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Confidence limits of evolutionary synthesis models
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ABSTRACT

Context. Synthesis models predict the integrated properties of stellar populations. Several problems exist in this field, mostly related to the fact
that integrated properties are distributed. To date, this aspect has been either ignored (as in standard synthesis models, which are inherently
deterministic) or interpreted phenomenologically (as in Monte Carlo simulations, which describe distributed properties rather than explain
them).
Aims. This paper presents a method of population synthesis that accounts for the distributed nature of stellar properties.
Methods. We approach population synthesis as a problem in probability theory, in which stellar luminosities are random variables extracted
from the stellar luminosity distribution function (sLDF).
Results. With standard distribution theory, we derive the population LDF (pLDF) for clusters of any size from the sLDF, obtainingthe scale
relations that link the sLDF to the pLDF. We recover the predictions of standard synthesis models, which are shown to compute the mean
of the luminosity function. We provide diagnostic diagramsand a simplified recipe for testing the statistical richnessof observed clusters,
thereby assessing whether standard synthesis models can besafely used or a statistical treatment is mandatory. We alsorecover the predictions
of Monte Carlo simulations, with the additional bonus of being able to interpret them in mathematical and physical terms. We give examples
of problems that can be addressed through our probabilisticformalism: calibrating the SBF method, determining the luminosity function
of globular clusters, comparing different isochrone sets, tracing the sLDF by means of resolved data, including fuzzy stellar properties in
population synthesis, among others. Additionally, the algorithmic nature of our method makes it suitable for developing analysis tools for the
Virtual Observatory.
Conclusions. Though still under development, ours is a powerful approachto population synthesis. In an era of resolved observationsand
pipelined analyses of large surveys, this paper is offered as a signpost in the field of stellar populations.

Key words. Clusters – Galaxies: star clusters – Galaxies: stellar content – Hertzsprung-Russell (HR) and C-M diagrams – Methods: data
analysis

1. Introduction and motivation

The study of stellar populations is one of the most fecund topics
in today’s astronomy. Understanding the properties of stellar
populations is a key element in the solution of a host of funda-
mental problems, such as the calibration of distances to extra-
galactic objects, the age determination of clusters and galaxies
through color fitting, the characterization of the star-formation
history of composite populations, the modeling of the chemical
evolution of galaxies, and several more. When tackling these
problems, the interaction between theory and observationsgoes
both ways: one may want to predict the properties of a stellar
population with given properties, or to recover the basic proper-
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ties of an observed population from the available observables.
In either case, to accomplish the task one needs feasible theo-
retical models that serve as reliable diagnostic tools.

A traditional approach to building such diagnostic tools has
been the computation of synthesis models. Synthesis models
allow one to predict the features and the evolution of stellar
populations in a highly structured way, one that is apt for rou-
tine analysis and quantitative assessments. For example, syn-
thesis models can be used, in combination with other methods,
for the determination of stellar population properties of large
samples of galaxies in a reasonable time; e.g. the analysis of
50362 galaxies of the Sloan Digital Sky Survey based on their
integrated properties performed by Cid Fernandes et al. (2005).

However, in recent years there has been a growing aware-
ness that synthesis modeling also suffers from severe limita-
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tions. In some cases, we knowa priori that standard mod-
els cannot be applied to a given system, because the prop-
erties of the system fall outside the hypothesis space of the
models; this is the case, for example, of undersampled popu-
lations (Chiosi et al. 1988; Cerviño & Valls-Gabaud 2003).In
other cases, we observe a mismatch between the properties of
the system inferred from observations of their individual com-
ponents and those derived from their integrated propertiesan-
alyzed with synthesis models: e.g. the discrepancy between
the age determined from the color-magnitude diagram and the
spectroscopic age in NGC 588 (Jamet et al. 2004), or the IMF
slope inferred by Pellerin (2005) in undersampled giant H re-
gions. In these cases, we are facing a crisis in the explanatory
power of synthesis models.

Previous attempts to solve this crisis and to understand the
limitations of synthesis models have repeatedly pointed atthe
necessity of including statistical considerations in the analy-
sis. According to this view, the predictive power breaks down
because the traditional synthesis model is essentially a deter-
ministic tool, whereas the nature of the problem is inherently
stochastic. The clearest example of stochasticity is the mass
spectrum of stellar populations, in which fluctuations (possibly
random, although not necessarily so) in the number of stars of
each type appear around the mean expected number. Until now,
the efforts to take stochasticity into account in the modeling of
stellar populations have moved in essentially two directions:
the use of Monte Carlo techniques (e.g. Santos & Frogel 1997;
Cerviño, Luridiana, & Castander 2000; Bruzual 2002; Girardi
2002; Cantiello et al. 2003, among others) and the reinterpre-
tation of traditional models in statistical terms (e.g. Buzzoni
1989; Cerviño et al. 2002b; González et al. 2004). Both meth-
ods have proved able to solve some of the problems, or at
least point toward possible solutions. However, they suffer from
practical difficulties. Monte Carlo simulations are expensive (in
terms of disk space, CPU time, and human time required to an-
alyze the results), while, to date, the statistical reinterpretation
of standard models has only served to establish limits to theuse
of synthesis models for clusters with moderately undersampled
populations (Cerviño & Luridiana 2004; Cerviño et al. 2003),
i.e. clusters with total initial masses on the order of 105 M⊙.

This limitation brings about a serious impasse for the study
of stellar populations by means of their integrated light, since
the properties of clusters with lower masses cannot be reliably
obtained. This class includes, for example, all of the clusters in
our Galaxy (including globular clusters), clusters in the Large
Magellanic Cloud (LMC), as well as many clusters in external
galaxies. For example, many of the clusters in the ‘Antennae’
studied by Zhang & Fall (1999) have masses lower than this
limit: in Sect. 8.3 we will show that explicit considerationof
stochastic effects could alter the conclusions that are drawn
on the cluster luminosity function based on these clusters.
Furthermore, these limitations will become even more dramatic
with the development of Virtual Observatory (VO) technolo-
gies, which will make the automatic analysis of large amounts
of data possible. It is therefore mandatory to adapt evolution-
ary synthesis models to the present needs, so that they can be
applied to observations.

In the present paper we introduce a theoretical formal-
ism for the probabilistic analysis of single stellar populations
(SSPs). Our formalism yields results that are as accurate as
those of large Monte Carlo simulations, but it bypasses the need
to perform these simulations: that is, the method is both accu-
rate and economic. By means of our formalism, synthesis mod-
els can be applied to clusters of any size and the confidence
intervals of the results can be evaluated easily. This makesit
possible to estimate the relative weights of different bands for
the realistic application of goodness-of-fit criteria likethe χ2

test. Finally, the algorithmic nature of our method makes itfea-
sible for implementation in the VO environment.

This paper is the fourth in a series
(Cerviño, Luridiana, & Castander 2000; Cerviño et al. 2002b;
Cerviño et al. 2001a) dealing with the statistical analysis of
stellar populations. Although it only deals with SSPs, a fifth
paper, in preparation, will be devoted to the extension of this
formalism to any star formation history scenario. Finally,in
Cerviño & Luridiana (2005) we give an extensive review of
the uncertainties affecting the results of synthesis models. In
addition to these papers, we also recommend the work by
Gilfanov et al. (2004):Statistical properties of the combined
emission of a population of discrete sources: astrophysical
implications. This paper, although not directly focused on
synthesis models, suggests an alternative point of view of the
problem. In some aspects, it has inspired the present paper.

In this work we restate the problem of stellar population
synthesis from a new perspective, the one of luminosity dis-
tributions, which is a powerful and elegant way to understand
stellar populations. We provide several examples of applica-
tions to illustrate such power and indicate potential areasof
future development. The starting point of the new formalismis
the definition of the stellar (i.e. individual) luminosity distribu-
tion function (LDF) and of its relation to the central problem of
population synthesis (Sect. 2). Sect. 3 describes the two main
variants of synthesis models by means of which the problem
has traditionally been tackled: Monte Carlo and standard mod-
els. Next, we take the reader on a journey through the no man’s
land of population synthesis’ pitfalls (Sect. 4), and show how
these are faced by existing techniques (Sect. 5). This account
is necessary to introduce, in Sect. 6, our suggested solution
and show its comparative power. Finally, in Sect. 7, we give a
few examples of applications of our formalism to current prob-
lems. Future developments of the present work are describedin
Sect. 8, and our main conclusions are summarized in Sect. 9.

2. Overview of the problem

This section starts by introducing a few basic definitions. An
exhaustive summary of the notation used and its rationale is
offered in Appendix A.

The general problem approached by synthesis models is the
computation of the luminosity1 Ltot emitted by an ensemble of
Ntot sources – a stellar population. From a theoretical point of
view, this problem can be characterized in three basic ways.

1 Throughout the paper, ‘luminosity’ will be a generic label for the
stellar emission in any given band.
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If the luminositiesl i of the individual sources are known,
the total luminosityLtot is obtained trivially as the sum of all
the l i values:

Ltot =

Ntot∑

i=1

l i . (1)

This circumstance is not very frequent. Its most common exam-
ples are Monte Carlo synthetic clusters (Sect. 3) in the theoreti-
cal domain and resolved stellar populations in the observational
one.

In the more usual situation in which the luminosities of
individual objects cannot be specified on an individual basis,
a different approach must be adopted: in this case a luminos-
ity distribution function (LDF)ϕL(ℓ) is assumed that describes
the distribution of luminosity values in a generic ensemble.
Traditionally, the LDF has been seen as the asymptotic limit
of a differential count of stars:

ϕL(ℓ) = lim
Ntot→∞

( 1
Ntot

lim
∆ℓ→0

∆N
∆ℓ

)

, (2)

where∆N is the number of stars in a luminosity bin of width
∆ℓ, andNtot the total number of stars. The integral of the LDF
is normalized to 1:
∫ ∞

0
ϕL(ℓ)dℓ = 1. (3)

The integrated luminosity of an ensemble is traditionally ob-
tained by means of the expression:

Ltot = Ntot

∫ ∞

0
ℓ ϕL(ℓ)dℓ. (4)

The bottom line of the present work is that this approach is
conceptually wrong and operationally sterile. The crucialpoint
where we part company with this approach is the definition and
interpretation of the LDF: to us,ϕL(ℓ) is aprobability density
function (PDF) from which the luminosity of an actual sys-
tem is drawn. If the system is an individual star, its PDF is the
stellar LDF (sLDF). If it is a stellar population, its PDF is the
populationLDF (pLDF). Hereafter, we will indicate the sLDF
with the symbolϕL(ℓ) and the pLDF with the symbolϕL tot(L).

To avoid confusion, note that the pLDF is not the same as
the cluster or galaxy luminosity function (LF) as commonly de-
fined, because galaxy LFs include the effect of a spread in ages
and number of stars (or, equivalently, ages and mass), whereas
the pLDF defined in this paper represents the luminosity distri-
bution of ensembles of stars with the same physical parameters
(age and total number of stars).

In this paper, we are concerned with the properties of the
sLDF and its relation to the pLDF. In particular, we will show
that the total luminosity of a stellar population,L, is a dis-
tributed quantity, whosemeanvalueM′1 is given by:

M′1 ≡ 〈L〉 = Ntot

∫ ∞

0
ℓ ϕL(ℓ)dℓ. (5)

The integral on the right-hand side of this equation is the mean
value of the sLDF,µ′1, that is:

M′1 = Ntot µ
′
1. (6)

Although Eqs. 4 and 5 yield similar expressions, it is im-
portant to distinguish between the two approaches. The his-
torical origin of our sLDF lies in star counts, but it is a step
further from them, in the same sense that the frequentist and
the objectivist definitions of probability differ: the frequentist
definition depends on the realization of trials, while the ob-
jectivist definition assumes that the probability properties are
built-in. The implications of either approach will be discussed
at length throughout the paper. For the time being, note that
Eq. 1 involves a discrete sum, while Eqs. 4 and 5 involve an
integral, whose numerical solution requires binning the inde-
pendent variable. In Sect. 4.2 we discuss the consequences of
binning distribution functions for numerical applications.

The main goal of synthesis models is to obtain the luminos-
ity of a model stellar population, either by direct count (Eq. 1)
or by an integral including the sLDF (Eqs. 4 and 5). In the fol-
lowing, we will see how this can be carried out in practice, un-
der the assumption that there has been a star-forming episode
in which all the stars have formed simultaneously; this is the
scenario assumed by SSP models.

