
ar
X

iv
:0

80
2.

15
23

v2
  [

as
tr

o-
ph

] 
 2

8 
Fe

b 
20

08

Confronting Lemaitre-Tolman-Bondi models with

Observational Cosmology

Juan Garcia-Bellido1,2, Troels Haugbølle1,3
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Abstract. The possibility that we live in a special place in the universe, close to the

centre of a large void, seems an appealing alternative to the prevailing interpretation

of the acceleration of the universe in terms of a ΛCDM model with a dominant dark

energy component. In this paper we confront the asymptotically flat Lemaitre-Tolman-

Bondi (LTB) models with a series of observations, from Type Ia Supernovae to Cosmic

Microwave Background and Baryon Acoustic Oscillations data. We propose two con-

crete LTB models describing a local void in which the only arbitrary functions are the

radial dependence of the matter density ΩM and the Hubble expansion rate H . We find

that all observations can be accommodated within 1 sigma, for our models with 4 or 5

independent parameters. The best fit models have a χ2 very close to that of the ΛCDM

model. A general Fortran program for comparing LTB models with cosmological ob-

servations, that has been used to make the parameter scan in this paper, is made pub-

lic, and can be downloaded at http://www.phys.au.dk/∼haugboel/software.shtml

together with IDL routines for creating the Likelihood plots. We perform a simple

Bayesian analysis and show that one cannot exclude the hypothesis that we live within

a large local void of an otherwise Einstein-de Sitter model.
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1. Introduction

Cosmology has been traditionally prone to speculation, a science which has had more of

wishful thinking than actual deduction. Even today, with the extraordinary revolution

in observational cosmology, there are many assumptions we have to take for granted, in

order to interpret the present observations. In particular, the present abundance of less

that 5% of critical density in matter we know and measure in the laboratory, i.e. the

baryons we are made of, compared to the 23% of unknown “dark matter” and the 72%

of even more unknown “dark energy”, seems a rather peculiar and perhaps suspicious

composition for the universe, given their disparate evolution rates. Are we sure we have

now the correct picture of the universe?

We live in a very isolated part of the universe and have not reached that much

beyond our solar system. All we can say about the universe has been inferred from

observations done under very general assumptions; but some of them, no matter how

fundamental they may seem, may be wrong. It is worth pointing out how Einstein failed

to make one of the most fundamental predictions of his new theory of general relativity,

and had to introduce an “absolute” in the theory − the cosmological constant − much

to his regret, because he had the prejudice, supported by incomplete observational data,

that we lived in a static universe without a beginning or an end. Soon after the discovery

of the “recession” of galaxies by Hubble did he renounce to his prejudice on the validity

of the Perfect Cosmological Principle, which assumed maximally symmetric space-

times. For 70 years cosmologists have worked under the assumption of the less strict

Cosmological Principle, which imposes maximal symmetry (homogeneity and isotropy)

only for the spatial sections. But are these symmetries consistent with observations? It

is evident to anyone that looks at the sky in a clear night far away from city lights that

the universe is not homogeneous and isotropic.

It has usually been argued that these fundamental symmetries should only be

“expected to be valid on very large scales”, but how large are large scales? In fact,

the distribution of matter in our local vicinity, i.e. within several Mpc, is very far from

homogeneous; density contrasts reach enormous values not only at the centres of galaxies

but also on larger scales like clusters and superclusters, stretching over hundreds of Mpc.

So, how far do we have to go before we reach homogeneity? Certainly present galaxy

catalogues are not really there yet, and it has been speculated that perhaps with the

next generation of deep catalogues like DES [1] we will finally reach the homogeneity

limit. But, if we do not live in a homogeneous universe, how do we interpret the

observations we have of objects whose light has travelled a significant fraction of the

age of the universe in order to reach us? Our present assumption is that, in practice,

the intervening inhomogeneity averages out and everything works as if we lived in a

homogeneous universe. For several decades this assumption has been a valid one, and has

provided confidence into the construction of the so-called Standard Model of Cosmology.

It is only now that we begin to have sufficiently good cosmological data, and

certainly will have even better data in the near future, that we can be critical
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and pose the appropriate questions. The issue of homogeneity of the universe has

been often dismissed because of the apparent extraordinary isotropy of the cosmic

microwave background. However, any mathematician can readily show that isotropy

and homogeneity are very different sets of symmetries and one does not imply the other.

