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We calculate ground state energies in the Brueckner-Hartree-Fock theory for N electrons �with N�20�
confined to a circular quantum dot and in presence of a static magnetic field. Comparison with the predictions
of Hartree-Fock, local-spin-density and exact configuration-interaction theories is made. We find that the
correlations taken into account in Brueckner-Hartree-Fock calculations give an important contribution to the
ground state energies, especially in strongly confined dots. In this high-density range, corresponding in practice
to self-assembled quantum dots, the results of Brueckner-Hartree-Fock calculations are close to the exact
values and better than those obtained in the local-spin-density approximation.
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I. INTRODUCTION

The Hartree and Hartree-Fock �HF� mean field ap-
proaches have been extensively used in the past to study
atomiclike properties of semiconductor quantum dots such
as, e.g., those measured in conductance and capacitance
experiments.1–4 Symmetry restricted approximations, as well
as spin and/or space unrestricted HF solutions have been
analyzed.5–10 These methods give results that are satisfactory
for a qualitative understanding of many properties of these
systems. However, comparison with exact configuration-
interaction diagonalization11–17 �CI� and quantum Monte
Carlo18–22 �QMC� studies show discrepancies in the total en-
ergies that are substantial on the relevant energy scale.

The discrepancies become even larger in the presence of a
constant magnetic field which magnifies the importance of
correlations. However, at high magnetic field QMC calcula-
tions are imprecise due to the fixed phase approximation and
the exact diagonalization techniques require a number of
configurations which increases exponentially with the num-
ber of particles, making the calculation unpractical for more
than ten particles. An alternative method that has been shown
to be quite accurate for cases in which HF yields broken
symmetry solutions is that of symmetry restoration by
projection,23 although its complexity also increases very rap-
idly with the number of particles. The ground state properties
of many electrons quantum dots can also be calculated with
local-spin-density approximation �LSDA� and current den-
sity functional methods.24–26 These approaches are based on
energy functionals obtained through fits and interpolations of
QMC results for the spin polarized and unpolarized two-
dimensional electron gases that do not include a magnetic
field and, moreover, provide a single particle spectrum
whose physical interpretation is not clear. Nevertheless,
LSDA has given good results for quantum dots with low
electronic densities, having Wigner-Seitz radius rs�1. These
are the typical densities of quantum dots made by etching3 or

by lithography,1 usually over a GaAs substrate. Another class
of quantum dots are the self-assembled ones,27,28 with high
electronic densities �rs�0.5� and great practical interest due
to technological applications such as, e.g., in semiconductor
lasers.29 They are usually formed over InAs substrates, have
small diameters and contain strongly confined electronic
states. For systems so distant from the homogeneous condi-
tions one should not expect the LSDA to give accurate pre-
dictions and, indeed, most calculations on InAs dots have
been made using non-DFT-based schemes.30–32

In this paper we employ the Brueckner-Hartree-Fock
�BHF� method33,34 to describe electrons in quantum dots be-
cause it yields good ground state energies at a computational
cost that grows in a relatively modest way with the number
of particles, as compared to CI and QMC �in its most accu-
rate versions such as diffusion QMC�. This method has been
extensively applied in the past to study nuclei35 and metallic
clusters.36 Also, a related scheme based on Bethe-Goldstone
equations has been used to study small excitonic complexes
in quantum dots.37 The underlying assumption of the BHF
theory is a description in terms of independent pairs of par-
ticles. For each pair, interaction affects the way in which the
two particles scatter, while the rest of particles are consid-
ered noninteracting and their influence is only through the
Pauli exclusion principle. It is well known that the exclusion
principle imposed by the Fermi sea induces a modification of
the pair wave function at short interparticle distances, induc-
ing the so-called “wound” in the wave function. Therefore,
the BHF theory describes short range statistical correlations
and will miss, by construction, long range correlations asso-
ciated with collective motions.33,34

Here we compare BHF energies for electrons in quantum
dots with the available results from methods attempting a
direct solution of the many body Schrödinger equation like
CI diagonalization and QMC, as well as with approximate
models such as LSDA and HF. We find that BHF is always
more accurate than HF. It recovers the exact result in the
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strong-confinement limit and at high magnetic fields, when
the maximum-density-droplet �MDD� is formed, it yields
more accurate energies than the LSDA ones. Furthermore, in
the case of electronic densities typical of self-assembled
quantum dots, BHF also gives much better results than
LSDA even in the absence of magnetic fields.

