [g−1 ]bare and increase [g+
1 ]bare in ref. [17], and do the opposite in the present work.

Fit B. At NLO we expect (cf. eq. (2.39))

R±
ν = [g±1 ]bare

(

1 ∓ 1

|ν|

)

[

1 ± rq
±(z0)

]

. (3.13)

Numerical values of (FL)2rq
±(z0) for small z0 are shown in Table 7. Taking a value FL ∼ 1.1,

the NLO prediction gives a stronger temporal dependence than that seen in the data. The

fits have a bad χ2 if more that 3(5) points are included for lattice A1(A2). This already

indicates that NNLO could be significant. With so few points it does not make sense to do

a two parameter fit, leaving the normalization of the NLO correction free, because there is
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Figure 9: R+
ν R−

ν /(1 − 1/ν2) in different topological sectors on the lattice A1 as a function

of z0/T for fixed x0 = 5a, y0 = 11a, at the smallest quark mass am = 0.0015. The bands

represent the 1σ fits to a constant.

not much curvature in the data. Therefore we fix (FL)2 = 1.14 − 1.40, corresponding to the

range of values obtained from fitting various two-point functions here and in ref. [33]. We

then perform linear one-parameter fits for [g±1 ]bare. The results are summarized in Table 8.

The results obtained for [g±1 ]bare on the lattices A1 and A2 are again fully compatible,

indicating small scaling violations. However, the effect of a 10% uncertainty in F results in

a significant systematic uncertainty especially in [g−1 ]bare, which is much more sensitive to

NLO corrections. In fact the difference between the results for [g−1 ]bare obtained from LO

and NLO matchings is too large for even the latter results to be trustworthy.

A comparison with the results of a NLO matching in ref. [17] shows that [g+
1 ]bare is in rather

good agreement. This is quite non-trivial, given the very different NLO chiral corrections in

the two cases, and could be an indication that NNLO corrections are not very important for
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[g−1 ]bare [g+

1 ]bare

|ν| A1 A2 [17] A1 A2 [17]

1 3.1(1.6)

2 0.8(7) 1.7(0.7) 0.9(2) 0.44(13)

3 1.2(2) 1.46(35) 0.76(8) 0.80(10)

4 1.65(15) 1.85(31) 0.83(6) 0.89(10)

5 1.73(12) 1.74(15) 0.95(5) 0.86(6)

w.a. (|ν| > 2) 1.60(8) 1.72(13) 2.42(13) 0.87(3) 0.85(5) 0.60(4)

χ2/d.o.f. 2.6 0.4 2.4 0.2

Table 6: Values of the bare couplings obtained from a LO fit in the time interval |z0| ≤ a on

lattice A1 and |z0| ≤ 2a on lattice A2.

z0 [(FL)2rq
±(z0)]A1

[(FL)2rq
±(z0)]A2

0 0.62839 0.58270

a 0.73420 0.61454

2a 1.23214 0.72759

Table 7: Values of (FL)2rq
±(z0) for z0 = 0, a, 2a, with x0 = 5a, y0 = 11a for lattice A1 and

x0 = 8a, y0 = 16a for lattice A2.

this quantity. On the other hand, our [g−1 ]bare lies significantly above the result of ref. [17],

but this could be accounted for by an effect of 30% in the NNLO corrections, which does not

appear unreasonable, given that the size of the NLO corrections is 50 – 60%. It is interesting

to note, however, that due to the fact that the there is a cancellation between the LO and

NLO terms in R−
ν , the uncertainty in the NLO corrections has a bigger relative impact in

the determination of [g−1 ]bare than in [g+
1 ]bare.

Obviously it is necessary to bring this systematic error under control, which can only be

achieved by going to larger volumes and performing a detailed finite-size scaling study. Given

that this is a quenched exploratory study and that going to larger volumes in the quenched

approximation is no guarantee of success, we will not pursue this further here. We will

consider, however, alternative estimates of [g−1 ]bare that could be less affected by higher order

22



[g−1 ]bare

|ν| A1 A2 [17]

2 2(2) – 1.6(1.4) 4(2) – 3(1)

3 3.1(5) – 2.5(4) 3.4(8) – 2.7(7)

4 4.2(4) – 3.3(3) 4.3(7) – 3.5(6)

5 4.4(3) – 3.4(2) 4.0(4) – 3.2(3)

w.a. (|ν| > 2) 4.1(2) – 3.2(2) 4.0(3) – 3.2(3) 2.33(11)