Nevertheless, if we impose the further assumption, usually stated as the Copernican

Principle, that any point in space should be equivalent to any other, i.e. that we don’t

live in any special place in the universe, then a mathematical theorem states that if all

equal observers see the universe isotropic around them, then the universe must be not

only isotropic but also homogeneous. What remains to be proven is that all observers

are in fact equivalent in the patch of the universe we call the observable universe. Some

will be near a large concentration of mass and others will be in large voids. Certainly

what these two types of observers see will differ from what an idealised observer living

in a perfectly homogeneous universe would see. Unfortunately, we have never spoken to

anyone at the other side of the universe.

The advantage of the present state of Cosmology is that we can begin to pose those

questions and hope to get concrete answers, while just ten years ago it would have been

futile. Moreover, like with the first inclusion of the cosmological constant in the theory,

almost 100 years ago, the physics community is very much puzzled about the nature of

this so-called vacuum energy. Its properties defy our basic understanding of quantum

physics and, moreover, it reminds us suspiciously of the Maxwellian ether, which led

the way (via its disappearance) to a new understanding of physical reality. To put

the question straight, are we sure we live in an accelerated universe which is driven by

some unknown vacuum energy? Could it be that we have misinterpreted our superb

cosmological data and what those photons coming from afar are telling us is something

completely different?

The last few years we have seen a tremendous burst of activity, both at the

theoretical and observational level, in order to disentangle the subtle intricacies of the

actual data sets from their interpretation. As with any hard science (and Cosmology

is indeed finally becoming one), such enterprises can be approached only via further

observational crosschecks. It is no longer true that “astrophysicists are often in error,

but never in doubt”, as Lev Landau once said to annoy his colleague Yakov Zel’dovich

[2]. We can now propose new ways to measure more observables in a wider theoretical

construction. Perhaps it is time to explore the troubled waters of non-maximally

symmetric spatial sections of the universe. In particular, since we indeed observe a

high degree of isotropy in the cosmic microwave background, we can start by exploring

the simplified version of a spherically symmetric inhomogeneous model, which comes

under the name of the Lemâıtre-Tolman-Bondi (LTB) model [3, 4, 5].

While ordinary Friedmann-Robertson-Walker (FRW) space-times are characterised

by two functions, the Hubble rate H(t) and the density parameter Ω(t), which depend

on cosmic time but are independent of the radial coordinate, the LTB models have also

two arbitrary functions, H(r, t) and Ω(r, t), which depend on both time and the radial

coordinate. The Einstein equations for the LTB model are sufficiently simple that they
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can be integrated exactly in terms of two arbitrary boundary conditions. Thus, the LTB

models have lower symmetries, and thus more freedom, but nevertheless make specific

predictions about the behaviour of light along geodesics of the new metric. Therefore,

one can evaluate the corresponding observables, like cosmological distances (or ratios

of distances), from the available sets of data. Surprisingly, as we will show in the next

sections, present cosmological data does not yet seem able to exclude with confidence

a universe which is not exactly homogeneous. This should not come as a surprise, we

do live in an (locally) inhomogeneous universe, some say that within a large underdense

void [6, 7, 8, 9, 10, 11] similar to that which induces a cold spot in the CMB [12, 13, 14]

so why should we assume global homogeneity? In fact, the possibility that we happen

to live in the centre of the world was advocated long ago in Ref. [15], based on the

stochastic inflation formalism [16, 17]. What is surprising is that within this framework

one can account for (almost) all observational evidence without having to introduce

an unknown in the theory, an absolute, whose properties are highly mysterious, not to

mention the alternative highly artificial and ad hoc modifications of gravity on the very

large scales.

In this paper we propose an inhomogeneous model of the universe, with a local

void size of a few Gpc and asymptotically Einstein-de Sitter, and then use the present

sets of data (CMB, LSS, BAO, SNIa, HST, Ages, etc.) to constrain its parameters. In

Section 2 we describe the general LTB metric, the Einstein equations and the definitions

of cosmic distances. We also give a novel series expansion that allows one to integrate

to arbitrary precision the Einstein equations for arbitrary functions H0(r) and ΩM(r).