Because stellar luminosities evolve with time, the sLDF is
a function of the star’s age. Since the luminosity evolutionof
a star depends on its initial mass, we can express the time de-
pendence of the sLDF explicitly by writing the sLDF as a func-
tion of two other functions: the isochroneℓ(m; t) and the initial
mass function (IMF)ϕM (m). The isochroneℓ(m; t) gives the lu-
minosity of a star as a function of its initial massm at a given
value of the aget. The IMF gives the probability distribution of
initial stellar masses. The IMF has a status similar to that of the
sLDF, in that it can be either interpreted as the result of a star
count:

ϕM(m) = lim
Ntot→∞

( 1
Ntot

lim
∆m→0

∆N
∆m

)

, (7)

or, in probabilistic terms, as the probability density for astar
of being born with massm: for reasons similar to those dis-
cussed above, we support the second interpretation (which,by
the way, implies that the IMF should better be called Initial
MassProbability DensityFunction). According to its defini-
tion,ϕM(m) fulfills the normalization condition:
∫ ∞

0
ϕM(m)dm= 1. (8)

Summing up, the sLDF can be rewritten in terms of the IMF
and the isochrone as follows:

ϕL(ℓ; t) = ϕM(m) ×
(

dℓ(m; t)
dm

)−1

. (9)

Eq. 9 can now be used to rewrite the mean value of the sLDF
in terms of the isochrone and the IMF2:

µ′1(t) =
∫ mup

mlow
ℓ(m; t) ϕM(m)

(

dℓ(m; t)
dm

)−1 dℓ(m; t)
dm

dm=

=

∫ mup

mlow
ℓ(m; t) ϕM(m) dm, (10)

2 The isochrone is not monotonic, so that the integral limits of Eq. 5
do not correspond to those of Eq. 10.
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where the integration variable in Eq. 5 has been changed from
ℓ to m, andmlow, mup are the lower and upper mass limits re-
spectively of the integration domain.

Solving this integral is the main task of stellar population
synthesis modeling. In the following section we will describe
the main types of synthesis models and how they perform this
integral.

3. Basic strategies

Once the physical problem is framed, we must translate it into
actual computations, a task carried out by evolutionary syn-
thesis codes. These come in two basic flavors, standard and
Monte Carlo. Standard simulations are models in which the ini-
tial mass mixture is analytically described by the IMF, whereas
in Monte Carlo simulations the ensemble of stars is selected
by random sampling the mass of each star to be included in
the population, and the IMF is used as the weighting function.
Therefore, the mass distribution obtained with a standard sim-
ulation is univocally determined by the population’s parame-
ters, while in Monte Carlo simulations it is not; additionally,
the standard distribution is smoother than the Monte Carlo one.
Both methods, however, operate on a binned mass spectrum,
due to the limited resolution of numerical computation and to
the discreteness of the available stellar models. This facthas
important consequences, which will be discussed in Sect. 4.2.

Using either of these two approaches, evolutionary synthe-
sis codes aim to characterize the integrated emission properties
of an ensemble of stars as a function of its physical parameters,
such as the age and number of the individual stars of the en-
semble3. Standard codes perform this task by carrying out the
integration of Eq. 10. As described in Sect. 2, the result canbe
interpreted in two alternative ways: either a deterministic one –
µ′1 is the sum of the luminosities of all the stars included in the
ensemble modeled, normalized to one star –, or a probabilis-
tic one –µ′1 is the mean value of the sLDF. Although the two
interpretations may seem close at first sight, they are funda-
mentally different, both from a conceptual and from a practical
perspective: this point will be furthered in Sect. 6. We callthese
two alternative interpretations of standard synthesis models the
deterministicand thestatisticalone. Note that these labels do
not identify different classes of models, but rather different in-
terpretations within the same class of models – standard mod-
els. In practice, some codes do not explore this interpretation,
while others acknowledge the distributed nature of luminosity
and compute, in addition to the mean luminosity, the variance
of the distribution. In either case,µ′1 can eventually be scaled
to the size of the ensemble by multiplying byNtot; this property
will be formally demonstrated in Sect. 6.2.

3 Strictly speaking, not all the luminosity sources contributing to
the integrated luminosity of a stellar population need be stars, as
they include, e.g., accretion disks or thermalization of kinetic energy.
Accordingly, one should in principle use the more general expres-
sion ‘luminosity sources’ rather than ‘stars’ to avoid lossof gener-
ality. This distinction, however, is not relevant for our scope here,
since in our treatment any luminosity source can be reconducted to
a star. Therefore, in the following we will use ‘stars’ and ‘luminosity
sources’ as synonyms.

Note that many codes do not useϕM (m) in Eq. 10, but rather
a proportional functionϕ′M(m) = constϕM(m) normalized in
such a way that:
∫ ∞

0
mϕ′M(m)dm= 1. (11)

Since
∫ ∞
0

mϕM(m)dm is the mean mass value〈m〉 of the IMF,
usingϕ′M(m) instead ofϕM(m) in Eq. 10 yields the mean lumi-
nosity of one star divided by〈m〉: in this case, the mean total
luminosity is found by multiplying by the total mass of the en-
sembleMtot instead ofNtot.

As for Monte Carlo models, their task is essentially the
computation of the sum in Eq. 1. Each time a simulation is run,
a particular realization is drawn from the underlying distribu-
tion. The result of the simulation is the integrated luminosity L
of that particular realization. If many Monte Carlo simulations
are available for a fixed set of input parameters, an estimatefor
M′1 can be obtained as the mean of theL values. This implies
that the results of Monte Carlo simulations depend not only on
the underlying luminosity distribution, but also on the number
of simulations used to sample such distribution. If the set of
simulations is sufficiently large, the Monte Carlo method has
also the potential to provide the actual distribution function of
the luminosities of the ensemble. Hence, an important draw-
back of the method is that it is intrinsically expensive, because
the accuracy of the results increases with the number of simu-
lations.

In summary, the goal of determining the luminosity of stel-
lar populations reduces to the computation of a sum (Eq. 1) or
an integral (Eq. 10). However straightforward this may seem,
this computation is hindered in the practice by several intrinsic
features of the problem: these will be the topic of next section.

4. Pitfalls in the handling of the LDF

Our previous discussion has taken place on an abstract level.
In the practice of synthesis modeling it is necessary to translate
the concepts discussed above into specific prescriptions for the
handling of equations, and deal with the limitations imposed by
the input ingredients, which have a finite resolution in the pa-
rameter space. In this section we will discuss a specific aspect
of this task, namely the difficulties inherent to the determina-
tion of the mean value of the sLDF. As a first step, let us revisit
a few well-known results in terms of the sLDF.

4.1. Domain limits and average properties

In synthesis modeling it is a well established fact that the in-
tegrated luminosity of the ensemble is dominated by the most
massive stars in the cluster. In the following we will illustrate
this point by means of three simplified scenarios that are repre-
sentative of real sLDFs. These are shown graphically in Fig.1.
In each panel, the position of the meanµ′1 and the region corre-
sponding toµ′1 ± 1σ are explicitly marked.

Case 1: Main sequence luminosity function In the first case
let us assume that all the stars are in the main sequence (MS),
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Fig. 1. Schematic representation of the of the sLDF for three
different cases: main sequence only (top), main sequence plus
a constant post main sequence (middle), and main sequence
plus a bumpy post main sequence (bottom). The position of
the mean (µ′1) and the region corresponding toµ′1 ± 1σ are
explicitly marked.

and thatℓ ∝ mβ. Assuming a power-law IMF with index−α,
the sLDF can be expressed as:

ϕL ∝ ℓ−
α
β · 1

β
ℓ
− β−1

β =
1
β
ℓ

1−α−β
β . (12)

The constant factor can be determined by imposing the normal-
ization condition:

ϕL =
1− α
β

1

ℓ
1−α
β

max− ℓ
1−α
β

min

ℓ
1−α−β
β =

A
β
ℓ

1−α−β
β . (13)

The mean value of the luminosity is then:

µ′1 =
A
β

∫ ℓmax

ℓmin

ℓ · ℓ
1−α−β
β dℓ =

A
1+ β − α ·

(

ℓ
1+β−α
β

max − ℓ
1+β−α
β

min

)

. (14)

If 1 + β−α > 0, the mean luminosity is driven byℓmax. In a
typical situation withβ ≈ 3, the most luminous stars will dom-
inate the luminosity ifα < 4: this is the case of Salpeter’s IMF

(Salpeter 1955). If the IMF departs from a simple power law,
the conclusions are less straightforward. For example, if we
consider the log-normal IMF by Miller & Scalo (1979) and ap-
proximate it as a power-law series, a value ofα > 4 is reached
near 100 M⊙ (see Fig. 1 in Kroupa 2001). In this case, the dom-
inant stars will not be the most massive ones.

Case 2: Luminosity function with a constant post main-
sequence contribution Let us go a bit further and add a post-
main sequence (PMS) contribution to the sLDF. The sLDF can
now be divided in two regimes, corresponding to the MS and to
the PMS respectively. As a first approximation, we will assume
that the PMS phase gives a constant contribution to the sLDF,
implying that any point of the PMS portion of the isochrone
is equally probable. The sLDF can be described by the expres-
sion:

ϕL =






A
β
ℓ

1−α−β
β , if ℓ ∈ (ℓmin, ℓTO),

A
1−α

ℓ

1−α
β

max −ℓ
1−α
β

TO
ℓmax−ℓTO

if ℓ ∈ (ℓTO, ℓmax),
(15)

whereℓTO is the turn-off luminosity. The absolute value of the
PMS contribution is chosen so as to yield the same coefficient
A for the two regimes, while preserving the overall normaliza-
tion; that is, we are forcing the PMS to have a fixed weight
with respect to the MS phase. This choice allows us to keep
the complexity of the expressions to a minimum, but it has no
influence on the general conclusions, which would be reached
even if we dropped this assumption.

If we further assume thatℓ
1+β−α
β

TO >> ℓ
1+β−α
β

min , the mean value
of the sLDF is:

µ′1 ≅
A

1+ β − αℓ
1+β−α
β

TO +
A

2(1− α)
(ℓ

1−α
β

max− ℓ
1−α
β

TO )(ℓmax+ ℓTO). (16)

That is, the mean depends on bothℓTO and ℓmax. Note that,
since in the PMS phase the relation between the mass and the
luminosity is not simple anymore, the above result cannot be
easily expressed as a function of the initial mass. As a trivial
example, if the aget is larger than the lifetime of a star of initial
massmup, thenℓ(mup, t) = 0.

Case 3: sLDF with a bumpy post main-sequence contribu-
tion As a final example, let us assume that the sLDF has a
narrow peak in addition to the MS contribution. This scenario
describes the case in which PMS stars have all the same lu-
minosity, as in the horizontal branch or in the red giant clump
phase; this case can be modeled by adding a pulse function to
the MS section of the sLDF. Since PMS luminosities are larger
than MS luminosities, the pulse function is located atℓmax. The
sLDF is therefore:

ϕL =






A
β
ℓ

1−α−β
β if ℓ ∈ (ℓmin, ℓTO),

A
1−α (ℓ

1−α
β

max− ℓ
1−α
β

TO ) δ(ℓ − ℓmax) if ℓ ∈ (ℓTO, ℓmax).
(17)
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Again, we are forcing the PMS to have a fixed weight with
respect to the MS phase for simplicity reasons. In this case,

assuming again thatℓ
1+β−α
β

TO >> ℓ
1+β−α
β

min :

µ′1 ≅
A

1+ β − αℓ
1+β−α
β

TO +
A

1− α (ℓ
1−α
β

max− ℓ
1−α
β

TO ) ℓmax. (18)

So, again, the mean depends on bothℓTO andℓmax.
These three examples illustrate the general fact that the

mean luminosity depends strongly on the value ofℓmax. The
dependence onℓmax(t) would be even stronger for higher-order
moments of the distribution. As Gilfanov et al. (2004) point
out, the dependence of the results of synthesis models on the
high-luminosity end of the sLDF is so strong that, without such
a limit, synthesis models could not even be computed! As a fur-
ther example of the relevance of the upper limit of the sLDF, we
have shown in a previous paper that it also defines a lower limit
for the luminosity of real clusters to be described by standard
synthesis models (Cerviño & Luridiana 2004).

