
Discreteness effects in a reacting system of particles with finite

interaction radius.
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An autocatalytic reacting system with particles interacting at a finite distance is

studied. We investigate the effects of the discrete-particle character of the model on

properties like reaction rate, quenching phenomenon and front propagation, focusing

on differences with respect to the continuous case. We introduce a renormalized

reaction rate depending both on the interaction radius and the particle density, and

we relate it to macroscopic observables (e.g., front speed and front thickness) of the

system.

PACS numbers: 05., 05.40.-a, 82.39.-k, 82.40.-g

I. INTRODUCTION

Most of the chemical and biological processes that appear in Nature involve the dynamics

of particles (e.g., molecules or organisms) that diffuse and interact with each other and/or

with external forces [1–3]. If the total number of particles per unit volume, N , is very

large, a macroscopic description of the system in terms of continuous fields, e.g., density
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or concentration, is usually appropriate. A prototypical model for these reaction-diffusion

systems is the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equation [4, 5] describing

the spatio-temporal evolution of a concentration

∂tθ(x, t) = D∂2
xxθ + pθ(1− θ), (1)

where D is the diffusion coefficient, p is the reaction rate that determines the characteristic

reaction time, τ = 1/p, and θ(x, t) is the concentration field (for simplicity we have assumed

one spatial dimension). It is well known [1, 6, 7] that Eq. (1) admits uniformly translating

solutions –fronts– with a speed v0 = 2
√
Dp and a front thickness λ0 = 8

√
D/p. The above

results do not depend on the precise details of the reaction rule. Replacing in Eq. (1) θ(1−θ)

with a convex function g(θ), with g(θ) > 0 for 0 < θ < 1, g(0) = g(1) = 0, and g ′(0) = 1,

g′(1) < 0, one has the same behaviour for v0 and λ0 [8].

On the other hand, if the number of particles per unit volume is not very large, the

continuous description could not be appropriate. In such a case, one can consider a discrete

particle model with N particles whose positions xα(t) evolve according to the Brownian

motion

dxα(t)

dt
=
√

2Dηα , α = 1, ..., N, (2)

where η is a white noise term. Moreover each particle is characterized by a color Cα(t)

which determines the particle type. The model is completed by the reaction rule between

particles. In order to obtain an autocatalytic reaction

A+B
p−→ 2B, (3)

one can consider just two types of particles C = 0 (unstable) and C = 1 (stable), that corre-

spond to the species A and B, respectively, with the following dynamics: particles of type 1

always remain 1, and particle 0 changes to 1 with a given probability that depends both on

p, the reaction rate, and on how many 1 particles are around it. It is not difficult to realize
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that in a suitable continuum limit, Eq. (1) gives the evolution of the color concentration of

this microscopic system (see Section II). The aim of this work is precisely to study the case

in which the density of individuals is small, and therefore the discrete nature of the system

can play a role [9, 10].

Several approaches have been adopted to investigate the relevance of the correction to

the continuum limit. On one side, it has been assumed that the dynamics of the system is

given by deterministic macroscopic equations like Eq. (1), and a noise term, of order 1/
√
N ,

which takes into account the microscopic fluctuations originated by the finite number of

particles [11]. On the other side, following the work of Brunet and Derrida [12], this problem

has been successfully studied by using a cutoff at the density value 1/N for the continuous

field equations. This has been employed to determine corrections to some front properties

in FKPP-like equations (see [13] for a review). In particular, it has been shown that the

deviation from the continuum value of the front speed is of the order 1/(lnN)2, which is

rather significant [12].

More recently, Kaneko and coworkers [14] analyzed the dynamics of some chemical re-

actions, studying the influence of the molecular discreteness. They identify typical length

scales in the system which may separate the continuum behavior from the discreteness-

influenced one. They report transitions to a novel state with symmetry breaking that is

induced by discreteness, but they do not investigate the features of front propagation prop-

erties in terms of the number of particles. A crucial quantity is the so-called Kuramoto

length, lK =
√

2Dτ , which is proportional to the front thickness and measures the typical

distance over which an unstable particle diffuses during its lifetime (note that τ = 1/p can

be interpreted as the average lifetime, i.e., the time particles live before they react). In

some situations, especially when there is a propagating front, if the typical distance among

particles is much smaller than lK, the concentration of the particles can be regarded as

continuous. On the other hand, when there are not many particles within a region of size
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lK, discreteness effects should be taken into account [14].