We then describe a specific model with a concrete form of these two functions that are

plausible but simple matches to observations, and show the different (longitudinal and

transverse) rates of expansion and the apparent acceleration. We also show that the

comoving size of the sound horizon depends on the distance to the centre of the void

in the LTB model, and relate it to the expansion rates at different redshifts. This is a

prerequisite for making a realistic comparison with Baryon Acoustic Oscillation data.

In Sect. 3 we present the data sets we use to constrain the model, with the subtleties

needed to correctly interpret these in terms of the model. In Sect. 4 we give the main

results and present a Bayesian analysis to ascertain the goodness of fit of the model by

comparing it with a standard ΛCDM model with variable (but constant) equation of

state parameter w. In Sect. 5 we give the conclusions.

2. The LTB model

The most general (cosmological) metric satisfying spherically symmetric spatial sections

can be written as

ds2 = −dt2 + X2(r, t) dr2 + A2(r, t) dΩ2 , (1)

where dΩ2 = dθ2 + sin2 θdφ2. Assuming a spherically symmetric matter source,

T µ
ν = −ρM (r, t) δµ

0 δ0
ν ,
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the (0, r) component of the Einstein equations, G0
r = 0, implies X(r, t) =

A′(r, t)/
√

1 − k(r), with an arbitrary function k(r) playing the role of the spatial

curvature parameter. Note that we recover the FRW metric imposing the extra

homogeneity conditions,

A(r, t) = a(t) r , k(r) = k r2 .

The other components of Einstein equations read[18, 19]

Ȧ2 + k

A2
+ 2

ȦȦ′

AA′
+

k′(r)

AA′
= 8π G ρM , (2)

Ȧ2 + 2AÄ + k(r) = 0 . (3)

Integrating the last equation, we get

Ȧ2

A2
=

F (r)

A3
− k(r)

A2
, (4)

with another arbitrary function F (r), playing the role of effective matter content, which

substituted into the first equation gives

F ′(r)

A′A2(r, t)
= 8π G ρM(r, t) . (5)

Combining these two equations we arrive at

2

3

Ä

A
+

1

3

Ä′

A′
= −4π G

3
ρM , (6)

which determines the “effective” acceleration in these inhomogeneous cosmologies. Note

that the notion of acceleration becomes ambiguous since backward proper time has both

a time and a spatial component.

The boundary condition functions F (r) and k(r) are specified by the nature of the

inhomogeneities through the local Hubble rate, the local matter density and the local

spatial curvature,

H(r, t) =
Ȧ(r, t)

A(r, t)
, (7)

F (r) = H2
0 (r) ΩM(r) A3

0(r) , (8)

k(r) = H2
0 (r)

(

ΩM(r) − 1
)

A2
0(r) , (9)

where functions with subscripts 0 correspond to present values, A0(r) = A(r, t0) and

H0(r) = H(r, t0). With these definitions, the r-dependent Hubble rate is written

as[18, 19]

H2(r, t) = H2
0 (r)

[

ΩM (r)

(

A0(r)

A(r, t)

)3

+ (1 − ΩM(r))

(

A0(r)

A(r, t)

)2
]

. (10)

Inhomogeneities come in two different classes: in the matter distribution or in the

expansion rate, which are mutually independent. Moreover, the extra gauge freedom of

the synchronous comoving gauge allows us to choose

A(r, t0) = A0(r) = r . (11)
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Then we can integrate the Hamiltonian constraint equation (10) to provide comoving

time as a function of the radial coordinate,

H0(r)t(r) =

∫ A(r,t)/A0(r) dx
√

ΩM (r)/x + 1 − ΩM (r)

=
A(r, t)

A0(r)
√

ΩK(r)

√

1 +
ΩM(r)A0(r)

ΩK(r)A(r, t)
− ΩM(r)
√

Ω3
K(r)

sinh−1

√

ΩK(r)A(r, t)

ΩM(r)A0(r)
, (12)

where ΩK(r) = 1 − ΩM (r). In particular, setting A(r, t) = A0(r) we find the current

age of the universe

H0(r)tBB(r) =
1

√

ΩK(r)

