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ABSTRACT1

The transglycosylation activity of a novel -glucosidase from the basidiomycetous yeast 2

Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) was studied using maltose as 3

glucosyl donor. The enzyme synthesized oligosaccharides with -(12), -(14) and -4

(16) bonds. Using 200 g/l maltose, the yield of oligosaccharides was 53.8 g/l, with prebiotic 5

oligosaccharides containing at least one -(16) linkage (panose, 6-O--glucosyl-maltotriose 6

and 6-O--isomaltosyl-maltose) being the major products (47.1 g/l). The transglycosylatying7

yield was 3.6 times higher than the observed with the -glucosidase from Saccharomyces 8

cerevisiae (53.8 vs. 14.7 g/l). Moreover, when increasing the maltose concentration up to 5259

g/l, the maximum production of tri- and tetrasaccharides reached 167.1 g/l, without altering10

the percentage of oligosaccharides in the mixture. Compared with other microbial -11

glucosidases in which the main transglycosylation product is a disaccharide, the enzyme from 12

X. dendrorhous yields a final product enriched in trisaccharides and tetrasaccharides.13

14

15

Keywords: Glycosidase, Isomaltooligosaccharides Prebiotics, Transglycosylation, Alpha-16

glucosidase, Oligosaccharides.17
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1. INTRODUCTION1

Several non-digestible carbohydrates are the only prebiotic molecules known to date 2

[1]. The two requirements of a prebiotic are that it is not hydrolyzed in the small intestine  and 3

that it is selectively fermented in the colon by certain beneficial members of the colonic 4

microbiota (Bifidobacterium and Lactobacillus genera). There are several prebiotics in use 5

around the world, with Japan being the leader in development and consumption. Besides the 6

fructooligosaccharides [2] and galactooligosaccharides [3], which are commercialized in USA 7

and Europe, Japan produces other “emerging” prebiotics (isomaltooligosaccharides, soybean 8

oligosaccharides, lactosucrose, gentiooligosaccharides, xylooligosaccharides, to cite some) 9

that will be likely coming soon to the market [4]. 10

Although the synthesis of oligosaccharides in vivo is performed by 11

glycosyltransferases (EC 2.4.) [5], the widely available glycosidases (glycoside hydrolases, 12

EC 3.2.) can be also used for in vitro synthesis of glycosidic bonds. In order to revert their13

hydrolytic function towards synthesis, thermodynamic control (using high substrate 14

concentrations) and/or kinetic control (using activated glycosyl donors) have been15

successfully employed [6]. Despite the broad availability of glycosidases, their synthetic 16

applications are often limited by low yield and poor regioselectivity [7]. In this context, a group 17

of novel, site-specifically mutated glycosidases called glycosynthases were developed [8]. A 18

glycosynthase is a specifically-mutated retaining glycosidase in which substitution of the 19

catalytic carboxyl nucleophile by a non-nucleophilic residue (Ala, Gly or Ser) results in an 20

enzyme that is hydrolytically inactive but yet able to catalyse the transglycosylation reaction. 21

Although oligosaccharide yields can reach 95-98% in some cases [6], the need of activated 22

glycosyl fluoride donors limits their practical application. 23

Amylolytic enzymes are extensively used in biotechnology, as they have important 24

applications in both the food and the pharmaceutical industries. Among them, -glucosidases 25

(-D-glucoside glucohydrolases, EC 3.2.1.20) are exo-glycosidases that catalyze the release26

of glucose from the non-reducing end of short oligosaccharides [9-11]. On the basis of 27



4

aminoacid sequence homology, -glucosidases are distributed in two groups of glycoside 1

hydrolases, i.e. GH-family 13 and 31 [12]. The former enzyme group strongly recognizes the 2

-glucosyl-moiety in heterogeneous substrates, such as synthetic -glucosides and sucrose. 3

The members of GH-family-31 are specific for the maltosyl-structure of maltooligosaccharides4

rather than for the -glucosyl-structure of heterogeneous substrates [13].5

Interestingly enough, some -glucosidases exhibit transglycosylation activity, e.g.6

those from Aspergillus niger [14], Bacillus stearothermophilus [15], Saccharomyces 7

cerevisiae [16] or brewer’s yeast [15]. This transglycosylation activity is being applied to 8

produce prebiotic isomaltooligosaccharides [17;18] or to glucosylate compounds such as L-9

menthol [15], pyridoxine [19] and hydroquinone [20]. The basidiomycetous yeast 10

Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) was isolated from deciduous 11

trees [21], and it produces astaxanthin (3-3’-dihydroxi-,-carotene-4,4-dione) as the main 12

carotenoide [22]. Its amylolytic activity has been also reported, and we recently purified and 13

characterized a novel -glucosidase from X. dendrorhous, which releases glucose from 14

maltooligosaccharides and soluble starch [23].15

In this work, we have studied the transglycosylation activity of X. dendrorhous -16

glucosidase [24]. Its synthetic activity was compared with that of the -glucosidase from 17

another yeast, namely Saccharomyces cerevisiae.18
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2. EXPERIMENTAL PROCEDURES1

2

Materials3

The -glucosidase from Saccharomyces cerevisiae was from Roche. Glucose(≥ 99.5%), 4

maltose monohydrate (99%), p-nitrophenyl--D-maltoside (PNPMalt) (≥ 98%), kojibiose (≥ 5

95%), panose (≥ 98%), maltotriose (≥ 95%), maltotetraose (≥ 96%) and 6-O--glucosyl-6

maltotriose (≥ 96%)  were from Sigma. Sucrose was from Merck. All other reagents and 7

solvents were of the highest available purity and used as purchased. 8

9

Enzyme purification and quantification10

The X. dendrorhous -glucosidase was obtained from 1 litre of culture filtrates prepared as 11

previously described [23]. The filtrate was concentrated using a VivaFlow 50 tangential flow 12

filtration module (Vivascience, Sartorius Group) with 30,000 MWCO polyethersulfone (PES) 13

membrane, and dialyzed against 20 mM sodium phosphate buffer pH 7.0 (buffer A). It was 14

then applied to a DEAE-Sephacel column (10 ml) equilibrated with buffer A. The protein was 15

eluted with a 0 to 0.5 M NaCl gradient at a flow rate of 1 ml/min. Active fractions (2.5 ml) 16

eluting at approx. 0.05 M NaCl were pooled, dialyzed against 20 mM sodium acetate pH 4.5 17

(buffer B), and applied to the DEAE-Sephacel column equilibrated with buffer B. The proteins 18

were eluted with a 0 to 0.2 M NaCl gradient, active fractions (2.5 ml) eluting at 0.2 M NaCl. 19

These fractions were pooled, dialyzed against water and stored at -70 ºC until use. Silver-20

and Coomassie Blue-stained SDS/PAGE of the samples confirmed the enzyme purification. 21

Protein concentration was determined with the Bio-Rad microprotein determination assay, 22

following the manufacturer's specifications, with bovine serum albumin as standard.23

24

Standard activity microassay25

The enzymatic activity towards p-nitrophenyl--D-maltoside (PNPMalt) was measured 26

following p-nitrophenol release at 410 nm from 72 mM substrate in 0.2 M sodium acetate 27
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buffer (pH 5.6) in a final reaction volume of 100 l and using a microplate reader (Versamax, 1

Molecular Devices). The molar absorption coefficient () of p-nitrophenol at 410 nm (pH 5.6) 2

was determined to be 8620 M-1 cm-1. One unit (U) of activity was defined as that 3

corresponding to the hydrolysis of 1 mol of PNPMalt per min. 4

5

Production of isomaltooligosaccharides 6

The reaction mixture (1 ml) consisted of 900 l of maltose solution in 0.2 M sodium acetate 7

buffer pH 5.6 (to reach a final maltose concentration of 200 g/l or 525 g/l) and 100 l enzyme 8

(to reach a final activity of 0.02 U/ml and 2.5 U/ml for X. dendrorhous and S. cerevisiae -9

glucosidases, respectively, measured in the hydrolysis of PNPMalt). The mixtures were 10

incubated at 45 C in an orbital shaker (Vortemp) at 200 rpm. At different times, 40 μl aliquots 11

were removed from the reaction mixture, diluted with 160 l water and incubated 5 min at 9512