In our work we study the interplay between length scales in the problem, our principal

aim being to explain the effects of the discrete nature of the system on properties like

reaction rate, quenching and front speed. Differently from most of the works in discrete

reaction-diffusion systems, we do not consider a lattice model: particles diffusively move

in space and interact when their distance is smaller than an interaction radius R, which

corresponds to a natural length-scale appearing in many chemical and biological systems [10,

15]. We study several properties of the system as a function of R, realising, via comparison

of different length-scales, when the effects of discreteness have a dominant role. As expected,

the continuum limit is described by the FKPP equation. Nevertheless we remark that in

order to have the proper continuum limit it is not sufficient to have a very large density

of particles. We discuss the problem in the framework of chemical reaction dynamics, but

everything can be thought in the context of population dynamics.

The Paper is organized as follows. In the next section we present the particle model

for the autocatalytic reaction. In section III we study the renormalized reaction rate of

the system when particles of both types are in a closed vessel, initially uniformly random

distributed in space. In section IV we study quenching phenomena when B particles can

turn into A particles; this causes the emergence of new properties of the model that will

be studied in detail. Then, in Sect. V we investigate the front properties of the model (by

choosing a proper initial distribution and considering an infinite system in the propagation

direction), mainly in terms of the interaction radius of the system. Section VI presents our

conclusions.
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II. MODEL

Consider N particles in a two-dimensional box of size Lx×Ly. Each particle is identified by

its position, xα(t), and its color, Cα(t), indicating the particle type. To specify the dynamics

it is necessary to give the evolution rule for the position and the interaction rule between

particles (chemistry). Space will be considered continuous while time will be discrete (with

time step ∆t). However its value, if small enough, it is not relevant. Particle dynamics is

synchronous, i.e., all particle properties are updated at the same time.

The position evolution is given by

xα(t+ ∆t) = xα(t) +
√

2D∆tuα(t) , α = 1, ..., N, (4)

where D is the diffusion coefficient, uα(t) = (uα,1(t), uα,2(t)) are stochastic Gaussian vari-

ables with the properties 〈uα(t)〉 = 0 and 〈uα,i(n∆t)uα,j(m∆t)〉 = δijδαβδmn, i.e., particles

perform a discrete-time Brownian motion.

As already mentioned, to model an autocatalytic reaction (3), we consider two kinds of

particles: type A particles, Cα = 0 (unstable), and type B particles, Cα = 1 (stable). The

chemical evolution of the particles is given by the following stochastic process:

• if Cα(t) = 0 then Cα(t+ ∆t) = 1 with probability PAB = WAB∆t;

• if Cα(t) = 1 then Cα(t+ ∆t) = 1.

The probability (per unit time) WAB depends on the number of stable particles within the

interaction radius. In fact, in the continuum limit, the autocatalytic reaction (3) is expected

to obey the mass action law
dΘA

dt
= −pΘAΘB, where ΘA and ΘB are the concentrations

of particles A and B, respectively, with ΘA + ΘB = 1. The probability that a particle A

changes into a B particle is assumed to be

WAB = p
NR(B)

〈Nloc(R)〉 = p
NR(B)

πR2ρ
. (5)
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where NR(B) indicates the number of B particles within the interaction radius R around

the given particle A, 〈Nloc(R)〉 is the spatial average number of particles (of any type) in a

radius R, and ρ = N/(LxLy) is the density of particles.

We discuss in the following that in a suitable limit the previous probabilistic rule converges

to the FKPP equation. Let N(A, t) and N(B, t) be the total number of A and B particles,

respectively; of course N = N(A, t) + N(B, t) is constant. The dynamics of the number of

B particles is given by the discrete stochastic process

N(B, t + ∆t) = N(B, t) +
∑

k∈N(A,t)

yk , (6)

where k is the index identifying A particles and yk is a discrete random variable which is

1 with probability ∆tWAB (when the particle A changes into a B particle), and is 0 with

probability 1−∆tWAB (when the particle A remains A). For the expected value of N(B, t),

one has

E(N(B, t+ ∆t)) = E(N(B, t)) + E(N(A, t))p
E(NR(B, t))

πR2ρ
∆t =

= E(N(B, t)) + p[N − E(N(B, t))]
E(NR(B, t))

πR2ρ
∆t .