II. THE BHF SCHEME

This section recalls some essential points of the BHF
theory deriving several relevant equations and quoting others
without proof. The restriction to circular symmetry solutions
and its practical implications are also discussed.

A. Theory

Let us consider a system of N electrons with Hamiltonian

H = �
i

N

h0�i� + �
i�j

N

vij , �1�

where h0= ti+vext�ri�, ti is the single particle kinetic energy
which can include the effect of the magnetic field, vext the
confining potential and vij =e2 /� �ri−r j�, with � the dielectric
constant. The ground state ��� is solution of the many-body
Schrödinger equation

�H − E���� = 0, �2�

where E is the ground state energy. Let us now consider an
independent particle model �the HF model in the following�
where the eigenstates ��n� are Slater determinants solutions
of the equation

�HHF − Wn���n� = 0, �3�

where HHF=C+�i
N�h0�i�+Ui�, with Ui the HF potential and

C a constant. The HF ground state determinant and energy
are given by ��0���HF� and W0�EHF, respectively.

The residual interaction Vres fulfills

H = HHF + Vres, �4�

Vres = �
i�j

N

vij − �
i

N

U�i� − C . �5�

HF theory yields the following general matrix elements:

�HF�Vres�HF� = 0, �6�

�HF�Vres�mi−1� = 0, �7�

�HF�Vres�mni−1j−1� � 0, �8�

where we have used the standard notation for particle-hole
�ph� excitations, i.e., indexes i, j �m, n� refer to orbitals be-
low �above� the Fermi energy and �mi−1� is the Slater deter-
minant obtained promoting one electron from orbital i to
orbital m in �HF�. Note that only 2p-2h excitations yield
nonvanishing transition matrix elements since the two-body
nature of Vres ensures that matrix elements between determi-

nants differing in more than two orbitals will again vanish.
Another immediate consequence from Eqs. �6�–�8� is that
EHF= �HF �H �HF�.

We can write

��� = �HF� + �
n�0

an��n� . �9�

From Eqs. �2�, �4�, and �9� one easily finds that

�HHF − E���HF� + �
n�0

an��n�	 + Vres��� = 0. �10�

Multiplying Eq. �10� by �HF� on the left one gets

E = EHF + �HF�Vres��� . �11�

If multiplying by ��n� one finds an=
��n�Vres���

E−Wn
and hence the

following implicit equation is obtained:

��� = �HF� + �
n�0

��n�Vres���
E − Wn

��n� . �12�

This equation can be solved by iteration taking as starting
energy the HF one

��� = �HF� + �
n�0

��n�Vres�HF�
EHF − Wn

��n� + ¯ , �13�

yielding for the energy

E = EHF + �
n�0

���n�Vres�HF��2

EHF − Wn
+ ¯ . �14�

At the first order in Vres this equation gives a result for the
energy which coincides with the one of first order perturba-
tion theory, summing all the orders we get the correlation
energy in the ladder approximation. This is more clear defin-
ing the G-matrix by the relation

G�HF� = Vres��� . �15�

We then get the Bethe-Goldstone implicit equation for G

G = Vres + �
n�0

Vres

��n���n�
E − Wn

G , �16�

and from Eq. �11�

E = EHF + �HF�G�HF� = EHF + �
n�0

�HF�Vres��n���n�G�HF�
E − Wn

.

�17�

Only 2p-2h determinants yield a nonvanishing contribution
to the sum of Eq. �17�, which can thus be reduced to a sum
of two-body matrix elements. Assuming E=EHF on the right-
hand side, as in the ladder approximation, one has

EMPERADOR, LIPPARINI, AND SERRA PHYSICAL REVIEW B 73, 235341 �2006�

235341-2



E = EHF +
1

2 �
ijmn

�ij�v�mn�
�i + � j − �m − �n

� ��mn�g�ij� − �mn�g�ji�� ,

�18�

where the �	 are the HF single particle energies and we have
associated the G matrix with an effective two-body interac-
tion g.