χ2/d.o.f. 2.5 – 2.0 0.4 – 0.4

[g+

1 ]bare

|ν| A1 A2 [17]

2 0.56(13) – 0.60(14) 0.30(9) – 0.32(10)

3 0.47(5) – 0.51(5) 0.53(7) – 0.57(7)

4 0.52(4) – 0.55(4) 0.59(7) – 0.63(7)

5 0.59(3) – 0.63(3) 0.55(4) – 0.59(4)

w.a. (|ν| > 2) 0.55(2) – 0.58(2) 0.57(4) – 0.61(4) 0.63(4)

χ2/d.o.f. 2.4 – 2.6 0.3 – 0.2

Table 8: Values of the bare couplings obtained from a NLO fit in the interval |z0| ≤ a. The

ranges indicated correspond to considering (FL)2 = 1.14 − 1.40.

corrections.

One possible strategy5 is to obtain [g−1 ]bare indirectly from [g+
1 g−1 ]bare and [g+

1 ]bare. The

first quantity is extracted from the product R+
ν R−

ν where the NLO correction vanishes, while

the second quantity is extracted from R+
ν , where the NLO contribution has the same sign as

the LO, and therefore the uncertainty due to higher order effects is less relevant on relative

terms. The results of such an approach are summarized in Table 9. The results for [g−1 ]bare

are now very close to those in ref. [17], and are significantly less sensitive to the uncertainty

in F , as expected.

Alternatively, as is clear from Table 1, on could decrease the chiral corrections very signifi-

5This was the strategy followed in ref. [17].
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[g−1 ]bare

|ν| A1 A2 [17]

2 1.3(1.1) – 1.2(1.0) 2.4(1.1) – 2.2(1.0)

3 1.99(32) – 1.85(30) 2.1(5) – 1.9(5)

4 2.66(24) – 2.47(22) 2.71(45)– 2.54(42)

5 2.79(19) – 2.60(18) 2.65(24) – 2.48(22)

w.a. (|ν| > 2) 2.61(14) – 2.42(13) 2.58(20) – 2.42(18) 2.33(11)

χ2/d.o.f. 2.3 – 2.3 0.5 – 0.6

Table 9: Value of the bare coupling [g−1 ]bare obtained from a NLO fit of R+
ν R−

ν and R+
ν in

the interval |z0| ≤ a for lattices A1 and A2. The ranges indicated correspond to considering

(FL)2 = 1.14 − 1.40.

cantly by increasing the distances τx and τy between the pseudoscalar densities and the weak

operator, at the expense of decreasing |τx− τy|. Note that chiral corrections (up to NLO) are

in fact insensitive to the last separation. In principle, the distance between the pseudoscalar

sources has to be large enough compared with the cutoff and the physical distance scales of

QCD. However it is an empirical observation that two-point functions approach the asymp-

totic behaviour very fast in the ǫ-regime, and we are therefore confident that it makes sense

to investigate the three-point functions for larger values of τx and τy, even on a lattice as

small as T = 16a. Provided the effects of higher scales can be neglected, choosing x0 = 7a

and y0 = 9a on the lattice A1 can reduce the chiral corrections by 30%. The results obtained

for this choice are summarized in Table 10.

A few observations are in order. The changes in [g+
1 ]bare and [g+

1 g−1 ]bare with respect to

the case τx ≃ τy ≃ |τx − τy| are quite small, but the change in [g−1 ]bare is very significant (yet

still at the level expected from NNLO chiral corrections), bringing the value of [g−1 ]bare to

agreement with that from the indirect determination, and with that of ref. [17]. The χ2/d.o.f.

of the fits get improved and the effect of the uncertainty in F on [g−1 ]bare gets reduced to

the level of 10%. In general the agreement of these results with those of ref. [17] is quite

remarkable. Unfortunately the distance between the sources is too small to be confident that

the effect of higher scales is negligible, but these results provide further evidence that the

discrepancy between the different determinations of [g−1 ]bare can indeed be ascribed to higher

order chiral corrections.
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|ν| [g−1 ]bare [g+

1 ]bare [g+

1 g−1 ]bare

2 5.5(2.7) – 4.9(2.4) 0.56(14) – 0.59(14) 2.5(1.3)

3 3.45(54) – 3.10(48) 0.59(7) – 0.62(7) 1.73(35)

4 2.75(31) – 2.46(28) 0.62(5) – 0.65(5) 1.47(23)

5 2.62(13) – 2.36(12) 0.66(4) – 0.69(4) 1.47(12)

w.a. (|ν| > 2) 2.68(11) – 2.41(11) 0.63(3) – 0.66(3) 1.49(10)

χ2/d.o.f. 1.1 0.45 0.25

Table 10: Values of the bare couplings obtained from a NLO fit in the interval |z0| ≤ a for

lattice A1 and x0 = 7a, y0 = 9a. The ranges indicated correspond to considering (FL)2 =

1.14 − 1.40.