After a little algebra we obtain

d

dt
ΘB(t) = lim

∆t→0

ΘB(t+ ∆t)− ΘB(t)

∆t
= p(1− ΘB(t))

E(NR(B, t))

πR2ρ
. (7)

where ΘB = E(N(B, t))/N indicates the expected average concentration of B particles. In

the case of an infinite number of spatially premixed particles the last term on the right-

hand-side of the above relation becomes ΘB(t) and we finally obtain the FKPP equation for

the homogeneous case:

d

dt
ΘB(t) = p(1− ΘB(t))ΘB(t) . (8)

In general, under non-premixed spatial conditions and/or a small density,
E(NR(B, t))

πR2ρ
6= ΘB

and the system cannot be described by the FKPP dynamics.
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Concerning the relevant length scales of the system one can identify the following ones:

i) the mean nearest neighbour distance between particles, dm =
1

2
√
ρ

=

√
LxLy
4N

, ii) the

interaction radius of the model, R, iii) the Kuramoto length scale, lK and iv) the size of the

system L. It is expected that the continuum limit is obtained when dm � R � lK � L.

While the scale separation between dm and L can be easily achieved, in many situations it

might happen that the condition R� lK is not verified, or that R is of the same order of dm.

In this case the evolution of the system could be very different from that of the continuous

FKPP limit. It is the objective of this work to investigate some properties of the model in

this regime.

Before starting with the discussion of the numerical results, some comments follow about

the role of diffusion. Since we introduce the natural length-scale of the interaction, R, a

diffusive time related to this distance arises tD(R) = R2/D. When this time is much smaller

than the reaction time τ = 1/p the system is locally homogeneized before reaction happens.

In order to focus on the reaction properties rather than on the diffusive effects we work in

the limit tD � 1/p.

III. PREMIXED PARTICLES IN CLOSED BASINS

Firstly we study the model in a closed vessel, where, as initial condition, particles of

both types are premixed and uniformly randomly distributed in space. In such a case, the

system evolution necessarily ends with the complete filling of the box with type B particles.

Therefore the most significant physical quantity is the filling rate of particles B, which is

related to the reaction rate. We proceed by fixing the value of R and varying N in order to

explore different situations: a) continuum limit, dm � R; b) the effect of the discreteness,

dm & R. In this case, at variance with front propagation properties discussed in Sect. V, we

will see that the Kuramoto length does not play a fundamental role. The basic reason for
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this is the spatially random distribution of particles.

We adopt periodic boundary conditions on a square domain of side Lx = Ly = 1; the

reaction rate is set to p = 1; and averages are numerically computed over a large number of

noise realizations.
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FIG. 1: The growth rate g(ΘB) vs ΘB (see Eq. 9) for N = 1000 (�), and N = 100000 (◦) with

p = 1, D = 0.001, R = 0.05; the initial concentration corresponds to 97% of type A particles

and 3% of B particles, uniformly distributed. The solid and the dashed lines correspond to the

quantity pR(N)ΘB(1 −ΘB), where pR(N) is fitted from numerical results of the discrete particle

model: solid-line is for pR(N) = 1 and dashed-line for pR(N) = 0.8.

Since particles are well premixed, the process is spatially homogenous, and we may assume

that the growth rate of ΘB(t), (see Eq. 7) is

g(ΘB) = p(1− ΘB(t))
E(NR(B, t))

πR2ρ
(9)

In the case of large particle density one expects that g(ΘB) = pΘB(1−ΘB), therefore it

is natural to assume that for finite N one can replace eq. (9) with

g(ΘB) = pR(N)ΘB(1− ΘB), (10)
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where pR(N) is a renormalized reaction rate of the discrete particle model. In this way the

evolution of ΘB is given by an FKPP equation with a renormalized (R− and N− dependent)

reaction probability, where τR(N) = 1/pR(N) is the renormalized reaction time for the

system. Note that pR(N) contains all of the dependence of our system on the interaction

radius and the number of particles and, therefore, it is the proper quantity to study the

influence of the discreteness in the model.

In Figure 1 it is shown, for a given R, the function g(ΘB), with the approximation of

Eq. (10) for two different values of N . With the appropriate pR(N) value, the fit is rather

good and, for large N , pR(N)→ p.
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FIG. 2: ΘB(t) versus t in the same experimental asset (and using the same symbol) of Fig. 1.

The solid and the dashed lines correspond to the fit of Eq. (11) on the experimental measures. In

particular solid-line is for pR(N) = 1.0 and dashed-line for pR(N) = 0.82.