√

1 +
ΩM(r)

ΩK(r)
− ΩM (r)
√

Ω3
K(r)

sinh−1

√

ΩK(r)

ΩM(r)
. (13)

For an observer located at the centre r = 0, by symmetry, incoming light travels

along radial null geodesics, ds2 = dΩ2 = 0, and time decreases when going away,

dt/dr < 0, and we have

dt

dr
= − A′(r, t)

√

1 − k(r)
(14)

which, together with the redshift equation,

d log(1 + z)

dr
=

Ȧ′(r, t)
√

1 − k(r)
(15)

can be written as a parametric set of differential equations, with N = log(1 + z) being

the effective number of e-folds before the present time,

dt

dN
= −A′(r, t)

Ȧ′(r, t)
, (16)

dr

dN
=

√

1 − k(r)

Ȧ′(r, t)
, (17)

from which the functions t(z) and r(z) can be obtained. From there one can immediately

obtain both the luminosity distance, the comoving distance and the angular diameter

distance as a function of redshift,

dL(z) = (1 + z)2A[r(z), t(z)] , (18)

dC(z) = (1 + z) A[r(z), t(z)] , (19)

dA(z) = A[r(z), t(z)] , (20)

2.1. Series solution

In order to integrate out the redshift dependence it will be useful to make a series

expansion of the cosmic time variable t(r) as a function of the space-dependent scale

factor A(r, t). For this purpose we will define new variables

y =
ΩK(r)

ΩM (r)
H0(r)

√

ΩK(r) t(r) =
2

3
(δ a)3/2 , (21)

x =
ΩK(r)

ΩM (r)

A(r, t)

A0(r)
= δ

A

A0

, (22)
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where δ = ρc/ρM − 1 is the density contrast ratio and a(t) is the Einstein-de Sitter

(FRW) scale factor,

δ(r) =
ΩK(r)

ΩM (r)
, (23)

a(t) =

(

3

2
H0(r)

√

ΩM (r) t

)2/3

. (24)

With these definitions, the time integral (12) can be written as y =
√

x(1 + x)−ln[
√

x+√
1 + x], which can be expanded in series and inverted. With the definitions

g(z) = z +
1

5
z2 − 3

175
z3 +

23

7875
z4 − 1894

3031875
z5 + O(z6) , (25)

f(r) =
H ′

0(r)

H0(r)
− Ω′

M(r)

ΩM(r)

(

1 + ΩM (r)/2

1 − ΩM (r)

)

, (26)

h(r) =
1

r
+

Ω′

M(r)

ΩM (r)(1 − ΩM(r))
, (27)

we can write the solution as a power series, whose coefficients can be calculated with

arbitrary precision,

A(r, t) =
r

δ
g(a δ) , (28)

Ȧ(r, t) =
2

3t

r

δ
a δ g′(a δ) , (29)

A′(r, t) =
r

δ

[

g(a δ)h(r) +
2

3
a δ g′(a δ) f(r)

]

, (30)

Ȧ′(r, t) =
2

3t

r

δ

[

a δ g′(a δ)h(r) +
2

3
a δ g′(a δ) f(r) +

2

3
(a δ)2g′′(a δ) f(r)

]

, (31)

Ä(r, t) = − F (r)

2A2(r, t)
, (32)

Ä′(r, t) =
F (r)A′(r, t)

A3(r, t)
− F ′(r)

2A2(r, t)
. (33)

These functions allow us to construct any other observable. For instance, the

transverse and longitudinal rates of expansion can be written as

HT (r, t) ≡ Ȧ(r, t)

A(r, t)
, (34)

HL(r, t) ≡ Ȧ′(r, t)

A′(r, t)
. (35)

Note that in general these two functions will be different, and they enter into other

observables. We can also construct quantities like the “effective” acceleration parameter

q(z) = −1 +
d ln H(z)

d ln(1 + z)
, (36)

where H(z) is in fact HL(r(z), t(z)).
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One could also define an effective equation of state parameter

w(z) ≡ p(z)

ρ(z)
= −1 +

1

3

d ln
[

H2(z)/H2
0 (r) − ΩM (r)(1 + z)3

]

d ln(1 + z)
, (37)

where H(z) is here HT (r(z), t(z)).