C to inactivate the enzyme. Samples were centrifuged 5 min at 6000 rpm using an eppendorf 13

with a 0.45 μm Durapore® membrane (Millipore), and analyzed by HPLC. 14

15

HPLC analysis16

The concentration of the different products was analyzed by HPLC with a quaternary pump 17

(Delta 600, Waters) coupled to a Lichrosorb-NH2 column (4.6 x 250 mm) (Merck). The 18

column temperature was kept constant at 25 ºC. Detection was performed using an 19

evaporative light-scattering detector DDL-31 (Eurosep) equilibrated at 85 C. 20

Acetonitrile:water 85:15 (v/v), conditioned with helium, was used as mobile phase (flow rate 21

0.9 ml/min) for 8 min. Then, a gradient from this mobile phase to acetonitrile:water 75:25 (v/v) 22

was performed in 2 min, and this eluent was maintained during 7 min. Finally, a gradient from 23

this composition to acetonitrile:water 70:30 (v/v) was performed in 5 min, and maintained for 24

20 min. The data obtained were analyzed using the Millennium Software. 25

26
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3. RESULTS AND DISCUSSION1

2

Transglycosylation activity of X. dendrorhous-glucosidase3

In a previous study, the -glucosidase from the yeast X. dendrorhous exhibited a 4

notable hydrolytic activity towards maltooligosaccharides and soluble starch, with maltose as 5

the best substrate [23]. No hydrolytic activity was detected towards -(16)-glycosidic bonds 6

(e.g. isomaltose and isomaltotriose) or -glucosyl groups present in heterogeneous 7

substrates (e.g. sucrose). Some -glucosidases only exhibit hydrolytic activity [25], whereas 8

others also show transglycosylating activity towards sugar acceptors [26] or non-glycosylated 9

molecules [27]. For that reason, the transglycosylating activity of X. dendrorhous-10

glucosidase was tested using maltose, the common glucosyl donor.11

The transglycosylation activity was investigated with 200 g/l maltose at the optimal pH 12

(5.5) and temperature (45 C). Fig. 1 shows the progress of the reaction based on HPLC 13

chromatograms. To identify the components of the mixture, the retention time of each peak 14

was compared with those of glucosaccharide standards. Two trisaccharides (maltotriose, 15

peak 5; panose, peak 6) were initially formed; however, the latter was resistant to hydrolysis 16

as it contained an -(16) bond. Two tetrasaccharides (6-O--glucosyl-maltotriose, peak 7;17

6-O--isomaltosyl-maltose, peak 8), which contained mixed -(14) and -(16) bonds, 18

were obtained by -(16) glucosylation of maltotriose and panose, respectively. The amount 19

of maltotetraose formed was negligible throughout the process. In addition, two 20

disaccharides, kojibiose and isomaltose (peaks 3 and 4) −formed when the glucose acts as 21

acceptor− were detected at the final stages of the reaction. Kojibiose contains an -(12)22

glucosidic linkage and it is characterized by its low cariogenicity and digestibility [28]. 23

-----Insert Fig. 1------24

25

Table 1 summarizes the carbohydrates present in the reaction mixture throughout the 26

process. It is worth mentioning that the synthetic specificity of many glycosidases may differ 27
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substantially from the specificity of hydrolysis [29]. Thus, various -glucosidases –whose 1

function in nature is the hydrolysis of (1→4) bonds– transfer glucosyl groups to the less-2

hindered, primary 6-OH of the acceptor, yielding products such as isomaltose and panose3

[30]. In addition, transfer to secondary hydroxyl groups (2-OH, 3-OH, 4-OH) has been 4

reported [31]. As a result, a mixture of oligosaccharides consisting of (1→2), (1→3), 5