4. Conclusions

The purpose of this paper has been to estimate the weak low-energy couplings g±1 , defined

in eq. (2.5), in the SU(4) chiral limit. Our method has been to measure the topological zero-

mode contributions to three-point correlation functions of two pseudoscalar densities and a

weak operator in sectors of non-trivial topology. The results of the measurements have been

matched to NLO predictions of ǫ-regime chiral perturbation theory.

We have considered several fitting strategies for estimating the couplings g+
1 and g−1 , in

an attempt to quantify the uncertainty induced by unknown higher order chiral corrections

(NNLO), which are expected to be significant at the volume we have considered. While we

observe small variations in the determination of g+
1 , as well as in the product g+

1 g−1 , between

the different methods, the value of g−1 seems to be significantly affected by higher orders.

Taking the bare couplings [g+
1 ]bare and [g+

1 g−1 ]bare cited in Table 8 for the lattice A1, and the

same renormalization factors and Wilson coefficients that were used in ref. [17], and inserting

everything into eq. (3.10), we obtain

g+
1 ≃ 0.46(5) , g+

1 g−1 ≃ 1.2(2) . (4.1)

The errors shown involve statistical uncertainties as well as the uncertainty from the de-

termination of the (quenched) pion decay constant F . We have checked that discretization

effects in these numbers are small. However, systematic errors related to higher order chiral

corrections as well as the quenched approximation have not been quantified. In any case,

both quantities are in good agreement with those of ref. [17], where they were extracted from

observables with very different chiral corrections, so this is a strong indication that higher

order chiral corrections could be under control.

The situation with g−1 is less clear. The different fitting strategies we have explored give
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values that differ by up to 30%, which is also the naive expectation for the magnitude of

higher order chiral corrections. We have argued that an indirect extraction of g−1 from the

combinations in eq. (4.1) is the method that should be least sensitive to the uncertainty

induced by higher orders. With this approach, we obtain from the results of Table 9

g−1 ≃ 2.8(4) , (4.2)

which is also in good agreement with the result of ref. [17]. We should stress however that

we have seen evidence that higher order corrections could be significant for this quantity; the

corresponding systematic error cannot be quantified precisely, and has not been included in

eq. (4.2). Probably an error of 30% in eq. (4.2) would be a reasonable estimate.

The conclusions concerning the ∆I = 1/2 rule are the same as in ref. [17]: there is a

significant ∆I = 1/2 enhancement already in the SU(4) limit, which cannot be explained by

penguin dominance. However, this enhancement is not as large as the experimental one.

The method of the present study and that in refs. [16, 17] can be compared on two accounts.

First of all, there is the issue of how well chiral perturbation theory converges with a given

box size and geometry. In a symmetric box of size (FL)2 = 1.1, for instance, the magnitude

of next-to-leading order corrections in the method of refs. [16, 17] is ∼ 15% (cf. Fig. 2 of

ref. [16]), while in the present observables it is ∼ 60% (cf. Table 1). In the present case

the magnitude of the corrections can be reduced very significantly by taking the sources

further away from the weak operator, while in the method of refs. [16, 17] this has no effect.

Nevertheless, it could be concluded that from the point of view of chiral perturbation theory,

the method of refs. [16, 17] appears to be preferable.

The second comparison concerns the numerical cost of the measurements carried out. On

this account, on the contrary, the present method appears to be preferable: a good statistical

signal could be achieved with significantly less computational effort than in ref. [17]. Indeed,

the number of quark propagators required per quark mass to construct the observables is a

factor of 5 smaller in the present work. Note also that this factor scales with Nlow, which is

expected to scale with the volume6.

These two competing aspects probably mean that, moving towards SU(3) symmetry and

unquenched simulations, it would be wise to continue to probe the weak low-energy constants

with (at least) two independent methods. In particular, the fact that chiral corrections are

very different in the two cases, offers a good way of quantifying the systematics associated

with the chiral fits. On the other hand, particularly in the SU(3) case where the penguin

contractions need to be evaluated, which entails a significant numerical cost, it may be that

the method introduced in the present work becomes preferable.