2.2. Parametric solution

At fixed r the r-dependent Hubble rate Eq. (10) is just like the normal Friedmann

equation, and the standard way to explicitly solve for A(r, t) is to use an additional

parameter η. With the selected gauge the solution is

A(r, t) =
ΩM(r)

2[1 − ΩM(r)]
[cosh(η) − 1]A0(r) (38)

H0(r)t =
ΩM(r)

2[1 − ΩM (r)]3/2
[sinh(η) − η] (39)

Given r and t solving Eq. (39) η can be found, and combining Eqs. (38)-(39) with the

Einstein equations we can the derive any necessary quantity.

We have used both the series solution, implemented in a Mathematica notebook,

and the parametric solution, implemented as a Fortran program, to make and double

check all numerical computations in this paper. The Fortran 90 program together with

a set of IDL routines for making likelihood plots is made publicly available and can be

downloaded at http://www.phys.au.dk/∼haugboel/software.shtml.

2.3. The GBH model

Here we define a new type of LTB model, which is completely specified by the matter

content ΩM(r) and the rate of expansion H0(r),

ΩM(r) = Ωout +
(

Ωin − Ωout

)

(

1 − tanh[(r − r0)/2∆r]

1 + tanh[r0/2∆r]

)

, (40)

H0(r) = Hout +
(

Hin − Hout

)

(

1 − tanh[(r − r0)/2∆r]

1 + tanh[r0/2∆r]

)

, (41)

which is governed by 6 parameters,

Ωout determined by asymptotic flatness (42)

Ωin determined by LSS observations (43)

Hout determined by CMB observations (44)

Hin determined by HST observations (45)

r0 characterises the size of the void (46)

∆r characterises the transition to uniformity (47)

http://www.phys.au.dk/~haugboel/software.shtml
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Figure 1. The radial dependence of the physical matter density in units of the critical

density (ρm), of our density function (Ωm), that coincides with the usual matter density

at the centre and asymptotically, and of the transverse and longitudinal expansion

rates (HT and HL). The radial axis is the angular diameter distance (dA(r, tBB)), and

everything is taken at the current time for the central observer. To the left (right) is

shown the best fit GBH (constrained) model (see table 2). Also shown to the right is

an example of the density profile of a model with a sharp transition (∆r/r0 = 0.3),

but still within 1-σ of the best fit.

We fix Ωout = 1 and let the other five parameters vary freely in our parameter scans

(see table 1 for the priors). For instance, a plot of ΩM (r), HT (r) and HL(r) for the two

best fit models, as a function of the angular diameter distance today, dA(r, tBB), can be

seen in Fig. 1‡. Also shown is the density profile of a model with a sharper transition

(∆r/r0 = 0.3), but still within 1-σ of the best fit. This illustrates that observations

allow for shallower density profiles close to the origin, and that for the physical matter

density ρM , we naturally get a shell-like transition.

2.4. The constrained GBH model

We have also considered a more constrained model, in which the Big Bang is

homogeneous, that is, the spatial hypersurface at the Big Bang does not depend on

the radial coordinate r. This can be obtained simply using Eq. (13), by a choice of

H0(r),

H0(r) = H0

[

1

ΩK(r)
− ΩM (r)
√

Ω3
K(r)

sinh−1

√

ΩK(r)

ΩM (r)

]

, (48)

so that tBB = c H−1
0 is universal, for all observers, irrespective of their spatial location.

Note that in this model we have less freedom than in the previous model, since now

there is only one arbitrary function, ΩM (r), and there is one free parameter less.

‡ Note that while apparently this model is similar to that of Ref. [20], it differs in the details. They fix

their gauge A(r, t) = A0(r) = r at the moment of recombination, while we fix it at the current time,

and they define their free functions in terms of F (r) and k(r), while we use H(r) and Ω(r).
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2.5. Apparent acceleration in the light cone