(1→4) and/or (1→6) bonds is usually obtained [9;15]. Our results indicate that X.6

dendrorhous-glucosidase is able to transfer glucosyl moieties to the 2-OH, 4-OH and 6-OH 7

of a glucose residue. 8

----- Insert Table 1 ------9

10

Fig. 2 illustrates the kinetics of oligosaccharide formation. Maltotriose concentration 11

reached a maximum of 16.2 g/l at 100 h, after which it was progressively hydrolyzed. The 12

maximum yield of tri- and tetrasaccharides (the kinetic maximum) with the X. dendrorhous-13

glucosidase was 53.8 g/l, which corresponded to 26.9% (w/w) of the total amount of 14

carbohydrates in the mixture. Most of them (47.1 g/l) contained -(16) bonds, which are 15

responsible of the prebiotic properties of the products. The enrichment of the mixture in 16

oligosaccharides with -(16) bonds is a consequence of their higher resistance to 17

hydrolysis, as the enzyme is highly -(14) specific for cleavage of glycosidic bonds. In 18

addition, the formation of new disaccharides accounted for 30.6 g/l (15.3% referred to the 19

total weight of carbohydrates in the sample). 20

-----Insert Fig. 2 ------21

22

Regarding the degree of polymerization (d.p.), it has been reported that an enzyme 23

having a poor ability to hydrolyze a tetrasaccharide is unlikely to synthesize such molecules, 24

as the binding conditions for the enzyme-substrate complex will be the same in both reactions 25

[15]. For example, the -glucosidase from the acidophilic archaeon Ferroplasma acidiphilum26

is not able to synthesize oligosaccharides with a d.p. higher than three as its hydrolytic 27
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substrate specificity is restricted to disaccharides [32]. Accordingly, the X. dendrorhous-1

glucosidase is able to hydrolyze maltodextrins and also to synthesize tetrasaccharides;2

however, pentasaccharides were not detected under our reaction conditions.3

4

X. dendrorhous and S. cerevisiae comparative analysis5

The transglycosylation activity of X. dendrorhous-glucosidase was compared with 6

that of commercial -glucosidase from the yeast S. cerevisiae, as they are good 7

representatives of yeasts -glucosidases with different hydrolytic activity. X. dendrorhous-8

glucosidase has a narrow hydrolysis range towards maltooligosaccharides whereas the 9

aglycon specificity of S. cerevisiae-glucosidase is rather broad [14]. HPLC chromatograms10

(data not shown) clearly indicated that the main reaction catalyzed by S. cerevisiae -11

glucosidase was the hydrolysis of maltose. In the initial stages of the reaction (0.5-2 h), a 12

peak of maltotriose appeared, but this trisaccharide was quickly hydrolyzed as it only 13

contained -(14) bonds. At the end-time of the reaction, only two transglycosylation 14

products were present, isomaltose and panose, formed, respectively, by -(16) 15

glucosylation of glucose and maltose. 16

Fig. 3 illustrates the kinetics of the process with S. cerevisiae-glucosidase. The 17

reaction rate towards maltose was much faster than with X. dendrorhous enzyme. This was a 18

consequence of the higher volumetric activity of the S. cerevisiae working solution (24.9 vs.19

0.20 U/ml towards synthetic p-nitrophenyl--D-maltoside). However, the specific activity of X.20

dendrorhous -glucosidase was higher (33.0 vs. 1.1 U/mg protein), but the low protein 21

concentration in the extract (0.007 mg/ml) resulted in only a total of 0.02 enzyme units for the 22

transglycosylation experiments compared with 2.5 enzyme units with the S. cerevisiae 23

enzyme. It is worth mentioning that the maximum yield of oligosaccharides shows no 24

dependency with the enzyme concentration in the mixture, but it is obtained for a longer or 25

shorter time of reaction [33]. The amount of enzyme added must be a compromise to reach 26

the maximum transglycosylation rate in a relatively short time, without fast hydrolysis of the 27
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transglycosylation products to facilitate stopping the reaction at the kinetic maximum.1