6A new method to solve the V 2-problem of low-mode preconditioning has been presented in ref. [34], and

in principle could also be applied to low-mode averaging.
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We wish to thank L. Giusti, M. Lüscher and P. Weisz for the joint development of important

parts of the computer code used in this work. We acknowledge the computer resources

provided by IBM MareNostrum at the BSC, the IBM Regatta at FZ Jülich and the PC-
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Appendix A. Graph-by-graph results for the two-point correlator

For completeness, we present in this appendix graph-by-graph results for the two-point cor-

relation function defined in eq. (2.22).

As usual, the Goldstone field is factorised into non-zero and zero-mode parts:

U(x) ≡ Uξ(x)U0 , Uξ(x) ≡ exp

[

2iξ(x)

F

]

. (A.1)

The propagator of the non-zero modes ξ, which are perturbative, is of the form

〈ξij(x) ξkl(y)〉 =
1

2

[

δilδjkG(x − y) − δijδklE(x − y)
]

. (A.2)

Here G(x) is the massless non-zero mode propagator,

G(x) ≡ 1

V

∑

n∈Z4

(

1 − δ
(4)
n,0

)eip·x

p2
, V ≡ TL1L2L3 , p0 ≡ 2πn0

T
, pi ≡

2πni

Li
, (A.3)

while E(x) is the “trace part” whose form is affected by quenching; in the unquenched case

it reads E(x) = G(x)/Nf , while in the quenched case,

E(x) ≡ α

2Nc
G(x) +

m2
0

2Nc
F (x) , (A.4)

where

F (x) =
1

V

∑

n∈Z4

(

1 − δ
(4)
n,0

)eip·x

p4
. (A.5)

Since the zero-mode field U0 is an x-independent constant, and we are only interested in

contributions to the correlation function 〈Pa(x)Lb
0(z)〉ν that remain non-zero after taking the

derivative ∂x0
, it is clear that the only graphs that can contribute are those where the two

operators are connected by a non-zero mode propagator. Denoting the operator Pa by an

open square; the operator Lb
0 by an open half circle; the propagator in eq. (A.2) by a solid
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line; the mass term in the chiral Lagrangian by a closed circle; the mass term originating

from the Haar measure by a cross; µ ≡ mΣV ; and choosing to list the results before taking

the spatial average, time derivative, and zero-mass limit in eq. (2.22), we are led to:

=
iΣ

2
∂0G(z − x)

〈

Tr
[

(U0T
a + T aU †

0)T b
]〉

, (A.6)

[ ]

conn.

= − iµΣ

4F 2
[NfG(0) − E(0)]∂0G(z − x) ×

×
[

〈

Tr [(U0T
a + T aU †

0)T b]Tr [U0 + U †
0 ]

〉

−
〈

Tr [(U0T
a + T aU †

0)T b]
〉〈

Tr [U0 + U †
0 ]

〉

]

, (A.7)

= − iNfΣ

3F 2V

∫

s

∂0G(z − s)G(s − x)
〈

Tr [(U0T
a + T aU †

0 )T b]
〉

, (A.8)

= − imΣ2

4F 2

∫

s

∂0G(z − s)G(s − x) ×

×
〈

Tr
[

(U0T
a + T aU †

0 ){U0 + U †
0 , T b}

]〉

+
imΣ2

2F 2

∫

s

∂0G(z − s)E(s − x) ×

×
〈

Tr
[

U0T
a + T aU †

0

]

Tr
[

T b(U0 + U †
0 )

]〉

, (A.9)

= − iNfΣ

6F 2

[

∂2
νG(0)

∫

s

∂0G(z − s)G(s − x) (A.10)

+G(0)

∫

s

∂0∂νG(z − s)∂νG(s − x)
]〈

Tr
[

(U0T
a + T aU †

0 )T b
]〉

,

= 0 , (A.11)

= − iNfΣ

3F 2
G(0)∂0G(z − x)

〈

Tr
[

(U0T
a + T aU †

0 )T b
]〉

, (A.12)

= − iΣ

3F 2

[

NfG(0) − 3

2
E(0)

]

∂0G(z − x) ×

×
〈

Tr
[

(U0T
a + T aU †

0 )T b
]〉

. (A.13)

In the quenched case, there are two additional contributions, discussed around eqs. (2.27),

(2.28):

K-term
=

2iνKNc

m2
0FV

∂0G(z − x) ×
〈

Tr
[

(U0T
a − T aU †

0)T b
]〉

, (A.14)
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[ ]

K-weight,conn.