In order to have a practical computational scheme it re-
mains now to specify the two-body matrix elements of g in
Eq. �18�. This is accomplished within the BHF independent-
pair model,33 where the off-diagonal matrix elements are
found from

�mn�g�ij� = �mn�v�ij� + �
pq

�mn�v�pq��pq�g�ij�
�i + � j − �p − �q

. �19�

The ground state energy of Eq. �18� with the matrix elements
obtained from Eq. �19� is the BHF energy which sums all the
ladder diagrams corresponding to the iterated solutions of
Eq. �14�.

B. Circular symmetry restriction

In this work we restrict to circular symmetry cases, where
the HF orbitals can be factorized as

�r
�i� � Rnimi
�r�

eimi�


2�
�i

�
� , �20�

where ni=0,1 , . . ., mi=0, ±1, . . ., and �i= ±1/2 are the prin-
cipal, angular momentum, and spin quantum numbers,
respectively. In this situation the angular and spin parts of
the two-body matrix elements yield selection rules on the
corresponding quantum numbers and the matrix elements
reduce to

�ab�v�cd� = �ma+mb,mc+md
��a�c

��b�d

� Ir�Rnama
,Rnbmb

,Rncmc
,Rndmd

� , �21�

where Ir is a radial integral that we compute numerically.
Note that through Eq. �19� the same angular momentum se-
lection rules apply to �ab �g �cd� and that both matrix ele-
ments are real.

The two-body matrix elements of g required for the evalu-
ation of the total energy, Eq. �18�, are found by solving Eq.
�19� as a linear system for the unknowns �mn �g � ij�. For each
pair ij we have an independent linear system and the above
mentioned selection rules are very important since they al-
low a big reduction in the number of effectively coupled
equations. Since the space of particle states must be trun-
cated, the convergence of the calculation with the number of
empty HF states has to be controlled. Another check of the
numerical accuracy must be done regarding the number of
radial points used in the evaluation of the integrals Ir of Eq.
�21�.

III. RESULTS

Table I compares the energies of B=0 ground states of
N-electron dots in BHF with the results of HF, LSDA �using
the Tanatar-Ceperley parametrization for the correlation
energy38� and diffusion QMC.22 The external confinement is
taken of parabolic type vext�r�=m�0

2r2 /2, with m the electron
effective mass. We refer all energies to the confinement en-
ergy ��0 and characterize the interaction strength by the
repulsion-to-confinement ratio R, defined as

R �
e2/���0�

��0
, �22�

with �0 indicating the oscillator length ���0=�2 /m�0
2�. The

results in Table I correspond to R=1.89. Taking, for instance,
typical GaAs values ��12.4 and m*=0.067me the chosen R
value would correspond to a confinement energy of
��0=3.32 meV, which reproduces the experimental value of
Ref. 3. The number of electrons is varied from N=2 to 13.

At B=0 the BHF energies obviously improve the HF
ones, although they are still appreciably higher than the
QMC and LSDA values. This is due to the fact that in BHF
long-range collective correlations are missed. The impor-
tance of short range correlations is expected to increase as
the system is more tightly confined, for a fixed strength of
the Coulomb repulsion and, thus, a better performance of
BHF is expected when increasing the confinement strength.
Indeed, this is shown to be the case in Fig. 1, where for
N=2 and 6 at B=0 we have varied the value of R. The lower
panels of this figure display the correlation energies, defined
as usual by subtracting the HF value EHF from the total en-
ergy E, i.e., Ecorr=E−EHF. Note that although the correlation
energy is globally reduced when the ratio decreases BHF
accounts for a larger part of it. Actually, for N=2 BHF
accounts for 71% of the full �CI� correlation energy when
R=1 and 87% when R=0.5. The corresponding figures for
N=6 are 64% �R=1� and 75% �R=0.5�. These numerical
results are thus showing that in the limit of small R BHF

TABLE I. Ground state energies for the dots with 2�N�13
computed by HF, BHF, LSDA, QMC, and CI methods. The energies
E in units of the confinement energy ��0 are tabulated as
E�=E / ��0. A fixed value R=1.89 of the interaction-to-
confinement ratio has been used.