-----Insert Fig. 3 ------2

3

As shown in Fig. 3, the maltotriose concentration reached a maximum of 13.7 g/l, after 4

which the trisaccharide was completely hydrolyzed. The S. cerevisiae -glucosidase yielded a 5

maximum of 14.7 g/l of tri- and tetrasaccharides, corresponding to a 7.4% (w/w) of the total 6

carbohydrates in the mixture. In contrast, isomaltose and panose were not significantly 7

hydrolyzed throughout the process, as they contained -(16) bonds. At the end of the 8

process, the isomaltose concentration attained 21.4 g/l.9

10

Effect of maltose concentration on oligosaccharide production 11

The synthesis of isomalto-oligosaccharides from maltose is a kinetically controlled 12

reaction that involves a glucosyl-enzyme intermediate [34]. The nucleophiles H2O and 13

maltose compete for the glucosyl-enzyme intermediate [35]. When H2O is the nucleophile, the 14

enzyme acts as a hydrolase (releasing glucose). When maltose is the nucleophile, the 15

enzyme acts as a glucosyltransferase. The condensation products can be also hydrolyzed by 16

the enzyme. In fact, the reaction must be monitored and stopped at the point of maximum 17

yield of condensation products [36]. The maximum yield of oligosaccharides depends on two 18

parameters: the concentration of maltose and the intrinsic transferase/hydrolase ratio of the 19

enzyme [37]. 20

In order to improve the yield of transglycosylation products, a high maltose21

concentration (525 g/l) was assayed. Fig. 4 shows the progress of tri- and tetrasaccharide 22

formation. As expected, the increase in maltose concentration caused an improvement in the 23

yield of tri- and tetrasaccharides. The maltotriose concentration reached again a maximum, 24

after which its rate of hydrolysis was higher than its rate of synthesis. On the contrary, the 25

oligosaccharides that contained at least one -(16) linkage were very resistant to 26

hydrolysis. The maximum production of tri- and tetrasaccharides was 167.1 g/l, which 27
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corresponded to 31.4% of the total weight of carbohydrates. 1

-----Insert Fig. 4 ------2

3

These values indicated that the transglycosylation activity of X. dendrorhous -4

glucosidase was not significantly maltose-dependent (26.9% and 31.4% w/w tri- and 5

tetrasaccharides production at 200 and 525 g/l, respectively). Yields in kinetically controlled 6

synthesis usually range from 20 to 40% [38]. In this context, it has been reported that the ratio 7

of transglucosylating to hydrolysing activity for the -glucosidase from Aspergillus niger8

notably decreases when lowering maltose concentration [14]. 9

10

-----Insert Table 2 ------11

12

Table 2 summarizes the carbohydrate composition (in weight) of the mixture at 13

different times. The maximum percentage of trisaccharides was 20% at 200 g/l and 28.1% at 14

525 g/l maltose. In contrast, the tetrasaccharide production reached maxima of 7.4% and 15

3.6% at 200 and 525 g/l, respectively. However, the values presented in Table 2 suggest that 16

the tetrasaccharide production could be further increased, in detriment of trisaccharide yield, 17

by just allowing to progress the reaction for an extended period. The higher tetrasaccharide 18

production found at 200 g/l maltose may be explained considering that, at lower maltose 19

concentration, there is more competition between trisaccharides and maltose to accept a 20

glucosyl moiety, thus favouring the formation of high polymerization degree products [39;40].21

The X. dendrorhous -glucosidase shows a different transglycosylation pattern in 22

terms of yield and regioselectivity. Thus, the Aspergillus niger and A. nidulans -glucosidases 23

give isomaltose as the main transglycosylating product using maltose as substrate [41]. Thus, 24

a maltose concentration of 30% (w/v) is used for A. niger -glucosidase to achieve an 25

isomaltose content of 30% in the final reaction product [14]. Campa et al. [42] showed that 26

with this enzyme two trisaccharides were formed, one of them (panose) was especially fast 27
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hydrolyzed and the second (isomaltotriose) presented a notably lower concentration than that 1

of isomaltose throughout the process. With the A. nidulans -glucosidase B, approximately 2

50% of maltose was converted to transglycosylation products, 60% was found to be 3

isomaltose [9]. The -glucosidase from Acremonium sp. synthetizes oligosaccharides 4

containing -1,2-glucosydic bonds [43], whereas the Paecilomyces lilacinus enzyme forms 5

both -1,2 and -1,3 bonds [31]. Interestingly, a novel -glucosidase from Chaetomium 6

thermophilum var. coprophilum converts 5% (w/v) maltose into trehalose and 7

maltooligosaccharides [26]. The pattern of transglycosylation products derived from maltose 8