=
iνmΣKNc

m2
0F

∂0G(z − x) ×

×
[

〈

Tr
[

(U0T
a + T aU †

0)T b
]

Tr (U0 − U †
0 )

〉

−
〈

Tr
[

(U0T
a + T aU †

0)T b
]〉〈

Tr (U0 − U †
0 )

〉

]

. (A.15)

Here we made use of the fact that the integral over the zero-mode of the singlet field, Φ0, is

Gaussian, and Φ0 can be approximated by the corresponding saddle point value,

Φ0 = −2i
νNc

m2
0FV

. (A.16)

In fact this value was already inserted in order to arrive at the K-term of eq. (2.28).

As far as the zero-mode integrals appearing in eqs. (A.6)–(A.13) are concerned, the general

trick to use is that, because of the invariance of the integration measure,

〈Aij Bkl〉 = c1 δijδkl + c2 δilδjk , (A.17)

where A,B ∈ {U0, U
†
0}. Carrying out contractions and solving the quadratic system yields

c1 =
1

Nf(N
2
f − 1)

{

Nf〈Tr [A] Tr [B]〉 − 〈Tr [AB]〉
}

, (A.18)

c2 =
1

Nf(N
2
f − 1)

{

Nf〈Tr [AB]〉 − 〈Tr [A] Tr [B]〉
}

. (A.19)

This leads to integrals whose values are listed in appendix B of ref. [21]. For the zero-mass

limit in eq. (2.22) we only need the poles in 1/µn, which are also listed in ref. [21].

Applying this recipe in practice, we obtain

lim
m→0

(mV Σ)
〈

Tr
[

(U0T
a + T aU †

0)T b
]〉

= 2|ν|Tr [T aT b] , (A.20)

lim
m→0

(mV Σ)2
[

〈

Tr [(U0T
a + T aU †

0)T b]Tr [U0 + U †
0 ]

〉

−
〈

Tr [(U0T
a + T aU †

0)T b]
〉〈

Tr [U0 + U †
0 ]

〉

]

= −4|ν|Tr [T aT b] , (A.21)

lim
m→0

(mV Σ)2
〈

Tr
[

(U0T
a + T aU †

0 ){U0 + U †
0 , T b}

]〉

= 4|ν|(2|ν| − Nf)Tr [T aT b] , (A.22)

lim
m→0

(mV Σ)2
〈

Tr
[

U0T
a + T aU †

0

]

Tr
[

T b(U0 + U †
0)

]〉

= −4|ν|Tr [T aT b] . (A.23)

The additional integrals needed in the quenched case (eqs. (A.14), (A.15)) read

lim
m→0

(mV Σ)
〈

Tr
[

(U0T
a − T aU †

0 )T b
]〉

= −2ν Tr [T aT b] , (A.24)

lim
m→0

(mV Σ)2
[

〈

Tr [(U0T
a + T aU †

0 )T b]Tr [U0 − U †
0 ]

〉

−
〈

Tr [(U0T
a + T aU †

0 )T b]
〉〈

Tr [U0 − U †
0 ]

〉

]

= 4ν Tr [T aT b] . (A.25)
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Inserting the last two into eqs. (A.14), (A.15), we see immediately that the two quenched

terms cancel against each other.

Let us finally consider the spacetime dependence. After taking the spatial average and

time derivative in eq. (2.22), omitting contact terms, and denoting τx = (x0 − z0)/T , we get

∂x0

∫

x

∂0G(z − x) = − 1

T
, (A.26)

∂x0

∫

x

∫

s

∂0G(z − s)G(s − x) = Th1(τx) , (A.27)

∂x0

∫

x

∫

s

∂0∂νG(z − s)∂νG(s − x) =
1

T
, (A.28)

where the function h1(τ) is given in eq. (2.26). In dimensional regularization, the object

∂2
νG(0) appearing in eq. (A.10) evaluates to ∂2

νG(0) = 1/V . On the other hand, the constants

G(0), E(0), appearing in several contributions, cancel completely in the final result.

Summing now all the results together, but making no assumptions about the form of E(x),

and expressing the result as in eq. (2.22), we obtain

Bν(x0 − z0) =
|ν|
T

[

1 +
2|ν|T 2

F 2V
h1(τx) +

2T

F 2V
∂x0

∫

x

∫

s

∂0G(z − s)E(s − x)

]

. (A.29)

Appendix B. Graph-by-graph results for the three-point correlator

For completeness, we present in this appendix graph-by-graph results for the three-point

correlation function defined in eq. (2.30). To be precise, we list results for the operator Orsuv

from eq. (2.32), with r, s, u, v assumed to be all different; results for the operator O1 are then

obtained by symmetrizing according to eq. (2.31).