N EHF� EBHF� ELSDA� EQMC� ECI�

2 4.078 3.832 3.739 3.650 3.646

3 8.589 8.289 8.082 7.979 7.957

4 13.94 13.63 13.16 13.26 13.06

5 20.96 20.38 19.91 19.76 19.53

6 28.70 27.72 27.27 27.14 26.82

7 37.46 36.61 35.96 35.86

8 46.93 46.11 45.46 45.32

9 57.89 56.71 55.79 55.64

10 69.29 67.75 67.00 66.86

11 81.54 79.86 78.96 78.86

12 94.82 94.36 91.71 91.64

13 108.64 106.36 105.50 105.32
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converges to the exact correlation energy. It can be also seen
from Fig. 1 that at a given value ofR, BHF correlations for
the N=2 dot are a somewhat larger piece of the total corre-
lation energy than for N=6. We attribute this difference to a
more important role of the collective effects leading to long
range correlations not included in BHF for the six-electron
dot.

We focus next on the influence of a magnetic field and
how the BHF energies are affected by it. In the symmetric
gauge, a magnetic field in the z direction �perpendicular to
the dot plane� induces a modification of the effective con-
finement from �0 to �=
�0

2+�c
2 /4, with �c the cyclotron

frequency. For increasing magnetic fields one then expects
short range correlations to be enhanced due to the stronger
confinement and, therefore, an improved performance of the

BHF method. Figure 2 displays the evolution of the total
energy with the ratio �c /�0 for a fixed value of R=1.5 and
for a dot with 2 electrons. Note that the correlation energy is
about an order of magnitude higher for the singlet than for
the triplet.13 As expected, for increasing values of �c /�0
BHF is accounting for a higher part of the correlation energy,
although the increase is rather moderate. For the singlet state
BHF correlations range from 73% to 81% of the total corre-
lation energy when �c goes from 0 to 5�0. The evolution is
even flatter for the triplet, where BHF correlations remain at
�75% for all values of �c. Note also that due to the sizable
energy correction for the singlet, the singlet-triplet transition
point is remarkably improved in BHF with respect to HF.

Figure 3 shows the evolution with magnetic field of the
results for a six-electron dot with a fixed interaction-to-
confinement ratio of R=1.89. As compared to the N=2 case,
this dot shows a much richer phase diagram, with large
variations in ground state angular momentum and spin when
increasing the magnetic field. Most remarkable is the com-
parison of BHF and LSDA energies: While LSDA is clearly
superior to BHF at low fields the situation is reversed when
entering the fully polarized phase corresponding to the
maximum-density-droplet �MDD�. In the MDD region the
LSDA energy is actually higher than the HF one and only
BHF is able to provide an energy correction in the right
direction with respect to HF; total BHF energies being ap-
proximately halfway of CI and HF.

All the BHF results shown above have been obtained us-
ing a large enough space of empty HF states, always check-
ing that for the given accuracy convergence in Eq. �18� has
been achieved. In practice, we include the lowest Np particle
states and repeat the calculation increasing this number. Fig-
ure 4 shows the evolution of the BHF energy with Np, on
scale proportional to 1/Np, for three selected cases: The two
upper panels correspond to six and nine electrons with the
MDD configuration in strong magnetic field and a moderate
confinement, while the lower panel shows the case of four
electrons in very strong confinement and zero field. The re-
sults have been fitted with a polynomial including powers up

FIG. 1. �Color online� Upper panels: Total energies in different
methods for two and six-electron dots as a function of the
interaction-to-confinement ratio �see text�. Lower: Correlation ener-
gies within each model for the same two dots.

FIG. 2. �Color online� Left �right� panels show total �correla-
tion� energies for the models and states indicated by the correspond-
ing labels. The results correspond to the N=2 dot in a magnetic
field, shown as a function of the cyclotron frequency �in units of
�0�. The interaction-to-confinement ratio R �see text� is chosen as
R=1.5.