These examples also illustrate the following interesting
facts:(i) The mean value does not necessarily give information
on the distribution of luminosities, to the extreme that there
can be situations in which the probability to find a source in
the region around the mean value is zero (Fig. 1, bottom panel)
. This is the opposite of a Gaussian distribution, in which the
mean is also the most probable value.(ii) Different distributions
can have the same mean value but different variances. In fact,
this circumstance permits to use surface brightness fluctuations
(SBF: the ratio between the variance and the mean value of the
luminosity function) to break the age-metallicity degeneracy,
which makes clusters with different ages and metallicities have
the sameµ′1. (iii) The value ofµ′1−σ is negative in our three ex-
amples. This shows clearly that assuming, e.g., thatµ′1±1σ in-
cludes∼ 68% of the elements of the distribution can be grossly
mistaken in the case of non-gaussian distributions. As we will
see later, this can also be the case with the distribution function
of the integrated luminosity of an ensemble: this limits theuse
of goodness-of-fit methods based on the comparison with the
mean, such as theχ2 test.

Summing up, our schematic but realistic sLDFs show that
knowledge of the mean and the variance does not provide a
handle on the problem if the shape of the distribution is not
known. As Gilfanov et al. (2004) argue, the use of the mean
value instead of the most probable one produces a systematic
bias in the determination of integrated properties.

4.2. Implications of mass binning

Although Eq. 10 is expressed as an integral, synthesis codes
approach it through numerical approximations. There are sev-
eral reasons for this: first, the input data are available in tab-
ular format rather than as analytical relations; e.g., given the
enormous complexity of stellar evolution it is not possibleto
derive stellar properties as analytical functions of, say,initial
mass and stellar age. Rather, stellar tracks are computed for a
discrete and finite set of mass values, and their properties are
conveniently interpolateda posteriori. Furthermore, calculated
stellar tracks are generally expressed in tabular form, although

there have been sporadic attempts at expressing them in ana-
lytical form (e.g. Tout et al. 1996). Second, even if analytical
relations existed, their integration would plausibly require nu-
merical methods. Third, the numerical precision of computers
is limited. These circumstances force the actual calculations of
synthesis models to be numerical rather than analytical: asa
consequence, the mass variable must be binned. We will focus
here on the implications of mass binning for Eq. 10.

Introducing binning, Eq. 10 can be expressed as:

µ′1(t) =
∫ mup

mlow
ℓ(m; t) ϕM(m) dm≃

∑

i

wi ℓi(t), (19)

where the indexi identifies the mass bin andℓi(t) is the (time-
dependent) luminosity of thei-th bin; the approximation holds
only if the luminosityℓi(t) is indeed representative of the whole
mass bin. The coefficientwi is computed by means of the ex-
pression:

wi =

∫ mlow
i

mup
i

ϕM(m) dm, (20)

wheremlow
i andmup

i are the lower and upper limits of thei-th
mass bin (the specific way in which these limits are defined
varies from code to code). In the framework of deterministic
synthesis models,wi is deterministically interpreted as the frac-
tion of the total number of stars enclosed in the given bin. In
the probabilistic approach, however, such number is not fixed.
Each star is either born within a given mass bini, with a prob-
ability wi , or outside it. WhenNtot stars are selected, the num-
ber of stars in each mass bin follows a binomial distribution.
Furthermore, since all the bins share the same numberNtot of
stars, there is a finite covariance among bins: that is, the col-
lection of the mutually covariating binomial distributions con-
stitutes a multinomial distribution. According to this approach,
wi also represents the mean (as opposed toexact) contribution
of each bin to the total number of stars. This interpretationis
shared by statistical standard codes and Monte Carlo codes.

4.2.1. Distribution of stars in each bin

The statistical strand of standard models was born with the goal
of devising statistical tools to be applied to synthesis models. In
this context, the binomial probability distribution of stars in in-
dividual bins had been approximated by a Poisson distribution
to simplify its handling (Cerviño et al. 2002b). As is known,
the Poisson approximation is accurate only when the number
of eventsN is large and the probabilityp is vanishingly small,
in such a way thatNp stays finite: we will show in the follow-
ing that such approximation is not always accurate enough for
our problem.

A first point to consider is that speaking of a distribution of
stars in bins only makes sense if a value ofNtot is considered.
In both cases considered, Poisson and binomial, the mean value
of the number of stars in a bin isµi(ni) = Ntot × wi . Let us now
illustrate the difference between the two distributions for the
case ofNtot = 1. The probability for the source to fall in the
i-th mass bin is, in the Poisson approximation,pP

i (1) = wi e−wi .
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In the binomial case such probability ispb
i (1) = wi , which is

the correct value. The difference is non-negligible for largewi

values, which is typical for bins at small masses.
Furthermore, whenNtot stars are considered, the Poisson

approximation predicts the ratioM2/M′1 of the variance to the
mean to be unity, whereas in Monte Carlo simulations this ratio
shows a trend toward smaller values for small bin masses (Fig.
1 of Cerviño et al. 2002b), revealing the underlying binomial
distributions, in which:

M2

M′1
=

Ntotwi(1− wi)
Ntotwi

= 1− wi . (21)

Note that, as expected, the discrepancy with respect to 1
grows larger for largerwi values – i.e., bins at lower masses.
Unfortunately, Cerviño et al. (2002b) failed to interpretthis re-
sult in term of a binomial distribution, and proposed to solve
the discrepancy by reducing the size of the bins, while keeping
the Poisson approximation. Of course, reducing the size of the
bin (or, equivalently,wi) leads to a closer similarity between the
two distributions, but this solution is not always viable due to
the limited resolution of the input ingredients. A further point is
that, becauseNtot is shared by all the bins, the numbers of stars
in different bins covariate: while this effect is neglected when
the bin distributions are modeled by independent Poisson dis-
tributions, it arises naturally when a multinomial distribution is
used.

The difference between the Poissonian approximation and
the multinomial description is particularly clear if we compute
the variance of the pLDF. Consider the expression for the vari-
ance obtained assuming that the number of stars in each bin is
described by a Poisson distribution, and that there is no corre-
lation between bins (e.g. Cerviño et al. 2002b, among others):

M2 =
∑

i

µ2(ni) ℓ2
i = Ntot ×

∑

i

wi ℓ
2
i . (22)

Now, consider the expression corresponding to a multinomial
distribution, where, by definition, cov(ni , n j) = −Ntot wi w j :

M2 =
∑

i

µ2(ni)ℓ2
i +

∑

i

∑

j,i

ℓiℓ j cov(ni, n j) =

= Ntot×
(
∑

i

wiℓ
2
i −

∑

i

(wiℓi)2

)

−

−Ntot×
(
∑

i

∑

j,i

ℓiℓ j wiw j

)

. (23)

Comparing Eq. 22 to Eq. 23, it can be seen that the lat-
ter contains two additional terms: the termNtot ×

∑

i(wiℓi)2

arises as a result of dropping the Poisson approximation, and
the term

∑

i
∑

j,i ℓiℓ j cov(ni , n j) represents the mutual depen-
dence of bins, and hence arisesas a direct consequence of bin-
ning.

These considerations show that the Poisson approximation,
motivated by simplicity of handling, may break down in our
problem (see also Lucy 2000). While the distinction between

Fig. 2. Top: isochrones in theℓV vs. B-V color-magnitude dia-
gram for three different age values computed by Girardi et al.
(2002) based on the evolutionary tracks by Marigo & Girardi
(2001). Bottom: same as above, forℓK .

the Poisson approximation and the multinomial descriptionis
important in order to make sense of Monte Carlo simulations,
it is fundamental in view of the discussion on our proposed
probabilistic formalism (Sect. 6).

4.3. Fast evolutionary phases

In writing Eq. 9, we have tacitly assumed that the luminosityis
a well-behaved function of the mass so that the isochrone is al-
ways defined. However, this condition is in fact often violated,
since a typical isochrone features shallow sections as wellas
peaks and discontinuities in the (ℓ,m) plane. Shallow sections
correspond to quiescent phases of stellar evolution, whereevo-
lution is slow (e.g. the MS); peaks correspond to faster phases
(e.g. the asymptotic giant branch, AGB); and discontinuities
correspond to abrupt transitions between phases (e.g. the onset
of central helium burning in intermediate mass stars) or jumps
in stellar behavior (the transition between WR and non-WR-
type structures). In the following, peaks and discontinuities will
generically be referred to asfast evolutionary phases. Some of
these cases are illustrated by the comparison of Fig. 2 with Fig.
3. In Fig. 2 the isochrones computed by Girardi et al. (2002)
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based on the evolutionary tracks by Marigo & Girardi (2001)4

are shown, at selected age values. Fig. 3 shows the relation be-
tween the initial mass and the luminosity in the V and K bands
for the same isochrones, focusing on fast evolutionary phases.

If the mean value of the sLDF is determined through the nu-
merical approximation of Eq. 19, fast evolutionary phases are
difficult to handle, because a small difference in initial stellar
mass yields a large difference in luminosity, so that the result of
the numerical integration crucially depends on which luminos-
ity is chosen to be representative of a given mass bin. In princi-
ple, this difficulty can be dealt with by decreasing the width of
the mass bin and choosing mass bins that do not go across dis-
continuities; however, the available resolution in mass isgov-
erned by the evolutionary tracks used by the code, and is gen-
erally too low to resolve adequately such phases in synthesis
models.

This is a severe problem, since fast evolutionary phases are
ubiquitous in post main-sequence evolution, and at certainfre-
quencies they bear a major weight in the luminosity balance.
Unfortunately, the way in which this problem is tackled is of-
ten labeled a ‘technical detail’ of the computation and dis-
missed as unimportant, and thus the papers describing evolu-
tionary synthesis models do not generally make any reference
to its solution – in spite of its difficulty and of the potentially
disastrous consequences of incorrect assumptions. Here are a
few examples of the ways in which this problem has been ap-
proached: a) in the Starburst99 synthesis code (Leitherer et al.
1999), for certain metallicity values, an undocumented stellar
track at 1.701 M⊙ is added to the tabulated track of 1.70 M⊙ by
Schaller et al. (1992) and Schaerer et al. (1993a), to avoid the
mass bins going across the discontinuity of the stellar models’
behavior at such mass (C. Leitherer, D. Schaerer, & G. Meynet,
private communication); b) to deal with the same problem, ad-
ditional evolutionary tracks around the same mass range are
used in the computation of the isochrones by Castellani et al.
(2003) and Cariulo et al. (2004) (S. Degl’Innocenti, private
communication) and Brocato et al. (1999) (E. Brocato, private
communication); c) to avoid the intrinsic discontinuity inthe
isochrones, the same mass is used twice in the isochrones by
Girardi et al. (2002), namely at the end of the red giant branch
and at the beginning of the horizontal branch (S. Bressan, pri-
vate communication).

As a final point, consider that fast evolutionary phases are
those stages in which the evolution is rapid in any of the rele-
vant luminosity bands, and not only the bolometric luminosity.
Therefore, an isochrone that is adequately sampled in one band
is not necessarily so in all the bands.

4.4. Transient phases and fuzzy stellar behavior

Traditional synthesis models rely on the possibility to express
the luminosity as a function of mass (Eq. 9), so that the inte-
grals over luminosity are transformed into integrals over mass.
However, there are stellar phases in which this is impossible to
do, because the luminosity at a given age is not univocally de-

4 These models are available at
http://pleiadi.pd.astro.it/.

termined by the mass. A few examples are: the thermal pulse
phase in AGB stars, which is poorly resolved by stellar evolu-
tionary models; supernova (SN) light curves, in which a starof
fixed mass spans a large range of luminosity almost instanta-
neously; variable stars; rotating stars, in which the luminosity
emitted depends on both the rotation velocity and the inclina-
tion angle. Partly because of this difficulty, these phenomena
are generally not included in synthesis models; whereas ap-
proaching the problem from the point of view of distribution
functions permits to account for them by including them in the
sLDF - provided they can be modeled quantitatively. This point
will be developed further in Sect. 7.2. See also Gilfanov et al.
(2004) for an example on the inclusion of variability.