Since the zero-mode field U0 is an x-independent constant, and we are only interested in

contributions to the correlation function −〈Pa(x)Orsuv(z)Pb(y)〉ν that remain non-zero after

taking the derivatives ∂x0
∂y0

, it is clear that the only graphs that can contribute are those

where the pseudoscalar densities are connected to each other or to the weak operator by

non-zero mode propagators. Furthermore, in the SU(4) limit we can assume all the indices

r, s, u, v to be different, which allows us to omit structures like δur, δus, δvr , δvs; this means

that the weak operator needs to be connected to at least one of the pseudoscalar densities.

Denoting the operator Pa by an open square; the operator Orsuv by an open circle; the

propagator in eq. (A.2) by a solid line; and choosing to list the results before taking the

spatial averages, time derivatives, and zero-mass limit in eq. (2.30), we are led to:

=
Σ2

4
∂µG(x − z)∂µG(y − z) ×

×
[

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vs

〉

+ (a ↔ b)

]

, (B.1)
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[ ]

conn.

=
µΣ2

8F 2
[NfG(0) − E(0)]∂µG(x − z)∂µG(y − z) ×

×
[

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vs

〉〈

Tr (U0 + U †
0 )

〉

−
〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vsTr (U0 + U †
0 )

〉

+(a ↔ b)

]

, (B.2)

= − NfΣ
2

6F 2V

[

∂µG(x − z)

∫

s

∂µG(y − s)G(s − z) + (x ↔ y)

]

×

×
[

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vs

〉

+ (a ↔ b)

]

, (B.3)

= −mΣ3

8F 2
×

{

∂µG(x − z)

∫

s

∂µG(y − s)G(s − z) ×

×
〈

(U0T
a + T aU †

0 )ur{U0 + U †
0 , U0T

b + T bU †
0}vs

〉

+∂µG(y − z)

∫

s

∂µG(x − s)G(s − z) ×

×
〈

(U0T
b + T bU †

0)ur{U0 + U †
0 , U0T

a + T aU †
0}vs

〉

−2∂µG(x − z)

∫

s

∂µE(y − s)G(s − z) ×

×
〈

(U0T
a + T aU †

0 )ur(U0 + U †
0)vsTr (U0T

b + T bU0)
〉

−2∂µG(y − z)

∫

s

∂µE(x − s)G(s − z) ×

×
〈

(U0T
b + T bU †

0)ur(U0 + U †
0 )vsTr (U0T

a + T aU †
0 )

〉

+(r ↔ s, u ↔ v)

}

, (B.4)

= −NfΣ
2

12F 2

[

G(0)∂µG(x − z)

∫

s

∂µ∂νG(y − s)∂νG(s − z)

+∂2
νG(0)∂µG(x − z)

∫

s

∂µG(y − s)G(s − z) + (x ↔ y)

]

×

×
[

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vs

〉

+ (a ↔ b)

]

, (B.5)

= − Σ2

12F 2

∫

s

[

G(x − s)G(y − s)∂µ∂νG(s − z)∂µ∂νG(s − z)

+∂νG(x − s)G(y − s)∂µG(s − z)∂µ∂νG(s − z)

+G(x − s)∂νG(y − s)∂µG(s − z)∂µ∂νG(s − z)
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+∂νG(x − s)∂νG(y − s)∂µG(s − z)∂µG(s − z)

]

×

×
[

〈

(U0T
a + T aU †

0 )us(U0T
b + T bU †

0)vr

〉

+ (a ↔ b)

]

, (B.6)

=
Σ2

3F 2

[

3

2
E(0) − NfG(0)

]

∂µG(x − z)∂µG(y − z) ×

×
[

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vs

〉

+ (a ↔ b)

]

, (B.7)

= − Σ2

12F 2

{

G(x − y)
[

∂µG(y − z)
]2

+ (x ↔ y)

}

×

×
[

〈

(U0T
a + T aU †

0 )us(U0T
b + T bU †

0)vr

〉

+ (a ↔ b)

]

, (B.8)

= − Σ2

4F 2
G(x − y)∂µG(x − z)∂µG(y − z) ×

×
[

〈

(U0T
a − T aU †

0 )us(U0T
b − T bU †

0)vr

〉

+ (a ↔ b)

]

+
Σ2

2F 2
E(x − y)∂µG(x − z)∂µG(y − z) ×

×
[

〈

(U0T
a − T aU †

0 )ur(U0T
b − T bU †

0 )vs

〉

+ (a ↔ b)