The equation
dΘB

dt
= pR(N)ΘB(1−ΘB) can be easily solved:

ΘB(t) =
ΘB(0)epR(N)t

1 + ΘB(0)(epR(N)t − 1)
. (11)

Thus looking at the evolution of ΘB = E(N(B, t))/N and using Eq. (11) we have a value
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of pR(N) which is, in principle, different from the one in Eq.(10). However, the two values are

rather close, and in the following we will present results only for the last one, obtained from

Eq.(11). As an example, in Fig. 2, we show ΘB(t) versus time obtained from the numerical

simulation of the particle model, and the best fit using Eq. (11) from which a value of pR(N)

comes out. As previously shown in Figure 1, for large N the value of pR(N) goes to the

continuum limit p. In Figure 3, where the renormalized reaction probability versus N is

plotted, one sees that the continuum limit, pR(N) = p is, as expected, obtained with good

accuracy for large N values. This corresponds to dm � R, while for values of N such that

dm is comparable or smaller than R the continuous description becomes inaccurate.

1.0

0.7

0.4

0.2

0.1
 100  1000  10000  100000

p R
(N

)

N

FIG. 3: pR(N) versus N . The parameters are the same as in Fig. 1. In particular, R = 0.05, and

the continuum limit is obtained for N ≈ 1000 for which dm ≈ 0.015.

More important for our purpose is the behavior of pR(N) versus R. With a fixed total

number of particles, N , and a well premixed initial condition, we compute pR(N) varying

the interaction radius R (see fig. 4). We observe that in the continuum limit (dm � R) we

recover pR(N) = p. For small R, such that dm > R, pR(N) seems to reach a constant value,

which is around 30% smaller than the FKPP one.
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FIG. 4: The renormalized reaction probability pR(N) versus R, using the fit of equation (11).

N = 1000, lK = 0.045 and dm = 0.0158.

Few words have to be spent about the difference between the large N limit (of Figure 3)

and the large R limit of Figure 4. For the problem under discussion one has the same

behavior of the continuum limit if dm � R irrespective of the value of the Kuramoto length.

For example, in Fig. 4 one has lK ≈ 0.045 which is much smaller than the values of R for

which the continuum limit holds. On the other hand, in the study of front properties we

will see that the scenario is different and lK can play a relevant role.

Now we want to discuss the dependence of the previous results on the chosen initial

condition. In Figure 5 we compare pR(N) in the premixed case, and when particles are

initially separated in space. Indeed, if the premixed particle condition is relaxed, and the

system is initially prepared with different spatial distributions of particles, the renormalized

reaction probability significantly changes, since E(NR(B, t)) strongly depends on the particle

configuration (see the inset in Figure 5).
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FIG. 5: pR(N) versus R for different initial conditions: (◦) premixed, (�) B particles on the left

of the system and A particles on the right. The parameters are the same as in fig. 4. In the inset

we plot the corresponding g(ΘB) vs ΘB for R = 0.05; (◦) premixed, and (�) initially separated

particles.

IV. POSSIBILITIES OF QUENCHING.

Studies on the quenching phenomenon [16] shows that in a continuous reaction-diffusion

system in presence of an advectin velocity field, and with a reaction term of ignition type, i.e.

g(Θ) = 0 for Θ < Θc, for a suitable size of the “hot” region, there is no propagating front,

and the reaction quenches. On the contrary, in a continuous FKPP system (1) quenching

phenomena do not appear [17]. Here we show that in a particle description of an FKPP

system quenching can occur.

Still considering premixed particles in a closed vessel, let us introduce the possibility that

a stable particle (B) can turn into an unstable one (A). That is, beyond the autocatalytic
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reaction (3), we introduce a new reaction

B
q−→ A , (12)

where q is its rate. Therefore we have the following reaction rules:

• if Cα(t) = 0 then Cα(t+ ∆t) = 1 with probability PAB = WAB∆t

• if Cα(t) = 1 then Cα(t+ ∆t) = 0 with probability QBA = WBA∆t

WAB is the same of the previous section, while WBA = q does not depend on the interaction

radius R, since it is a single particle property.

The renormalized description of this model is given by

dΘB(t)

dt
= pR(N)ΘB(1−ΘB)− qΘB, (13)

whose solution is

ΘB(t) = ΘAS
ΘB(0)eΛt

ΘAS + ΘB(0)(eΛt − 1)
. (14)

with Λ = pR(N) − q and ΘAS = 1 − q/pR(N). Two different scenarios now appear. If

pR(N) < q for all N the reaction finishes. On the other side, when pR(N) > q we have a

similar behavior as in the case with q = 0. In fig. 6 we show ΘB vs t for different values of R.