Of course, in many cases of interest the modeling of the
phenomenon may be a difficulty in itself. For example, mod-
eling rotation is in itself problematic. Rotating stellar models
are just beginning to appear on the market, and the distribution
of velocities in a stellar population is largely unknown. Stellar
rotation is not yet included in synthesis models primarily be-
cause of these uncertainties, and not only because synthesis
models are not flexible enough. But if stellar rotation or any
other distributed stellar behavior is properly understood, or at
least satisfactorily modeled, our method will permit to include
it in synthesis modeling.

4.5. Implementation of model atmospheres

Usually, the available model atmospheres form a coarse grid
in the (log g, log Teff) plane, whereas isochrones are gener-
ally continuous in the plane. In order to assign a model atmo-
sphere to each isochrone location, one can either choose the
nearest atmosphere of the grid, or interpolate between nearby
atmospheres. Assigning the nearest atmosphere implies a fur-
ther binning of data and may originate jumps in the results,
although it is often assumed that these jumps cancel on aver-
age when a whole population is considered. This problem will
not be further discussed here; a more extensive discussion can
be found in Cerviño & Luridiana (2005).

In the next section, we will review the ways in which the
basic task of synthesis codes is accomplished, given the diffi-
culties outlined here.

5. Computational algorithms

This section outlines the basic ways in which the task of com-
puting the luminosity is specifically performed by standard
codes. The first two parts, 5.1 and 5.2, describe techniques im-
plemented in standard models. The third part, 5.3, describes
how the Monte Carlo method is put into practice.

5.1. Isochrone synthesis

The commonest technique to compute the luminosity of stellar
populations is known as isochrone synthesis. Isochrone syn-
thesis is the numerical integration of the product between the
IMF and the isochrone approximated as in the rightmost part
of Eq. 19: µ′1(t) =

∑

i wi ℓi(t). The strongest assumption of
this numerical approximation is that eachℓi(t) is representative

http://pleiadi.pd.astro.it/
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Fig. 3. Details of fast evolutionary phases in the V (solid line, left axis) and K (dotted-line, right axis) bands. Bottom panel:
complete isochrones. Middle panels: blow-up of the mass axis, showing details of fast evolutionary phases at three different ages.
Top panels: same as middle panels, with a more extreme blow up. The isochrone set is the same of Fig. 2.

of all the stages included in it. Fast evolutionary phases evi-
dently pose a problem in the integration, since a small interval
in mass can correspond to very different luminosity values. In
isochrone synthesis, the problem is solved increasing the num-
ber of mass bins that map fast evolutionary phases. However,
this strategy eventually requires assuming mass bins narrower
than the precision of the published tracks and isochrones. It is
interesting to note that one of the main advantages of isochrone
synthesis mentioned by Charlot & Bruzual (1991) is that it pro-
duces ‘smooth’ results; however, this advantage only hidesthe
problem of fast evolutionary phases, but does not solve it.

5.2. The fuel consumption theorem

As an alternative method, one can avoid using the expression
of Eq. 19, and perform instead the integration in the luminosity
domain, that is integrateℓ ϕL(ℓ): in this way, the fast evolu-
tion of luminosity is automatically taken care of. This is the
basis of the so-called fuel consumption theorem (FCT): to un-
derstand fully the FCT and its assumptions, we refer the reader
to the original paper (Renzini & Buzzoni 1986; Buzzoni 1989,
see also Maraston 1998).

Note that isochrone synthesis and the FCT can be coupled:
the computation of isochrones can be done so as to fulfill the
FCT requirements. We refer to Marigo & Girardi (2001) for
an extended discussion on the subject (see also Bressan et al.
1994).

5.3. Monte Carlo methods

The Monte Carlo method can be implemented in different
ways, which take advantage of its potential to varying degrees,
so they are not completely equivalent. To understand this point,
consider how a sample of stars selected through a Monte Carlo
mass assignment can be handled: first, the stars can be either
followed individually throughout their evolution, or grouped in
mass bins characterized by average properties; second, in ei-
ther case an atmosphere, used to transform the bolometric lu-
minosity into observable quantities, can be assigned by either
choosing the nearest model in the available grid, or interpolat-
ing between nearby atmospheres (see 4.5). Therefore there is a
total of four ways in which a Monte Carlo-selected stellar pop-
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ulation5 can be treated. In the literature, there are examples of
at least three of these:

(i) The stars obtained through the Monte Carlo selection are
grouped in bins; to each bin, the nearest available atmo-
sphere model is assigned, which depends on the age con-
sidered. That is, the total luminosity is computed by means
of the expression

L =
∑

i

ni ℓi(t), (24)

whereni is the number of stars that have fallen into the
i−th mass bin, andℓi is the luminosity of the atmosphere
assigned to the bin; Eq. 24 is analogous to Eq. 19, with
the only difference that theni values vary from simulation
to simulation. This strategy is followed by Bruzual (2002);
Bruzual & Charlot (2003) (G. Bruzual, private communi-
cation). This implementation of the MC method is not
very time-consuming, so it is quite effective in obtaining
an overview of the effect of sampling in different observ-
ables, which is in fact the goal of the quoted papers. It
has, however, two important disadvantages: the mass bin-
ning hinders a proper sampling of the discontinuities in
the isochrones, and theℓi assignation may either smooth
out or spuriously amplify transient spectral features (see
Sect. 4.5).

(ii) The stars obtained through the Monte Carlo procedure are
followed individually throughout their evolution, but the
luminosities are assigned as in the previous method, that
is choosing the nearest model in the grid. This approach,
although similar to isochrone synthesis, is fundamentally
different in that it avoids the additional rebinning implicit
in the isochrone synthesis method. Models of this kind
have been presented, for example, in Mas-Hesse & Kunth
(1991); Cerviño & Mas-Hesse (1994); Kurth et al. (1999);
Cerviño et al. (2000). These models work better than the
previous at mapping discontinuities in the isochrones (i.e.,
the value ofdℓ/dm is better evaluated: see, e.g. Fig. 4 of
Mas-Hesse & Kunth 1991), but present the same disadvan-
tages with respect to the assignment ofℓi .

(iii) A further possibility is to perform Monte Carlo simulations
over the luminosity function: the Monte Carlo-sampled
stars are followed individually, and each is assigned a tai-
lored atmosphere. Doing so requires performing interpola-
tions in theℓi grid, and permits reproducing the path in the
HR diagram of individual stars. The individual luminos-
ity values obtained in this way are eventually summed to
yield the total luminosity. These models exploit the poten-
tial of Monte Carlo method to its maximum and are the
only ones able to map correctly the luminosity function
without the necessity of binning. A sufficiently numerous
set of Monte Carlo simulations of this kind provides di-
rectly the distribution function of the ensemble luminos-
ity. The bleeding edge of this method lies, of course, in

5 A further degree of freedom in Monte Carlo simulations is that
they can be performed by either fixing the number of stars or the to-
tal stellar mass. This aspect will not be discussed here, andwe will
consider only Monte Carlo simulations with a fixed number of stars.

the interpolations techniques used both in the stellar evo-
lution and in the atmosphere assignment. Examples of ap-
plications of this method can be found in Cantiello et al.
(2003); Cerviño & Valls-Gabaud (2003); Girardi (2000),
among others.

6. Old tools for a new approach: the probabilistic
formulation

The conclusions arising from this brief overview of population
synthesis can be summarized in the following points:

– Deterministic standard models are based on a misunder-
standing of the computed quantities. While it is generally
claimed that they compute the integrated luminosity of a
model cluster, they in fact compute the mean luminosity of
the sLDF.

– Statistical standard models (i.e., those that compute the
mean and the variance of the luminosity distribution) give
the correct interpretation, but they have a limited interpre-
tative power. Knowledge of the mean and variance is not
enough to characterize a distribution, much less to explain
its shape in physical terms.

– Suitably-done Monte Carlo simulations have the potential
to bypass most of the problems of population synthesis aris-
ing as a consequence of the statistical nature of the problem.
However, they are extremely expensive in terms of CPU
time and disk storage space, and require a considerable hu-
man effort to be analyzed. Furthermore and most impor-
tantly, the analysis of a set of Monte Carlo simulations per-
formed without a grasp of the underlying statistics would
be purely phenomenological, precluding the possibility to
generalize the results to further simulations or real clusters.

In this section, we will describe a probabilistic formalism
that automatically frames the problem in its most natural in-
terpretation, and opens the way to a deep understanding of the
underlying physical problem. The first subsection is devoted to
recall standard statistical concepts for those readers without a
background in statistics and probability theory. Those whoare
already expert in this field can skip this part.

A note on definitions is due here. Throughout this paper,
we adopt the conventional (though often overlooked) distinc-
tion between probability theory and statistics. Astatistical for-
mulation is one that seeks to intepret a sample of experimen-
tal data in terms of an underlying distribution. Aprobabilis-
tic formulation is one that assumes an underlying distribution
and uses it to predict the resulting distribution of experimental
data. The traditional Monte Carlo method has followed a sta-
tistical approach: conclusions were drawn from the observation
of a spread in the results of simulations. The present paper lays
the foundations for a probabilistic approach, in that it seeks to
give a formal description of the underlying distributions,and
to make quantitative predictions based on them. Obviously,the
two approaches complement each other and partially overlap;
concepts like the one of distribution function belong to both
probability theory and statistics, thus we will refer to them as
probabilistic or statistical alike. When it comes to define our
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method with respect to existing ones, however, we will sys-
tematically draw a distinction and refer to it as a probabilistic
formalism.

6.1. Basic statistical concepts

As we have seen in Sect. 2, the luminosity of stars can be char-
acterized in terms of an underlying sLDF (Eq. 5). The exploita-
tion of this approach permits finding an effective solution to the
problem of computing the integrated properties of stellar pop-
ulations. The formalism presented here to this scope is not new
in terms of theory of distributions and can be found in any ad-
vanced textbook of statistics (e.g. Kendall & Stuart 1977).For
completeness, we briefly review here the relevant concepts.

The properties of the sLDF as a distribution can be studied
by computing its moments; the first moment is the mean, which
we already encountered in Eq. 5:

µ′1 =

∫ ∞

0
ℓ ϕL(ℓ)dℓ. (25)

The general definition of the n-th moment of the sLDF is the
following:

µn(a) =
∫ ∞

0
(ℓ − a)n ϕL(ℓ) dℓ. (26)

If a = 0, we call it ‘raw moment’, while ifa = µ′1 we call it
‘central moment’; in particular, the mean luminosity, which is
the main output of synthesis models, is the raw moment of 1st
order.

In the following, we will adopt the notationµn to indicate
central moments and the notationµ′n to indicate raw moments.
Let us write down explicitly the expressions for the second cen-
tral moment (or variance) and the second raw moment of the
sLDF, and their mutual relation:

µ′2 =

∫ ∞

0
ℓ2 ϕL(ℓ) dℓ, (27)

µ2 =

∫ ∞

0
(ℓ − µ′1)2 ϕL(ℓ) dℓ =

= µ′2 − µ′21 ; (28)

and, analogously, for the third and fourth moments:

µ′3 =

∫ ∞

0
ℓ3 ϕL(ℓ) dℓ, (29)

µ3 =

∫ ∞

0
(ℓ − µ′1)3 ϕL(ℓ) dℓ =

= µ′3 − 3µ′1µ
′
2 + 2µ′31 , (30)

µ′4 =

∫ ∞

0
ℓ4 ϕL(ℓ) dℓ, (31)

µ4 =

∫ ∞

0
(ℓ − µ′1)4 ϕL(ℓ) dℓ =

= µ′4 − 4µ′1µ
′
3 + 6µ′21 µ

′
2 − 3µ′41 . (32)

Let us also introduce the characteristic function of the
sLDF,φ(p), that is its Fourier transform:

φL(p) =
∫ ∞

0
eipℓ ϕL(ℓ)dℓ. (33)

The characteristic function has the following properties:the
coefficients of its Taylor expansion inip are the raw moments
of the distribution, while the coefficients of the Taylor expan-
sion in ip of its logarithm lnφL(p) are the so-calledcumulants
of the distribution,κn:

lnφL(p) =
∑

r=0

κr
(ip)r

r!
. (34)

It follows that moments and cumulants are related by the ex-
pression:

∑

n=0

µ′n
(ip)n

n!
= exp

(
∑

r=0

κr
(ip)r

r!