with the -glucosidase from Geobacillus sp. appeared to be different from the 9

oligosaccharides obtained with A. niger and A. nidulans enzymes, especially regarding the 10

formation of tetrasaccharides  [27].11

In conclusion, the X. dendrorhous -glucosidase gives a notable yield of total 12

transglycosylating products (approx. 40% considering the di-, tri- and tetrasaccharides 13

formed). Interestingly, the transferase to hydrolase ratio of this enzyme shows low 14

dependency with maltose concentration. In addition, the mixtures obtained with X. 15

dendrorhous -glucosidase are enriched in tri- and tetrasachharides, which contrasts with 16

other -glucosidases that synthesize basically disaccharides.17

18
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Table 1. Carbohydrates present in the transglycosylation reactions catalyzed by the different -glucosidases.

Peak 

number

No. of Glc 

moieties
Name Formula

1 1 Glucose Glc

2 2 Maltose -D-Glc-(14)--D-Glc

3 2 Kojibiose -D-Glc-(12)--D-Glc

4 2 Isomaltose -D-Glc-(16)--D-Glc

5 3 Maltotriose -D-Glc-(14)--D-Glc-(14)--D-Glc

6 3 Panose -D-Glc-(16)--D-Glc-(14)--D-Glc

7 4 6-O--glucosyl-maltotriose -D-Glc-(16)--D-Glc-(14)--D-Glc-(14)--D-Glc

8 4 6-O--isomaltosyl-maltose -D-Glc-(16)--D-Glc-(16)--D-Glc-(14)--D-Glc
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Table 2. Carbohydrate composition (% w/w) of the reaction mixture using X. dendrorhous-

glucosidase and two initial maltose concentrations a.

Maltose 525 g/l

Reaction 

time (h)

Maltose

(%)

Glucose

(%)

Other 

disaccharides b

(%)

Trisaccharides 

(%)

Tetrasaccharides

(%)

0 100 0 0 0 0

24 88.8 4.3 0 6.8 0

48 73.5 10.7 0 15.8 0

120 50.9 24.2 0 24.2 0.7

145 48.5 23.2 0 25.6 2.7

174 42.8 25.8 0 28.1 3.3

320 26.6 34.8 13.3 21.7 3.6

Maltose 200 g/l

Reaction 

time (h)

Maltose

(%)

Glucose

(%)

Other 

disaccharides b

(%)

Trisaccharides 

(%)

Tetrasaccharides

(%)

0 100 0 0 0 0

70.5 73.6 12.0 0 13.7 0.6

94 57.3 21.4 0 19.7 1.6

168 36.7 33.3 7.5 18.2 4.3

262 19.6 43.4 11.2 20.0 5.7

286 19.0 43.6 11.9 18.2 7.3

306 16.8 41.0 15.3 19.5 7.4

a Experimental conditions: 0.02 U/ml, 0.2 M sodium acetate buffer, pH 5.6, 45 C. 

b Kojibiose and isomaltose.
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Figure Legends

Fig. 1. HPLC progress of the transglucosylation of maltose catalyzed by X. dendrorhous-

glucosidase (reaction times are indicated). Conditions: 200 g/l maltose in 0.2 M sodium 

acetate buffer (pH 5.6), 0.02 enzyme units (33 U/mg protein), 40 ºC. HPLC conditions are 

described in experimental section (peak assignation according to Table 1).

Fig. 2. Oligosaccharides production from maltose catalyzed by X. dendrorhous -

glucosidase. Experimental conditions: 200 g/l maltose, 0.02 enzyme units (33 U/mg protein), 

0.2 M sodium acetate buffer, pH 5.6, 45 C. 

Fig. 3. Oligosaccharides production from maltose catalyzed by S. cerivisiae -glucosidase. 

Experimental conditions: 200 g/l maltose, 2.5 enzyme units (1.1 U/mg protein), 0.2 M sodium 

acetate buffer, pH 5.6, 45 C. 

Fig. 4. Kinetics of tri- and tetrasaccharide production from maltose catalyzed by X.

dendrorhous -glucosidase using 525 g/l maltose. Experimental conditions: 0.2 M sodium 

acetate buffer, 0.02 enzyme units (33 U/mg protein), pH 5.6, 45 C. 
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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