It is apparent that for large R the system behaves similarly to the case q = 0 (including the

continuum limit for the long time value of the concentration, 1−p/q, for large R). However,

for R small enough the concentration asymptotically vanishes, that is we have a quenching

phenomenon. In Fig. 7 where we plot Λ vs R (obtained analogously to Fig. 4, i.e., fitting

the analytical solution to the numerical results). For large R we approach the continuum

limit and Λ→ p− q, while for small R we have quenching corresponding to negative values

of Λ.

This is a relevant result, entirely due to the role of the interaction radius, R, which

reflects the discrete character of the model in the quenching mechanism. Let us note that,
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FIG. 6: Time evolution of ΘB(t) for R = 0.5, 0.1, 0.05, 0.03, 0.02, 0.005 (from top to bottom),

N = 1000, D = 0.001; the straight line is the continuum limit asymptotic value 1 − q/p, with

p = 1 , q = 0.8. For R < 0.02 the reaction quenches.

at variance with the results in the previous section (which are just quantitative changes with

respect to the continuous equation), now the discrete nature of the system is able to produce

a feature (the quenching) which is absent in the continuum limit [17].

V. FRONT PROPERTIES

In the previous sections we have studied the dynamics of interacting particle systems in a

closed container. We now focus on a different configuration, corresponding to well-separated

chemicals in an open domain, and we investigate evolution properties, such as front speed

and thickness [18, 19], in terms of the interaction radius.

In this section we take Ly = 1, Lx = 5, with periodic boundary conditions in the y

direction, and rigid walls in the x direction. The burnt (type B) particles are initially

concentrated in the leftmost part of the system, so that a propagating reaction front, from
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FIG. 7: Inverse characteristic time of the reacting process Λ = pR(N) − q as a function of the

interaction radius R (with p = 1 , q = 0.8); N = 1000, D = 0.001. For large values of R, Λ tends

to the continuum limit value p− q; for R < 0.02 Λ becomes negative, highlighting the emergence

of the quenching phenomenon.

left to right, develops. The reaction term we use is just the autocatalytic one (3), i.e., q = 0.

We separately study the front speed and the front thickness.

A. Front speed

We can define the instant front position as

xf(t) = Lx
NB(t)

N
, (15)

and the front speed:

vf '
xf(t)

t
(16)

which is computed after a transient and before the complete saturation is approached. In

Fig. 8 we show xf(t) vs time for different values of R. The vf is obtained as the slope of the

best fit to the curves in the proper interval.
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FIG. 8: xf vs t. The system parameters are: Lx = 5, Ly = 1, D = 0.001, N = 5000, and the initial

number of B particles is 200. The slopes of the straight lines represent the front speed.

We expect that, via the renormalized description of the FKPP equation, that is Eq. (1)

with p replaced by pR(N), the front speed of the particle model at varying R should be

v0 = 2
√
DpR(N) . (17)

We saw that in closed basins different initial conditions on the distribution of particles

select different pR(N)’s, see Figure 5. Therefore, for the study of front propagation the

proper pR(N) is that one computed in the case of initially separated particles distribution

(symbol (�) in Figure 5). The numerical results, reported in Fig. 9, confirm our prediction

at least for small R, i.e., the front speed behaves as in the FKPP case (Eq. (17)).

However, the large discrepancy observed for large R cannot be explained by a simple

difference in the initial particle distribution. This difference arises because the interaction
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FIG. 9: (�) Front speed vf versus R and (◦) the prediction of formula (17), and pR(N) computed

in closed domains with initially separated particles distribution. The horizontal line is the value

in the FKPP continuum limit, while the dashed line is the behaviour vf ' R. The parameters are

the same as Fig. 8. The Kuramoto length is lk = 0.045.

radius becomes larger than the Kuramoto length

lK =

√
2D

p
, (18)

and therefore the continuum FKPP limit does not hold. Indeed, in particle systems, when

R ≤ lk the interaction term establishes a connection between regions containing A particles

and regions containing B particles that in the classical FKPP equation could not be con-

nected. Therefore, when R ≥ lK, it is not possible to obtain the continuum FKPP limit (1)

even with an arbitrarily large number of particles. In Figure 10 it is shown the front speed

at varying R for various N . One can observe that at increasing N for small R the front

speed approaches the FKPP value, while for large R the front speed does not depend on N

and the value is definitely different from the FKPP value.
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FIG. 10: The measured front speed vf versus R for (O) N = 5000, (◦) N = 10000, (�) N = 20000

and (4) N = 40000. The horizontal line is the value in the FKPP continuum limit, while the

dashed line is the behaviour vf ' R. The Kuramoto length is lk = 0.045.