FIG. 3. �Color online� Evolution of the total energy of a six-
electron dot with the magnetic field. The different phases are indi-
cated by the angular momentum labels �Lz ,Sz�. A fixed value of the
parameter R=1.89 has been used �see text�.
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to 1 /Np
3. In the chosen scale, the Np→� limit is given by the

intersection of the polynomial fit with the left vertical axis. It
can be seen from Fig. 4 that the convergence is somewhat
faster for the moderate confinement cases. However, in both
examples the evolution with space dimension is quite
smooth, indicating that the correlation energy builds up by
gathering contributions from many states. The N=9 results
of Fig. 4 provide additional support to our preceding conclu-
sion from Fig. 3 that BHF performs much better than LSDA
in the MDD region.

As already mentioned, for strong confinements the BHF
energies are close to the exact values. Indeed, the N=4 re-
sults of Fig. 4 are very illustrative in this respect since the
extrapolated BHF energy essentially coincides with the CI
result. This strongly confined system mimics a self-

assembled InAs dot with ��0=50 meV. Following Ref. 32
we take for this material m*=0.024me and �=15.15 giving,
for N=4, a small Wigner-Seitz radius of rs�0.12.

To emphasize the possibility of calculating the energies of
larger systems in BHF theory we end this section by showing
in Fig. 5 the results for an N=20 dot. For this number of
electrons exact methods like CI or QMC become extremely
demanding and we have not attempted to compare with
them. The evolution of the BHF energy with the number of
particle states resembles that of Fig. 4 although, as one could
expect, larger values of Np need to be considered for a simi-
lar degree of convergence. The proximity of the
extrapolated-BHF and LSDA energies for N=20 is a bit sur-
prising since, as shown in Fig. 3, for six electrons in the
same confinement the difference is larger. BHF correlations
are thus a more important contribution for N=20 than for
N=6. This can be understood as a different degree of magic-
ity for these two dots. Indeed, a highly magic system is char-
acterized by a distribution of single-particle orbitals whose
energies group in bunches corresponding to quasi-degenerate
shells, with large energy gaps between the shells. One ex-
pects a quenching of independent-pair motions in a highly
magic system, with respect to collective motions, and, there-
fore, a relatively worse performance of the BHF theory for
them. Note also that since the 20-electron dot has a higher
density than the six-electron dot for the same confinement, a
better performance of the BHF theory in the former agrees
with our preceding results regarding the high density limit.

IV. CONCLUSIONS

We have explored the prediction of the BHF theory for
the correlation energy in two-dimensional parabolic dots.
Rather than attempting systematic calculations we intend to
point out characteristic trends when applying a well estab-
lished many body approach such as the BHF theory to para-
bolic quantum dots. By comparing with exact calculations
we have quantitatively discussed the relevance of the BHF
correlations as a function of the confinement potential and
applied magnetic field for several quantum dots. The BHF
theory converges to the exact correlation energy in the limit

FIG. 4. �Color online� Evolution of the total BHF energy with
the number Np of empty HF states included in the solution of Eq.
�19�. Each panel shows the results for a different quantum dot. The
solid line is a cubic fit, in powers of 1 /Np, allowing extrapolation to
the Np→� limit. The LSDA, HF, and CI energies for each case are
also shown for comparison.

FIG. 5. �Color online� Same as Fig. 4 for a dot with 20 electrons
and the additional parameters given in the inset.
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of strong confinement potential �small R parameter, high
densities�. Also relevant is the limit of strong magnetic fields
where the MDD is formed. In these two regions the standard
LSDA is shown to be grossly inadequate while BHF stands
as a competitive method that sizeably improves on the HF
theory. In general, the BHF correlation energy gathers con-
tributions from many empty HF states, as evidenced by the
smooth convergence with the space dimension.

Possible extensions of the calculations presented here can
consider �i� relaxing the circular symmetry constraint, and
�ii� including self-consistency in the BHF single particle or-
bitals. We shall address the latter by finding the improved

mean field proposed by Bethe, Brandow, and Petschek39 that
actually implies the solution of a double self-consistency
problem, on orbitals and effective interaction. Work along
these lines is now in progress.
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