)

. (35)

In particular, the relations between the first four moments and
cumulants are the following:

κ1 = µ′1, (36)

κ2 = µ2 = µ
′
2 − µ

′2
1 , (37)

κ3 = µ3 = µ
′
3 − 3µ′1µ

′
2 + 2µ′31 , (38)

κ4 = µ4 − 3µ2
2 = µ

′
4 − 4µ′1µ

′
3 − 3µ′22 + 12µ′21 µ

′
2 − 6µ′41 . (39)

An important property of cumulants is that they are inde-
pendent of the assumed origin of the distribution, except for
κ1: they are also called sometimes “semi-invariants” due to this
property. If the origin is taken at the mean of the distribution,
κ1 = 0.

Finally, the skewness,γ1, and the kurtosis,γ2, of the dis-
tribution are defined through ratios of the third and the fourth
central moments respectively to appropriate powers of the vari-
ance:

γ1 =
µ3

µ
3/2
2

=
κ3

κ
3/2
2

, (40)

γ2 =
µ4

µ2
2

− 3 =
κ4

κ2
2

. (41)

(Note that the definition of skewness and kurtosis may vary
from author to author; alternative definitions can be found
at http://mathworld.wolfram.com.) These two quantities
enclose information on the shape of the distribution: the skew-
ness gives an idea of how asymmetric the distribution is, andit
can be related to the difference between the value of the mean
and the mode (the most probable value). The kurtosis is a mea-
sure of peakedness, i.e. of the symmetric deformation of the
distribution with respect to a Gaussian. In particular, Gaussian
distributions haveγ1 = 0 andγ2 = 0; flatter distributions have
negative kurtosis values, while peaked distributions haveposi-
tive kurtosis values.

http://mathworld.wolfram.com
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6.2. From stellar to population luminosity functions

In the previous section we have characterized the properties of
the luminosity function of individual stars. Let’s see now how
the luminosity function of an ensemble ofNtot sources can be
computed.

6.2.1. Obtaining the pLDF: exact solution

As a general rule, the PDF of an ensemble of variables is ob-
tained as the convolution of the PDFs of the individual vari-
ables. For example, letϕx(x) be the PDF of a variablex and
ϕy(y) the PDF of a variabley independent ofx. The probability
density of a variableu = x + y is given by the product of the
probabilities ofϕx(x) andϕy(y) summed over all the combina-
tions ofx andy such thatu = x+ y:

ϕu(u) =
∫ ∞

−∞
ϕx(z) ϕy(u− z) dz= ϕx(x) ⊗ ϕy(y), (42)

which is the definition of convolution. In our case, we are as-
suming that all the stars have luminosities distributed following
the same distribution function,ϕL(ℓ), and that the stars are in-
dependent on each other. Therefore, the PDF of an ensemble of
Ntot stars is obtained by convolvingϕL(ℓ) with itself Ntot times:

ϕL tot(L) =

Ntot
︷                             ︸︸                             ︷

ϕL(ℓ) ⊗ ϕL(ℓ) ⊗ ... ⊗ ϕL(ℓ) . (43)

Hence, if the sLDF is known, the pLDF of an ensemble
of Ntot stars can be computed by means of a convolution. The
convolution is conceptually straightforward, but it posessevere
numerical problems. The reason is the following. The convolu-
tion must be performed linearly in luminosity and, in the gen-
eral case, the dynamic range in luminosities spans eight orders
of magnitude, from 10−2 L⊙ to 106 L⊙. On the other hand, most
programs that perform convolutions are based on Fourier trans-
form routines that require a set of points ordered regularlyon
thex-axis; each time a convolution is performed the number of
points on thex-axis is doubled. So, for a resolution of, say, 0.01
L⊙ (necessary to resolve the low end of the luminosity function)
108 points would be needed to define the luminosity function,
and this number would be doubled each time a convolution is
performed. Therefore, the points necessary to compute evena
very undersampled population (a moderate number of convolu-
tions) diverge rapidly, making it numerically unfeasible.We do
not know any computational routine powerful enough to per-
form this task, and any feedback from the community about
this subject is highly welcome.

An alternative solution is making the convolution loga-
rithmically in the Fourier space (see next section). However,
the numerical computation of the Fourier transform of a func-
tion with an irregular sampling is also difficult and, again, we
haven’t find any routine to perform it satisfactorily.

6.2.2. Scaling properties of the LDF

Convolutions in the normal space are equivalent to productsin
the Fourier space, so that:

φL tot(P) = φL(p)Ntot, (44)

ln φL tot(P) = Ntot × lnφL(p) = Ntot ×
∑

r=0

κr
(ip)r

r!
. (45)

Hence, the cumulants of the luminosity distribution of an
ensemble ofNtot sources,Kn, can be easily obtained from the
cumulants of the sLDF,κn, through the simple scale relation:

Kn = Ntot × κn. (46)

Sinceκ1 = µ
′
1, this also implies that:

M′1 = Ntot × µ′1, (47)

whereM′1 is the mean value of the distribution that describes
the luminosity of an ensemble ofNtot sources: in other words,
the mean luminosity obtained by synthesis models is scalable
to a cluster of any size – including one with only 1 source!

Thus, probabilistic reasoning confirms the intuitive expec-
tation that the properties of an ensemble ofNtot stars can be
obtained by direct scaling of the properties of the sLDF. This
result is fundamental for the interpretation of the output of syn-
thesis models in terms of real clusters. However, it is clearfrom
the above derivation thatthis simple scaling rule only applies to
cumulants, not to moments; it is cumulants that hold the scale
relations between the properties of the sLDF and the distribu-
tion of the total luminosity of an ensemble. But, by virtue of
Eqs. 36−39, cumulants can be related to moments:κ1 is equal
to the first raw moment, and the followingκs are equal to the
central moments of the same order, which can in turn be ex-
pressed in terms of the raw moments: therefore, to characterize
a distribution we can refer either to the moments or to the cu-
mulants.

It is immediately seen from Eqs. 40 and 41 that the shape
of the distribution of the ensemble, when expressed in nor-
mal form (through a transformation of the distribution func-
tion to one with zero mean and unit variance:L → x =
(L − M′1)/

√
M2), can be easily related to the shape of the

sLDF:

Γ1 =
1
√

Ntot
γ1, (48)

and

Γ2 =
1

Ntot
γ2, (49)

whereΓ1 andΓ2 are the skewness and the kurtosis of the distri-
bution of the ensemble. Note that, in agreement with the central
limit theorem,Γ1 → 0 andΓ2→ 0 for large enoughNtot values,
i.e. the distribution tends to a Gaussian.

Although the previous relations are useful to unveil the
scale properties of LDFs, knowledge of the moments of a dis-
tribution is useful but not sufficient to analyze it if its shape is
unknown. For most application, one needs to know whether the
distribution can be approximated by a Gaussian, and in case
it is not, which its shape is. The following section will deal
with the problem of characterizing a distribution by means of



M. Cerviño, V. Luridiana, and N. Cerviño-Luridiana: Probabilistic synthesis models 13

its cumulants. The technique suggested can be used to solve
two different kind of problems: on one hand, it can be used to
generate a theoretical pLDF from a sLDF when the convolution
is not feasible. On the other, it can be used to infer the pLDF of
an observed population.

6.2.3. Obtaining the pLDF: approximate solution

Alternative solutions go through obtaining an approximateex-
pression for the pLDF. A quantitative characterization of the
pLDF by means of its cumulants can be obtained by means
of approximate expressions. To this aim, we suggest using the
Edgeworth’s series, which can be written schematically as:

ϕ(x) = Z(x)



1+
∞∑

i=1

ti



, (50)

where x is the normalized luminosity defined above,Z(x) is
the Gaussian distribution function, and the termsti are ob-
tained by the Chebyshev-Hermite polynomials multiplied by
powers of the cumulants (Blinnikov & Moessner 1998). This
series is a true asymptotic series, i.e. the error is controlled
when the series is truncated to a finite number of termsn.
As Blinnikov & Moessner (1998) demonstrate, the error is on
the same order of the last term of the sum,tn. When the er-
ror is small, i.e. the approximation is satisfactory, the term
Σn ≡

∑n
i=1 ti measures the deviation of the LDF from gaus-

sianity.
These properties can be used to obtain an explicit descrip-

tion of the distribution and to estimate its degree of gaussianity.
The algorithm to be followed is described here and represented
in Fig. 4:

(i) The range of interest in x (i.e. the normalized luminosity)
must be defined. This is necessary because convergence is
first reached at small x, and propagates outward as more
terms are included in the truncated series.

(ii) The maximum deviationδ from gaussianity must be cho-
sen, in order to discriminate between non-Gaussian and
quasi-Gaussian behavior.

(iii) The maximum discrepancyǫ admissible between the trun-
cated series and the LDF must be chosen.

(iv) A truncated expression is computed with the first n terms.
(v) At this point,|tn| provides an estimate of the error. If|tn|/|1+

∑

n | ∼> ǫ, the error is too large, i.e. the truncated series is not
a good approximation to the LDF: a further term must be
added and the process resumed at step (iv). This step might
require computing further cumulants, as higher-order terms
of the series include progressively higher-order cumulants.

(vi) As the number of terms retained increases,|tn| becomes
smaller thanǫ and the expression progressively approaches
the LDF, until it eventually becomes an acceptable ap-
proximation. At this point, if|Σn| < δ the pLDF is quasi-
Gaussian; otherwise, it is strongly non-Gaussian, a fact that
must be taken into account when the distribution is ana-
lyzed. In either case, the approximated expression can be
used.

[−x, x]

Choose relevant range

from gaussianity  

Choose maximum error

in the approximation

Compute Edgeworth’s

expression with n terms

Yes

 Edgeworth’s expression

LDF is non−gaussian

No

No|Σ  | < δ

in [−x, x]?

LDF is quasi−gaussian

n

Choose maximum deviation

δ

ε

approximates LDF

in [−x, x]?
n

Yes

< ε
|1+     |Σ

n|t   |

n=n+1

Fig. 4. Algorithm to obtain an approximate expression for a
pLDF based on the Edgeworth’s series.

The algorithm is summarized in the flux diagram of Fig. 4,
which permits to find an explicit analytical expression for a
pLDF of unknown shape but known cumulants.

As an example, we give here the explicit expression of the
Edgeworth’s series truncated to include terms up ton = 2:

ϕL tot(x) =
1
√

2π
e−

1
2 x2 ×

(

1+
1
6
Γ1 (x3 − 3x) +

1
24
Γ2 (x4 − 6x2 + 3)+

1
72
Γ2

1 (x6 − 15x4 + 45x2 − 15)

)

. (51)

In the top panel of Fig. 5 we represent the region where Eq. 51
satisfies the first test of Fig. 4, that is the range ofΓ1 andΓ2 val-
ues in which Eq. 51 approximates the pLDF with an accuracy
of 10% or better in a given interval of normalized luminosity
of x. The dependence onx is represented in Fig. 5 by different
shades of gray.
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angle=180

Fig. 5. Top: Γ andΓ values for which the Edgeworth’s expression truncated ton = 2 approximates the pLDF with a 10%
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2

1 2

σ   σ

φ

(quasi−Gaussianity)

~

φ                        Σ

(non−Gaussianity)

~

Γ  < 0.1
2

Γ  < 0.3
1

Γ  < 0.1
2

1
Γ  < 0.03  (x) = Z(x) (1+     )

Yes

LDF can be expressed

No

No

Yes

Convolution or Monte Carlo

simulation needed

Γ  , ΓCompute            

  analytically in [−3  , 3  ] 

 (x) = Z(x)

Fig. 6. Characterization of a pLDF based on Edgeworth’s ap-
proximation to the second order and a Gaussianity tolerance
interval of± 10%.

Similarly, the bottom panel of Fig. 5 describes the region
satisfying the second test, i.e. the region where the pLDF can
be approximated by a Gaussian within a 10%. As expected, this
region is centered around the point [Γ1 = 0, Γ2 = 0], where a
true Gaussian would lie. Again, this depends on the range of
x considered: the wider this range, the narrower the range of
acceptableΓ1 andΓ2 values.

The extension of the dark-gray region can be used to define
a simplified diagnostic test for luminosity functions (Fig.6).
This test is based on the algorithm of Fig. 4, but only the first
four moments are used, and conventional figures of 10% are
used to define whether Edgeworth’s approximation is accept-
able and the LDF is quasi-Gaussian. SinceΓ1 andΓ2 are relat-
able to the skewness and kurtosis of the sLDF viaNtot (Eqs. 48
and 49), this test can also be used to determine the minimum
number of stars necessary to ensure Gaussianity in a given
band. An example of this technique will be given in Sect. 7.1.