A simple argument explains the behavior of vf for large R. The front speed is proportional

to the front length times the reaction rate, e.g., in the FKPP equation v0 = 2
√
Dp ∝

p
√
D/p ∝ plk . When the interaction radius is greater than the Kuramoto length it is

reasonable to expect that the front length becomes proportional to R and so the front

speed:

vf ∝ pR(N)R = αR when R� lk , (19)

in agreement with the results shown in Figures 9, 10 and in Figure 11 for various p. In

particular, in the inset of Figure 11 one can see the behaviour of α as a function of p:

α(p) = ap , (20)

where a is a constant. This is not surprising because p is the continuum limit for the reaction

rate which is reached asymptotically by the particle system, i.e., pR(N)→ p for large R.
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FIG. 11: Large R behaviour of vf in the cases: p = 0.5 (�), p = 1.0 (◦) and p = 2.0 (4). In the

inset the slope of the linear fit, α (see Eq. (20)), is shown as a function of p.

B. Front thickness

As a further confirmation of previous results, we investigate the behaviour of front thick-

ness at varying R. Note that in the continuum limit there are many ways to compute the

front thickness of a propagating front [20]. In the particle case, however, it is not obvious

how to define a front profile. We proceed by defining an averaged field that resembles the

front shape. Essentially this is a histogram over particle positions. Fixing our attention on

A particles, we define

Θ̃A(x,∆x, t) =
Nx,∆x(A, t)

N∆x
(21)

where Nx,∆x(A, t) counts the number of A particles whose x coordinate lays between x and

x + ∆x. When the number of particles is large the value of ∆x could be taken arbitrarily

small whereas, in general, ∆x has to be small, but at the same time large enough in order

to avoid large fluctuations in Nx,∆x(A, t). We use a relatively small ∆x (few dm) and we

average Nx,∆x(A, t) over many different realizations. The front shape of an FKPP system
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FIG. 12: The shape of the front Θ̃A(x) (+) and the exponential fit of equation (22) (dashed line).

behaves as

Θ̃A(x,∆x; t) ∼ exp((x− xf(t))/lA), (22)

where lA is the front thickness, and xf(t) the front position at time t. In Figure 12 it is

shown the exponential behaviour of the front profile and the fit obtained from of Eq. (22).

In particular Eq. (22) works well in the central region of the front, i.e., where corrections

due to the particle nature of the system are less important.

Other measurements of the front profile provide similar results. In Figure 13 we plot

the front thickness, lA, computed for different values of R. Again, for R smaller than the

Kuramoto length the front thickness is constant, while for values of R greater than lk the

front thickness behaves as lA ∝ R. This result confirms the assumption of equation (19).

The constant value reported in Figure 13 (the dashed line) is only an indicative value to

show that for R < lk the front thickness is constant, and it is not the FKPP value of the

front width.
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FIG. 13: Front thickness lA versus R measured in the particle model (◦). The dashed line cor-

responds to a constant value of the front speed (see fig.10), while the full line is the behaviour

lA ' R. The value of the Kuramoto length scale is lK = 0.045.

VI. SUMMARY AND CONCLUSIONS

In this work we studied the effects of the discrete-particle character in an autocatalytic

reacting system, described in terms of chemical dynamics where two types of Brownian

particles interact when they are at a distance smaller than a certain radius R. We have

shown that in a suitable continuum limit the system is equivalent to an FKPP model for

the concentration of particles, and we have focused on the differences that arise when the

conditions for this limit are not fullfilled.

The continuum limit holds if some relations among the relevant length scales (the interac-

tion radius, the mean distance between particles and the Kuramoto length) of the problem

are satisfied. For well-premixed initial conditions of the particles distribution only the first
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two lengths play a role. However, for front propagation, which requires a separated initial

distribution of particles, also the Kuramoto length is important.

We have also considered the modified chemical dynamics A+B
p−→ 2B, and B

q−→ A,

where, at variance with the continuum limit, one can have the possibility of quenching, for

small values of R. This is due to the particle nature of the model, which induces a qualitative

difference with respect to the continuous description.

Moreover, in the context of front propagation, we have shown that particular conditions

exist such that, increasing the particle density, the system reaches a continuum limit which

is definitely different from the continuum FKPP limit.

We conclude noting that many biological systems are characterised by the two main

ingredients of our work: the minimal distance for the interaction, and the exiguity of the

number of organisms [2, 21]. We hope that our work helps to clarify some shortcomings

arising when a macroscopic description is attempted.
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