]

, (B.9)

= 0 , (B.10)

= 0 , (B.11)

= − Σ2

12F 2

[

∂2
µG(0)G(x − z)G(y − z)

+3G(0)∂µG(x − z)∂µG(y − z)
]

×

×
[

〈

(U0T
a + T aU †

0 )us(U0T
b + T bU †

0)vr

〉

+ (a ↔ b)

]

−NfΣ
2

3F 2
G(0)∂µG(x − z)∂µG(y − z) ×

×
[

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vs

〉

+ (a ↔ b)

]

. (B.12)

In the quenched case, there are two additional contributions,

K-term
=

νΣKNc

m2
0FV

∂µG(x − z)∂µG(y − z) ×
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×
[

〈

(U0T
a + T aU †

0)ur(U0T
b − T bU †

0 )vs

〉

+
〈

(U0T
a + T aU †

0)vs(U0T
b − T bU †

0 )ur

〉

+(a ↔ b)

]

, (B.13)

[ ]

K-weight,conn.

=
νmΣ2KNc

2m2
0F

∂µG(x − z)∂µG(y − z) ×

×
[

〈

(U0T
a + T aU †

0)ur(U0T
b + T bU †

0 )vsTr (U0 − U †
0)

〉

−
〈

(U0T
a + T aU †

0)ur(U0T
b + T bU †

0 )vs

〉〈

Tr (U0 − U †
0)

〉

+(a ↔ b)

]

. (B.14)

Employing the same trick as in eqs. (A.17)–(A.19), the zero-mode integrals become

lim
m→0

(mV Σ)2
{

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vs

〉

+ (a ↔ b)

}

= 4
[

ν2T {a
ur T b}

vs − |ν|T {a
us T b}

vr

]

, (B.15)

lim
m→0

(mV Σ)2
{

〈

(U0T
a − T aU †

0 )ur(U0T
b − T bU †

0 )vs

〉

+ (a ↔ b)

}

= 4
[

ν2T {a
ur T b}

vs − |ν|T {a
us T b}

vr

]

, (B.16)

lim
m→0

(mV Σ)3
{

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vs

〉〈

Tr (U0 + U †
0)

〉

−
〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0 )vsTr (U0 + U †
0 )

〉

+ (a ↔ b)

}

= 16
[

ν2T {a
ur T b}

vs − |ν|T {a
us T b}

vr

]

, (B.17)

lim
m→0

(mV Σ)3
{

〈

(U0T
a + T aU †

0 )ur{U0 + U †
0 , U0T

b + T bU †
0}vs

〉

+ (r ↔ s, u ↔ v)

}

= 8
[

(|ν| − Nfν
2 + 2ν2|ν|)T {a

ur T b}
vs + (Nf |ν| − 3ν2)T {a

us T b}
vr

]

, (B.18)

lim
m→0

(mV Σ)3
{

〈

(U0T
a + T aU †

0 )ur(U0 + U †
0 )vsTr (U0T

b + T bU †
0 )

〉

+ (r ↔ s, u ↔ v)

}

= 8
[

−ν2T {a
ur T b}

vs + |ν|T {a
us T b}

vr

]

, (B.19)

where we again omitted all terms proportional to δus, δur, δvs, δvr .

The additional zero-mode integrals needed in the quenched case read

lim
m→0

(mV Σ)2
{

〈

(U0T
a + T aU †

0 )ur(U0T
b − T bU †

0)vs

〉
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+
〈

(U0T
a + T aU †

0)vs(U0T
b − T bU †

0 )ur

〉

+ (a ↔ b)

}

= −8ν
[

|ν|T {a
ur T b}

vs − T {a
us T b}

vr

]

, (B.20)

lim
m→0

(mV Σ)3
{

〈

(U0T
a + T aU †

0 )ur(U0T
b + T bU †

0)vsTr (U0 − U †
0 )

〉

−
〈

(U0T
a + T aU †

0)ur(U0T
b + T bU †

0)vs

〉〈

Tr (U0 − U †
0 )

〉

+ (a ↔ b)

}

= 16ν
[

|ν|T {a
ur T b}

vs − T {a
us T b}

vr

]

. (B.21)

Inserting the last two into eqs. (B.13), (B.14), we see immediately that terms proportional

to K cancel against each other.