6.2.4. Computation of the variance of the pLDF

We have seen in Sect. 4.2 that the Poisson distribution is only
an approximation to the distribution of the number of stars in
a bin, and that it is not a safe one. The correct alternative is
to use the multinomial distribution, which has the additional
advantage of keeping track of covariance effects across bins.
However, the multinomial distribution by itself does not tell
the whole story. Additionally, its handling is difficult. We will
show here that the adoption of the probabilistic formulation
permits bypassing this problem, because it provides the tools
to compute the relevant quantities without the need of making

assumptions on the distribution of stars in bins, except itsran-
domness6.

As an example, let’s use our probabilistic formalism to
compute the variance of the distribution. To do so, we need not
make any assumption on the distribution of the number of stars
in bins: we just need to take into account the scale relationsof
luminosity functions (Eq. 46) and the properties of cumulants
(Eqs. 36−39):

M2 = K2 = Ntot × κ2 = Ntot × µ2. (52)

If we apply the approximation of Eq. 19, we obtain:

M2 = Ntot×
( ∫ ∞

0
ℓ2 ϕL(ℓ) dℓ−

( ∫ ∞

0
ℓ ϕL(ℓ) dℓ

)2)

=

= Ntot×
(
∑

i

wi ℓ
2
i −

(
∑

i

wi ℓi

)2)

=

= Ntot×
(
∑

i

wiℓ
2
i −

∑

i

(wiℓi)2 −
∑

i

∑

j,i

ℓiℓ j wi w j

)

, (53)

which is the same as the expression of Eq. 23. This simple ex-
ample shows the power and, at the same time, the simplicity
of our probabilistic formalism. Note, however, that this result
does not imply that the multinomial description is wrong: on
the contrary, it is implicit in the probabilistic treatment. Our
point here is that the probabilistic treatment is simpler and more
powerful than an analysis explicitly based on the multinomial
distribution.

Finally, note that the value of the variance of the pLDF cus-
tomarily assumed in the literature (Eq. 22) is biased, with the
work by Cantiello et al. (2003) as the only exception we are
aware of. Note that in fact, the variance obtained from Eq. 22
is the second raw moment of the pLDF, and not its second cen-
tral moment.

6.3. Technical problems in the computation of the
pLDF

Unfortunately, the determination of the LDF of an ensemble
is hindered by a few technical problems. The first one con-
cerns the stellar LDF: although some aspects of stellar popula-
tions (like variability or transient events) would be more easily
treated via the luminosity function as compared to the standard
method, the modeling of the luminosity evolution during fast
evolutionary phases poses the same problems as in standard
codes.

A second issue is the contribution of dead stars to the lu-
minosity function. Those stars have no influence on the com-
putation of the moments of the distribution, except for a “nor-
malization factor” that depends on the age of the population.
In terms of the shape of the luminosity distribution, dead stars

6 This is by itself, of course, a strong physical assumption. If, for
example, mass segregation affects star formation, then this assumption
would be false. In that case, the whole problem should be restated,
since the mechanism of star formation should be incorporated in the
Star Formation History.
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show up as a pulse function located at zero luminosity. This can
be easily understood in the following terms: let us assume an
ensemble withNtot initial stars. At a given age there is a non-
zero probability that all stars are dead; the pLDF, marginalized
to such a condition, is a delta centered on zero. There is alsoa
non-zero probability that all but 1 stars are dead: the pLDF cor-
responding to this case is the sum of a pulse function and the
stellar luminosity function, the pulse function having in this
case a strength smaller than the delta. Similarly, all but 2 stars
can be dead, and the corresponding pLDF is a pulse function
plus the convolution of two stellar luminosity functions. In to-
tal, there areNtot + 1 marginalized cases, corresponding toNtot,
Ntot−1,Ntot−2, ..., 2 and 1 dead stars. The LDF of the ensemble
should include all these cases, each with a weight given by its
relative probability, so that it will have a pulse contribution cen-
tered on zero. Although this result seems to contradict the cen-
tral limit theorem, which states that the asymptotic shape of the
LDF of the ensemble is a Gaussian, this is not the case, since
the relative pulse contribution becomes smaller and smaller as
Ntot increases.

7. Applications of the probabilistic treatment

7.1. Characterization of a sLDF by means of its
cumulants

In Sect. 4.1 we showed that knowledge of the mean and the
variance is not enough to characterize a LDF. As a rule of
thumb, at least the first four cumulants should be taken into
consideration, which describe the mean, the dispersion, the
asymmetry and the peakedness of the distribution. As a first ex-
ample of application of the probabilistic treatment, we will de-
rive a few properties of stellar population from the analysis of
its cumulants. Fig. 7 shows the first four cumulants of the sLDF
for different bands and ages, obtained from the isochrones by
Marigo & Girardi (2001). We have assumed a Salpeter (1955)
IMF in the mass range 0.15 - 120 M⊙ normalized by the to-
tal number of stars. For a normalization in mass rather than in
number of stars, these results must be multiplied by the mean
mass,〈m〉 = 0.52 M⊙. The figure illustrates several interesting
facts:

– The value ofκ2/µ
′2
1 = µ2/µ

′2
1 is in general larger than 10,

with the exception of blue bands. As has been pointed out
in Sect. 6.2.4, most synthesis models compute the second
raw momentµ′2 instead of the varianceµ2. The difference
between the two moments is a term inµ′21 , but sinceµ2 is in
general much larger thanµ′21 , µ′2 is numerically close toµ2.
Although the variance computed by most synthesis codes
is systematically biased, in numerical terms the value is
nearly correct. However, it is safer to compute the variance
properly.

– As pointed out in previous works, the Gaussian regime is
not as common in stellar populations as often assumed.
This is particularly the case of infrared wavelengths, whose
values ofγ1 and γ2 imply, given the criterion of Fig. 6,
that at least 107 stars are needed (roughly≈ 5× 106 M⊙ in
initial mass) in the analysis building block (i.e. individual

pixels in SBF studies, or the whole slit in integrated data)
to ensure quasi-gaussianity. Non-gaussianity is a problem
when one wants to obtain confidence intervals in terms of
σ: when the distribution is non-Gaussian, it cannot be as-
sumed thatµ′1±1σ contains≈ 68% of the distribution. This
is not necessarily a problem for goodness-of-fit tests like
χ2, since the test also works for non-Gaussian distributions
provided the deviation from gaussianity is not severe. For
example,Γ1 should be used to have an approximate idea of
which test would be the best to compare the observations
with the models.

7.2. Inclusion of uncertainties in the input parameters

The input ingredients used in population synthesis are gener-
ally assumed to be fully known but are in fact affected by uncer-
tainties (Cerviño & Luridiana 2005). These uncertaintiesmay
either reflect incomplete knowledge or an intrinsic spread in the
features of the quantities considered. In either case, theycan be
included in the sLDF provided they can be modeled quantita-
tively.

As an example, let’s suppose that the mass distribution
function depends on a parameterθ that is itself distributed, that
is let’s replace the univocally determined functionϕm(m) with
a parametric functionψ(m; θ). The parameterθ can be charac-
terized by a probability distribution function such that:

∫

p(θ) dθ = 1, (54)

where the integration interval is the range whereθ is defined.
To apply Eq. 9, it is necessary to eliminate the parametric de-
pendence. This is done by integratingψ(m; θ) over all possible
θ values, weighting it byp(θ):

ϕm(m) =
∫

ψ(m; θ)p(θ) dθ, (55)

The resulting distribution, which is technically called amixture
of p(θ) andψ(m; θ) (Kendall & Stuart 1977), can be used in
Eq. 9.

Let’s consider two hypothetical examples. In the first, as-
sume thatψ(θ; m) ∝ m−θ and that the power-law indexθ has a
rectangular distribution centered on Salpeter’s indexα = 2.35:

p(θ) =






1
2δ if − δ ≤ θ − 2.35≤ +δ,
0 otherwise,

(56)

with δ > 0. If we mixψ(θ; m) with p(θ) and integrate, we find:

ϕm(m) =
∫

ψ(θ; m) p(θ) dθ ∝

∝ (mδ −m−δ)
2δ ln m

m−2.35. (57)

When δ → 0, the expression (mδ −m−δ)/(2δ ln m) → 1 and
Salpeter’s law is recovered. Whenδ is non-negligible, the sLDF
is distorted with respect to the simple Salpeter’s case (Fig. 8).
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Fig. 7. Main parameters of the luminosity function in several photometric bands, obtained from the isochrones by
Marigo & Girardi (2001) and adopting the IMF by Salpeter (1955) in the mass range 0.15 - 120 M⊙.

As a further example, let’s assume thatψ(θ; m) ∝ m−θ as
above, but that nowp(θ) is gaussian:

p(θ) =
1

σθ
√

2π
e
− (θ−2.35)2

2σ2
θ . (58)

In this case, theθ-weighted IMF is given byϕm(m) ∝
m−2.35exp(σ2

θ
ln2m)/2 and, again, the IMF is distorted with re-

spect to the limiting case given by Salpeter’s law (Fig. 8).
Following this example, any spread in the input ingredients

can be included in the modeling and contribute to the shape

of the pLDF. In particular, the method outlined above can be
used to include transient phases and fuzzy stellar behaviorin
the modeling (Sect. 4.4). For this to be done, it is just neces-
sary that the phenomenon considered can be described in terms
of a parameter of known distribution function. Other uncertain-
ties that can be incorporated in the modeling are those that re-
flect our imperfect knowledge of the problem: for example, the
sLDF could be mixed with a Gaussian distribution to mimic
observational errors.
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Fig. 8.Salpeter’s IMF (solid line) compared to two examples of
distributed IMFs: rectangular (dashed,δ = 0.5) and Gaussian
(dot-dashed,σ = 0.5).

It is important to note that the effect on the pLDF of a
spread in the input ingredients cannot be determineda priori,
as it depends on how the distribution of the input ingredientaf-
fects the sLDF. In particular, it cannot be established whether
the inclusion of distributed ingredients will render convergence
to gaussianity more or less rapid. It is to be expected that, the
further is the sLDF from gaussianity, the slower will the con-
vergence of the pLDF to gaussianity be. For example, if the
distribution of the input ingredient is bimodal, bimodality will
persist in the pLDF of smallNtot, and a larger number of stars
will be required for the pLDF to converge to a Gaussian.

7.3. Comparison between Monte Carlo simulations,
numerical convolutions and the Edgeworth’s
approximation

We have shown in Sect. 6.2.1 that obtaining the pLDF through
a convolution of the sLDF is not simple; however, in simple
scenarios it is possible to solve it. In the following, we will con-
sider a simple case to illustrate this point. Our aim in this ex-
periment is twofold: first, we will derive an explicit expression

for the pLDF at differentNtot’s to show how its shape is related
to the generating sLDF and how it depends onNtot. Second,
we want to show that, through our method, we are able to re-
produce the main features of Monte Carlo simulations for any
value ofNtot.

Let us assume a stellar luminosity function made up of
three Gaussians, representing the dead stars, the MS, and the
PMS respectively. The parameters of the three Gaussians are
chosen so that the broad features of a set of Monte Carlo sim-
ulations for one star are reproduced (upper panels of Fig. 9;
the vertical scale is logarithmic in the left panel and linear in
the right panel). In particular, the mean and the variance ofthe
triple-Gaussian LDF are constrained to be the same as those
of the Monte Carlo simulations. We also confirmeda posteri-
ori thatγ1 andγ2 are very close, which is expected for similar
distributions.

With a numerical routine, we convolved this sLDF with it-
self Ntot times. The resulting pLDFs for selected values ofNtot

are shown in Fig. 9 (solid line). The features of these pLDFs
can be understood qualitatively as follows: the characteristic
function of this sLDF is:

φL(p) = Adse−
1
2σ

2
dsp

2−iℓdsp + AMSe−
1
2σ

2
MSp2−iℓMSp+

+APMSe−
1
2σ

2
PMSp2−iℓPMSp, (59)

whereAds, AMS, andAPMS are the weights of the Gaussians cor-
responding to dead stars, the MS, and the PMS respectively;
ℓds, ℓMS, andℓPMS their locations on the luminosity axis; and
σds, σMS, andσPMS the respective dispersions. The exponent
of the Ntot-th power of this characteristic function is a sum of
real exponents inp2 (i.e. Gaussian distributions) and imaginary
exponents inp (i.e. translations of the corresponding distribu-
tions). Hence the final function will be a sum of Gaussians lo-
cated at different positions.