Let us finally consider the spacetime dependence. After taking the spatial averages and

time derivatives in eq. (2.30), omitting contact terms, and denoting τx = (x0 − z0)/T , τy =

(y0 − z0)/T , we get

∂x0

∫

x

G(x − z) = h′
1(τx) , (B.22)

∂x0

∫

x

∂µG(x − z) =
δµ0

T
, (B.23)

∂y0

∫

y

∫

s

∂µG(y − s)G(s − z) = −δµ0Th1(τy) , (B.24)

∂y0

∫

y

∫

s

∂µ∂νG(y − s)∂νG(s − z) = −δµ0

T
, (B.25)

∂x0
∂y0

∫

x,y

G(x − y)
[

∂µG(y − z)
]2

=
1

V

{

−f1(τy) + 2h′
1(τx − τy)

[

h′
1(τy) + 2

∑

p6=0

|p|2Cp(τy)C
′
p(τy)

]}

, (B.26)

∂x0
∂y0

∫

x,y

G(x − y)∂µG(x − z)∂µG(y − z)

=
1

V

{

−h′
1(τx)h′

1(τy) + h′
1(τx − τy)

[

h′
1(τx) − h′

1(τy)
]

+ h1(τx − τy)
}

(B.27)

= − 1

V
H(τx, τy) , (B.28)

∂x0
∂y0

∫

x,y

∫

s

[

G(x − s)G(y − s)∂µ∂νG(s − z)∂µ∂νG(s − z)

+∂νG(x − s)G(y − s)∂µG(s − z)∂µ∂νG(s − z)

+G(x − s)∂νG(y − s)∂µG(s − z)∂µ∂νG(s − z)

+∂νG(x − s)∂νG(y − s)∂µG(s − z)∂µG(s − z)

]

= 3
G(0)

T 2
+

1

2V

{

h′
1(τx)h′

1(τy) + 7h′
1(τx − τy)

[

h′
1(τx) − h′

1(τy)
]
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−3
[

h1(τx − τy) + h1(τx) + h1(τy)
]

− 4
[

f1(τx) + f1(τy)
]}

− 4

V

∑

p6=0

{

h′
1(τx − τy)|p|2

[

Cp(τy)C
′
p(τy) − Cp(τx)C ′

p(τx)
]}

. (B.29)

The functions h1, f1, Cp appearing here have been defined in eqs. (2.26), (2.36), (2.37),

respectively, and in eq. (B.28) we identified the function H defined in eq. (2.35). We also

need to know that in dimensional regularization, ∂2
µG(0) = 1/V and

G(0) = − β1√
V

, (B.30)

where β1 is a “shape coefficient” [28, 29]. It is furthermore useful to note the identity

h′
1(τx)h′

1(τy) + h′
1(τx − τy)

[

h′
1(τx) − h′

1(τy)
]

= h1(τx − τy) + h1(τx) + h1(τy) . (B.31)

Summing all the results together, but making no assumptions about the form of E(x), we

obtain

lim
m→0

(mV )2T 2∂x0
∂y0

∫

x

∫

y

〈

−Pa(x)Orsuv(z)Pb(y)
〉

ν

=
[

ν2T {a
ur T b}

vs − |ν|T {a
us T b}

vr

]

×
{

1 +
2|ν|T 2

F 2V

[

h1(τx) + h1(τy)
]

+
2T

F 2V

[

∂x0

∫

x

∫

s

∂0G(z − s)E(s − x) + ∂y0

∫

y

∫

s

∂0G(z − s)E(s − y)
]

+
2T 2

F 2
∂x0

∂y0

∫

x,y

E(x − y)∂µG(x − z)∂µG(y − z)

}

+
[

−|ν|T {a
ur T b}

vs + ν2T {a
us T b}

vr

]

×
{

−2G(0)

F 2

+
T 2

F 2V

[

f1(τx) + f1(τy) − h1(τx) − h1(τy) + H(τx, τy)
]

}

. (B.32)

Taking finally the combinations in eq. (2.31); writing the result in the form of eq. (2.33);

identifying expressions of the form in eq. (A.29) from the result; and inserting eq. (B.30) as

well as the definition ρ ≡ T/L, we obtain

Āν(x0 − z0, y0 − z0) ± Ãν(x0 − z0, y0 − z0)

=
(

1 ∓ 1

|ν|
)

{

Bν(x0 − z0)Bν(y0 − z0)

+
2ν2

F 2
∂x0

∂y0

∫

x,y

E(x − y)∂µG(x − z)∂µG(y − z)

± ν2

F 2V

[

2β1ρ
− 3

2 + f1(τx) + f1(τy) − h1(τx) − h1(τy) + H(τx, τy)
]

}

. (B.33)
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