The vertical sequence of panels shows how, increasingNtot,
the pLDF progressively becomes smoother and more sym-
metric, approaching a Gaussian shape. In the same figure,
Monte Carlo simulations with correspondingNtot values are
also shown (Cerviño & Valls-Gabaud 2003), and these coin-
cide remarkably with the analytical pLDF. This is a conse-
quence of having chosen a sLDF similar to the Monte Carlo
distribution function forNtot = 1 (which, in turn, maps the
underlying sLDF), and shows the power of the method: large
Monte Carlo simulations become redundant, in the sense of be-
ing predictable, if one can characterize the sLDF and succeeds
in convolving it.

Fig. 10 compares the pLDFs obtained through convolution
of the sLDF to their Edgeworth’s approximation to the second
order (Eq. 51). Each panel corresponds to a different number
of stars; the cluster in the upper panel, withNtot = 1000, is the
same one of the lower panel of Fig. 9. The Edgeworth’s approx-
imation improves visibly across the range ofNtot considered:
this is expected, because the closer is the pLDF to a Gaussian,
the better is it approximated by Edgeworth’s expression.

Finally, in Fig. 11 we show a blow-up of Fig. 5 that com-
pares theΓs of the pLDF obtained through the three different
methods (Monte Carlo simulations, numerical convolution,and
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the Edgeworth’s approximation). Several points deserve tobe
emphasized here:

– As noted above, theΓ1 andΓ2 values of the Monte Carlo
simulations nearly coincide with those of the convoluted
pLDF. This is a remarkable proof of the power of describ-
ing stellar populations in terms of luminosity distributions.

– The dots corresponding to clusters of 103 stars fall within
the shaded region in the top plot (approximation test) but
not in the bottom one (Gaussianity test), implying that the
pLDF can be approximated by the Edgeworth’s function,
but is still far from Gaussianity. This is also apparent from
the bottom panel of Fig. 9, which shows that the shape of
the pLDF (described both as a convolution and by Monte
Carlo simulations) is markedly multimodal and asymmet-
ric, hence far from Gaussian.

– Finally, in this example Gaussianity is marginally reached
only aboveNtot = 6·103 stars, and even a cluster as large as
Ntot = 2·104 is Gaussian only within the [−2σ, 2σ] interval.

7.4. Criteria for assessing the significance of fits

As has been pointed out several times, the main result of
synthesis models is the mean value of the stellar luminos-
ity function, which can be scaled to clusters of any size. We
have also shown that the relative dispersion of the model re-
sults (the ratioσ(L)/M′1 =

√
M2/M′1) decreases whenNtot in-

creases. However,σ(L) increases in absolute terms, since it
is proportional to

√
Ntot, a fact that should be taken into ac-

count in the comparison of theoretical data to observed clus-
ters. Furthermore, since each monochromatic luminosity has its
ownσ(L), they should be weighted differently in fits. Finally,
although some regions of the spectrum may have a quasi-
Gaussian distribution, this will not happen in general withall
the regions. Hence, not all the frequencies (either in synthetic
or in observed spectra) are equivalent, or even suitable, toob-
tain the properties of the observed cluster.

As an example, Fig. 12 shows the first four cumulants of
a region of the visual electromagnetic spectrum for the pLDF
of a 1 Ga cluster with solar metallicity, obtained from the syn-
thesis code sed@7 using a Salpeter (1955) IMF in the mass
range 0.1-120M⊙. The results are normalized to mass. The
isochrones used are from Girardi et al. (2002) covering a mass
range from 0.15 to 100 M⊙ and based on the solar models
(Z=0.019) by Girardi et al. (2000) and Bertelli et al. (1994)
that include overshooting and a simple synthetic treatment
of the thermal pulses AGB phase (Girardi and Bertelli 1998).
The atmosphere models are taken from the high resolution li-
brary by Martins et al. (2005); González Delgado et al. (2005)

7 sed@ is a synthesis code included in theSpanish Virtual
Observatoryand theViolent Star Formation Legacy Tool projectby
means of thePGos3tool. The code is written in ANSI C under GNU
Public License and, currently, is managed by M. Cerviño; use of the
code and its results must be referred to solely by its documentation
(Sed@ Reference Manual, in preparation), its WWW address and the
citations in the headers of the output VO Tables. The code is currently
accessible on-line athttp://ov.inaoep.mx/. Its inclusion in the
VO service grid is under way.

based on PHOENIX (Hauschildt and Baron 1999; Allar et al.
2001), the ATLAS 9 odfnew library (Castelli and Kurucz
2003) computed with SPECTRUM (Gray and Corbally 1994),
the ATLAS 9 library (Kurucz 1991) computed with
SYNTSPEC (Hubeny, Lanz, and Jeffery 1995), and TLUSTY
(Lanz and Hubeny 2003) at [Fe/H] = 0.0 dex.

The figure shows the region around Hδ. As expected from
previous plots at these ages (Fig. 7), the values ofΓ1 andΓ2 are
quite low. However, not all the wavelengths have the same sta-
tistical significance. In particular, the Hδ line shows the largest
values ofΓ1 andΓ2, so in undersampled clusters its profile will
be difficult to fit. On the other hand, the profile of Ca H + Hǫ
is a quite robust result, with a low relative dispersion andΓ1 and
Γ2 values close to the continuum level. Finally, the Ca K line,
with Γ1 andΓ2 values similar to those of the continuum, has
a high relative dispersion. Summarizing, fitting the theoretical
models of Ca lines, including their profiles, to observed data
would yield more realistic results than fitting either the inten-
sity, the equivalent width or the profile of Hδ. Of course, these
conclusions depend on the age and metallicity.

8. Future applications of the probabilistic
treatment

In this section we will briefly discuss several potential exten-
sions of the formalism that could have a strong impact in the
analysis of stellar populations. Details on a a few exampleswill
also be given.

8.1. Forthcoming extensions of the formalism

Since in this paper we have only considered the case of SSPs,
maybe the most important pending issue is the extension to
other scenarios of star formation. This topic will be covered
in a forthcoming paper.

A current limitation of the formalism is that it only deals
with integrated properties that scale linearly with the number of
stars in the cluster. In the future, the formalism will be extended
to include the case of luminosity ratios. To solve this problem,
in addition to the cumulants of the distribution function ofthe
ensemble, it is also necessary to obtain the correlation function
of the corresponding quantities.

A further assumption of the formalism in its present stage is
that the stellar population has a fixed number of starsNtot. It is
our intention to extend the formalism by including the case of
a collection of populations with varying number of stars. This
extended formalism could be applied to several problems, such
as the analysis of stellar populations in pixels, which requires
computing the global distribution resulting from the distribu-
tion of stars in each pixel and the distribution of numbers of
stars across pixels; the distribution of luminosities in globular
clusters; the estimation of the difference between luminosity
profiles in galaxies inferred by means of a comparison with the
mode and the mean respectively; the comparison of theoretical
SBF with observed ones; and the comparison among different
Monte Carlo simulations performed with a total fixed mass. A
few of these prospective applications will be discussed further
in the remainder of this section.

http://ov.inaoep.mx/
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Finally, the formalism developed here for the treatment of
luminosity functions can also be applied to stellar yields.All
the statistical considerations that we have made about luminosi-
ties can be easily translated into equivalent issues in the field of
chemical evolution, although in that case the star formation his-
tory would have a fundamental role, and the differential equa-
tions that describe (deterministically) the chemical evolution
would become stochastic differential equations, whose mean
would coincide with the results obtained deterministically. As
in the present case, comparing the mean against observations
can produce a bias that depends strongly on the shape of the
distribution.

The following sections will give more details on a few ex-
amples among these.

8.2. Surface Brightness Fluctuations

SBF observations from galaxies and globular clusters have
been proposed as a test of evolutionary tracks and isochrones
(e.g. Cantiello et al. 2003, among others). This test is based
on the comparison between the observed variance across pixels
in the image of a galaxy and the variance expected on statisti-
cal grounds. However, there are several inconsistencies inthis
method as is applied at present:

– Observational SBF are the result of an average over an
additional distribution, the one that defines the number of
stars falling in a given pixel. The theoretical SBF formalism
doesn’t take this second distribution in consideration.

– Each of the building-blocks of the distribution (the pixels)
is representative of the integrated luminosity of an ensem-
ble. Although the formalism, in terms of moments, can be
scaled to pixels containing any number of stars, the number
of stars in a given pixel and the number of pixels with the
same number of stars should be known, in order to evalu-
ate the error in the estimation of the SBF due to the finite
sampling of the underlying distribution.

– The theoretical SBF used to date are computed under the
implicit assumption of a SSP, whereas the mode of star for-
mation of a real galaxy can be much more complex.

This inconsistencies could be overcome by extending the
formalism so as to include the LDF of populations with varying
number of sources. This subject will be discussed at length in
a forthcoming paper.

8.3. Putting constraints on the globular clusters’
distribution

In a similar way, the luminosity distributions of globular clus-
ters in galactic halos could be compared to the corresponding
distributions obtained theoretically, either in terms of moments
or in terms of the explicit shape of the distribution. The possi-
bility of obtaining higher-order moments, such as the skewness,
helps constraining the distribution, which is necessary totest
evolutionary tracks and isochrones. However, there are draw-
backs similar to those of the previous case, with the only ex-

ception of the assumption on the validity of a SSP, which in a
galactic halo is probably verified.

To pursue the goals sketched above, it is imperative to know
the initial distribution of cluster masses. In the following, we
will show qualitatively that our method can also contributeto-
ward this goal, by disclosing a potential source of bias in the
use of synthesis models for the determination of the mass dis-
tribution of globular clusters. Note, however, that a quantitative
conclusion cannot yet be reached.

In Fig. 13 we show the pLDFs inLV for clusters with the
LMC metallicity obtained from the isochrones by Girardi et al.
(2002) using the Edgeworth’s approximation. We have plot-
ted the distributions that correspond to the extremes of theage
ranges used by Zhang & Fall (1999). The pLDFs correspond to
cluster masses of 104 M⊙ (solid line), 104.5 M⊙ (dashed line),
and 105 M⊙ (dotted line). The mean values of the correspond-
ing pLDFs are marked as vertical lines.

The figure shows that, given the asymmetry of the stellar
luminosity function, most observed clusters will have smaller
luminosities than the mean, i.e. smaller luminosities thanthose
predicted by a standard code. The straightforward implica-
tion is that the mass of observed clusters inferred by means
of a comparison with standard models is, in most cases, un-
derestimated, with a bias larger for smaller clusters (see also
Gilfanov et al. 2004) and younger ages.

This effect is highly relevant for young and undersampled
clusters. In particular, assuming that the age estimation ob-
tained by Zhang & Fall (1999) is not biased, the figure clearly
shows that there can be a systematic underestimation of the
mass of younger clusters, an hence, an overestimation of the
number of low-mass clusters. In the cluster mass range consid-
ered, this effect is more relevant in the 104 to 104.5 M⊙ interval.
This fact could change the shape of the distribution of the initial
cluster masses obtained by Zhang & Fall (1999), particularly in
the low mass range, making it shallower or even inverting the
slope. However, this result is only a qualitative application of
the new formalism, and the example above should not be taken
literally. To establish a firm conclusion it is necessary to apply
the probabilistic treatment also to the determination of ages.

8.4. Tracing the sLDF with resolved stellar populations

The individual stars in a resolved population can be used to
trace the sLDF. This can be done by comparing the first four
cumulants computed by means of current synthesis models to
the corresponding observed quantities. Resolved populations
have several advantages:

– Ntot is a known quantity (i.e.Ntot=1, except in the case of
crowding problems, which would be treated separately).

– The number of stars used to map the luminosity function
and the possible luminosity bias are known, and can be in-
corporated theoretically (e.g. by changing the value ofℓmin

in the computation of the moments).
– The assumption of a SSP can be directly tested. Moments,

and their associated sampling errors, can be estimated from
simple star counts using the standard formulations for unbi-
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ased estimations of the mean, variance, skewness and kur-
tosis.

– It is possible to perform a tailored analysis consistent with
the used isochrones without outsiders; e.g. Blue Stragglers
can be excluded from the estimation of the moments if they
are not included in the theoretical luminosity function.

– Finally, the covariance effects between different evolution-
ary phases are included in a natural way in the probabilistic
treatment, both theoretically and observationally.

8.5. Testing the isochrones

The method proposed in Sect. 8.4 can also be used to compare
the predictions of different sets of isochrones, since it is also
sensitive to the number of stars expected in each region of the
isochrone (which is almost IMF-independent for PMS stars).A
similar method has been proposed by Wilson & Hurley (2003).

To illustrate the point, we show in Fig. 14 the first four cu-
mulants of the sLDF for different bands and ages using the
isochrones by Marigo & Girardi (2001), computed following
FCT requirements explicitly, and by Girardi et al. (2000) and
Bertelli et al. (1994). We have assumed a Salpeter (1955) IMF
in the mass range 0.15 - 120 M⊙ normalized by the total num-
ber of stars, and the results have been obtained by a direct inte-
gration of the isochrones. Note that, although the mean values
and theµ2/µ

′2
1 ratios are similar across the isochrone sets, there

are large differences inΓ1 andΓ2 at some ages. This tells us,
without even knowing the luminosity distribution function, that
there are strong differences between both sets of isochrones,
which can be directly related with differences in the treatment
of stellar evolution, e.g. differences in the lifetimes of different
phases.

8.6. Application to the Virtual Observatory

The method described in this work can be implemented in the
VO as an automatized tool for the analysis of observed data,
since synthetic models can be given in terms of probability dis-
tributions suitable to be used in data mining algorithms or in
Bayesian analysis. To achieve this goal, an appropriate theo-
retical data model is necessary; the definition of such model
is a task that is currently being carried out by the Theory in-
terest group of the International Virtual Observatory Alliance
(http://www.ivoa.net). In addition, the extension of this
probabilistic formalism to distributions of luminosity ratios,
which are used in diagnostic diagrams, would be an asset for
the development of more robust VO analysis tools.

9. Conclusions

This paper considers a series of problems in population syn-
thesis that arise as a consequence of the distributed natureof
stellar populations, and develops a new probabilistic formalism
that takes them into account. With this formalism it is possible
to reproduce and explain the features of Monte Carlo simula-
tions without the need of performing them. The new formalism
has several advantages with respect to Monte Carlo simulations

in terms of generality and reliability. Unlike Monte Carlo simu-
lations, it is not affected by sampling errors in the estimation of
the moments. Unfortunately, its exact application requires com-
puting repeated convolutions, and we do not know any compu-
tational tool that can perform this task efficiently. Although the
formalism is complete for luminosities, it must still be extended
to the case of ratios. A summary of our conclusions follows:

– In the first part, we revise the current standard formalism
and discuss the phenomena it fails to address and the coin-
cidences and differences with our method. The main differ-
ence between the standard approach and ours is that the for-
mer interprets the results of synthesis models deterministi-
cally, whereas our formalism accounts for their statistical
distribution. We show how the resulting distribution func-
tions can be characterized in terms of their moments and
cumulants, and how the shape of such distributions can be
obtained from data, information that is necessary to com-
pute the confidence intervals of the models’ predictions.

– Standard synthesis models work by handling the sLDF and
not the pLDF. Nonetheless, we show that pLDFs are the
convolution of sLDFs, so that synthesis models can be used
to study stellar populations, either integrated or resolved,
once the correct probabilistic formalism is included.

– The cumulants of the distribution scale with the size of the
stellar populations. We explain these scale relations and
show how the cumulants can be obtained in terms of the
distribution moments. The variance as computed by syn-
thesis models (generally in the context of SBF) is biased,
as it actually corresponds to the second raw moment of the
distribution, which is not a scalable quantity. Fortunately,
given the high asymmetry and the power-law nature of the
luminosity distribution, the numerical difference between
the second raw and central moments is almost negligible. It
is advisable, however, to use the right formula.

– The standard deviationσ cannot be used as the unit of
confidence intervals unless the distribution is known to be
quasi-Gaussian. A nearly Gaussian regime is reached only
when the sample contains more than∼> 105 stars, with the
precise limit depending on the spectral region among other
factors. It is therefore mandatory to perform safety checks
before using tests that assume normality, such as theχ2 test.
In particular, clusters with large skewness should be treated
with extreme caution, since in those cases the bulk of the
distribution is severalσs away from the mean value. We
refer to Gilfanov et al. (2004) for a more detailed analysis
of this issue.

– The customary assumption of a Poisson distribution in bins
is, in fact, not accurate enough. A realistic solution, fully
consistent with the underlying distributions, is the multi-
nomial distribution. The multinomial distribution describes
in a natural way the covariance effects introduced by the
binning, i.e. the correlations between different bins.

– We give a few guidelines for assessing the robustness of
fits and show that not all the features of the electromag-
netic spectrum are equally suitable for using in the fitting
of theoretical to observational data. Although the relative

http://www.ivoa.net


22 M. Cerviño, V. Luridiana, and N. Cerviño-Luridiana: Probabilistic synthesis models

dispersionσ(L)/M′1 tends to 0 for increasingNtot, σ(L) in-
creases.

– For practical applications, we show how the results of syn-
thesis models can be directly applied to the study of re-
solved stellar populations in quite simple terms, i.e. obtain-
ing the distribution moments from the observed stars. This
formulation allows reliable comparisons of observed data
with theoretical stellar models to be made.

– Current synthesis models cannot be used for comparison
with observed SBF, since an additional distribution func-
tion must be included in the treatment, describing the dis-
tribution of number of stars across pixels. Our formalism
provides a natural way to do it.

– We give a preliminary example of how the probabilistic for-
malism can be applied to the distribution of globular clus-
ters and to chemical evolution models. The latter would re-
quire the inclusion of stochastic differential equations.

– Finally, we derived implications of this study for the devel-
opment of analysis tools in the VO. For example, we are
implementing synthesis models that include the probabilis-
tic formalism in a new VO tool calledPGos3, under devel-
opment athttp://ov.inaoep.mx. The present formalism
will be also used for the development of data mining and in
Bayesian algorithms.

As our understanding of stellar populations shifts, popula-
tion synthesis tools evolve. The problem of predicting the in-
tegrated properties of stellar populations was initially framed
as a deterministic one and solved by standard codes. A grow-
ing awareness of the spread in the input parameters has boosted
the interest in Monte Carlo simulations, whose phenomenolog-
ical exploration has brought about important insights intothe
statistical aspect of the problem. The time is ripe now for a
further forward step, one that advances the problem from a sta-
tistical to a probabilistic formulation. As this evolutiontakes
place, however, it is important to keep in mind that the new
formalism reinterprets previous conceptions, rather thanover-
throwing them, and that it does not supersede the old tools, but
instead aims to specify how and when they can be applied. The
probabilistic formalism is best seen as a unifying model that
includes the old tools and empowers them, in a direction thatis
becoming imperative for understanding the new observational
data.
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Appendix A: Notation

This section contains an exhaustive summary of the notation
used and its rationale.

A.1. Quantities related to stars

l i is the luminosity of an individual object in a discrete sum
(Eq. 1).

ℓ is a continuous variable representing the possible luminos-
ity values of individual objects.

ϕL = ϕL(ℓ; t) is the probability density function (PDF) of the
variableℓ, i.e. the stellar luminosity distribution function
(sLDF) (Eq. 2). It depends on the assumed age (t, which
is explicited here as a parameter), but also on the metallic-
ity, the evolutionary tracks adopted, and the star formation
history.

φL = φL(p; t) is the characteristic function ofϕL, defined as its
Fourier transform (Eq. 33).

µ′n = µ
′
n(t) is the n-th raw moment of the sLDF (Eqs. 27−32).

µn = µn(t) is the n-th central moment of the sLDF (Eqs.
28−32). The second central moment is the variance of the
sLDF, and its square root,σ, is the standard deviation of
the probability distribution. Note that in the literature the
symbolσ is often used to represent the standard deviation
of the sample, or mean square error, which is a statistical
quantity. In this paper, we do not useσ with this statistical
meaning.

κn = κn(t) is the n-th cumulant of the sLDF (Eq. 35).
γn = γn(t) are the skewness (γ1) and the kurtosis (γ2) of the

sLDF (Eqs. 40−41).

A.2. Quantities related to the integrated properties of a
stellar population

All these quantities depend on the total number of starsNtot in
the population, as well as on the age of the population:

Ltot is the integrated luminosity of a given individual population
(Eq. 1).

L = L(t) is a continuous variable representing the possible
values of the integrated luminosity of stellar populations
with Ntot stars (Eq. 5).

ϕL tot = ϕL tot(L; t) is the probability density function ofL, i.e. the
population luminosity distribution function (pLDF). Under
suitable assumptions, it can be obtained by convolving the
sLDF Ntot times with itself (Sect. 6.2.1).

φL tot = φL tot(P; t) is the characteristic function ofϕL tot(L), defined
as its Fourier transform (Eq. 44).

http://ov.inaoep.mx
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M′n = M′n(t) is the n-th raw moment of the pLDF.
Mn = Mn(t) is the n-th central moment of the pLDF. Ifn = 2,

its square root is the variance of the pLDF, denoted asσ(L)
in this paper.

Kn = Kn(t) is the n-th cumulant of the pLDF. Under suitable
assumptions, simple scale relations hold betweenKn and
κn (Eq. 46).

Γn = Γn(t) is the skewness (Γ1) and the kurtosis (Γ2) of the
pLDF. Under suitable assumptions, simple scale relations
hold betweenΓn andγn (Eqs. 48−49).

A.3. Quantities related to the IMF

ϕM = ϕM(m) is the IMF, defined as the probability density func-
tion for a star of having an initial massm (Eq. 8).

ϕ′M = ϕ′M(m) is a function proportional toϕM(m): ϕ′M(m) =
ϕM(m)/〈m〉, where〈m〉 is the mean mass of the IMF (Eq.
11).

wi = wi(mlow
i ,mup

i ; t) is the probability that a given star has
a mass belonging to the interval [mlow

i ,mup
i ] (Eq.20). Note

that the interval is defined arbitrarily depending on the com-
putational needs and the characteristic evolutionary timeof
the population considered, so in most cases it is varied de-
pending on the age of the stellar population.

ni = ni(mlow
i ,mup

i ; t) is a random (distributed) variable rep-
resenting the number of stars in a given mass interval
[mlow

i ,mup
i ] (Eqs. 22, 24). Its mean value is〈ni〉 = Ntot ×wi .
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to analytical pLDFs obtained convolvingNtot times a sLDF
made up of three Gaussians (solid line). The vertical scale is
logarithmic in the left panels and linear in the right panels. The
analytical sLDF has the same mean and variance of the Monte
Carlo simulations; the position of the mean is shown by a ver-
tical dashed vertical line.

http://arXiv.org/abs/astro-ph/0510686
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Fig. 10. Comparison between the pLDFs obtained through
sLDF convolutions (dashed line) and the Edgeworth’s approx-
imation (solid line) for clusters with differentNtot values.

Fig. 11. Γ1 and Γ2 values of the pLDFs obtained through
Monte Carlos simulations (black diamonds), sLDF convo-
lutions (empty circles), and the Edgeworth’s approximation
(empty squares). LargerΓ1 andΓ2 correspond to lowerNtot val-
ues.
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Fig. 12.Cumulants of the monochromatic spectral energy dis-
tribution for a 1 Ga luminosity function assuming a Salpeter
(1955) IMF in the mass range 0.15 - 120 M⊙. The figure shows
the region around Hδ, which is marked with a solid line. The
lines Ca H + Hǫ are marked with dashed lines, and the line
Ca  K with dotted lines.

Fig. 13.Luminosity distribution functions in V for clusters with
the LMC metallicity, approximated by the Edgeworth’s series,
for several ages and cluster masses: 104 M⊙ (solid line), 104.5

M⊙ (dashed line) and 105 M⊙ (dotted line). The mean values of
the pLDFs are marked as vertical lines.

Fig. 14. Main parameters of the luminosity function for sev-
eral photometric bands obtained from the isochrones by
Marigo & Girardi (2001) (bold lines) and Girardi et al. (2000);
Bertelli et al. (1994) (light lines), assuming a Salpeter (1955)
IMF in the mass range 0.15 - 120 M⊙.
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