It is yet not clear, if what we observe as a function of redshift, in the form of luminosity

distances to standard candles (e.g. Supernovae Type Ia), angular diameter distances to

standard rulers (e.g. Baryon Acoustic Oscillations), the galaxy power spectrum, galaxy

cluster counts, or other measures of the geometry and mass distribution of the Universe,

are due to modifications of gravity, an extra energy component, a cosmological constant,

or simply a wrong interpretation of the underlying cosmological model. But as a whole

they represent different possible explanations for the “Dark Energy” problem. One of

the main observables, that will help decide between the different scenarios in the future,

is the Hubble parameter H(z). Under the assumption that the correct background is a

flat FRW cosmology we can write it [21]

H2
T,L(z)

H2
in

= (1 + z)3Ωin + (1 − Ωin) exp

[

3

∫ 1+z

1

d log(1 + z′)(1 + wT,L
eff (z′))

]

, (49)

where Hin and Ωin are the expansion rate and matter density as observed at z = 0§. By

taking the derivative we can write it as

wT,L
eff (z) = −1 +

1

3

d log
[

H2

T,L
(z)

H2

in

− (1 + z)3Ωin

]

d log[1 + z]
, (50)

where we have assumed that
H2

T,L
(z)

H2

in

− (1 + z)3Ωin > 0. The beauty of Eq. (50) is that

if the observational data indeed is a manifestation of extra energy components, wT,L
eff (z)

has the usual interpretation of a dark energy equation of state, while in the case of

modified gravity models, or the LTB model that we are considering in this paper, it

can be interpreted as an empirical observational signature. In those case wT,L
eff (z) is a

function that captures the difference between the expansion rate that we measure, and

the expansion rate that we ascribe to the observed matter density Ωm (see also Eq. 37

for a correct definition of w in the case of an LTB universe).

It is worthwhile pointing out, that even if there is not an accelerated expansion in

the LTB models we are considering, because data is observed in the light cone, the total

time derivative is [19]

D

Dt
=

∂

∂t
− c
√

1 − k(r)

A′(r, t)

∂

∂r
≃ ∂

∂t
− c

∂

∂r
, (51)

and an observer can measure an apparent acceleration when the light cone traverses

the central inhomogeneity due to spatial gradients in either the matter density or the

expansion rate. In Fig. 2 we show wT,L
eff (z) for two best fit models. Letting H = HT

and H = HL are both relevant, because different observations probe different expansion

rates, i.e. as will be seen below, the Baryon Acoustic Oscillation signal depends partly

on HL, while supernova observations are only related to HT through its dependence on

dL = (1 + z)2dA = (1 + z)2 exp(
∫

HT dt). Interestingly, the variation and derivative of

§ Alternatively, in [22] Eq. (50) is written with derivatives of the scale factor a instead of the redshift

z. We advocate using z, as it is an observable, in contrast to a(z). Notice that HT (0, t) = HL(0, t).
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Figure 2. The apparent acceleration wT,L
eff

(z) inferred by applying Eq. (50) and FRW

cosmology as the underlying model to describe the change in the Hubble parameter

(either HT (z) or HL(z)) in the two best fit LTB models.

wT,L
eff (z) is quite large in the best fit LTB models, showing that a precise low redshift

supernova survey, such as the SDSS Supernova Survey [23], sensitive to HT , or a fine

grained BAO survey such as PAU [24], sensitive to HL, could rule out or reinforce

the models in the near future. Conversely, if a disagreement between w as observed

by Supernovae and w as observed through the BAOs is found, this could be a hint of

inhomogeneous expansion rates.

We can directly compute wT,L
eff (z) in the limiting cases z = 0 and z ≫ 1 for

asymptotically flat LTB models

wT,L
eff (z) =











−1
3

+ 2
3

cH′

0
(0)

(1−Ωin)H2

in

if z = 0, and H = HT

−1
3

+ 4
3

cH′

0
(0)

(1−Ωin)H2

in

if z = 0, and H = HL

0 if z ≫ 1

, (52)

where we have used that the LTB metric converges asymptotically to a FRW metric

giving dz = −da/a. We see that to have w ≪ −1/3 at low z implies either a significant

negative gradient in H0(r), or Ωin ∼ 1.

2.6. Physical scales in the early universe

Many bounds from observational cosmology, such as the sound horizon (a “standard

ruler”), the CMB, and the big bang nucleosynthesis, are derived by considering scales

and processes in the early universe, and are based on the implicit assumption of an

underlying FRW metric. To test LTB models against these observational data we have

to connect distance scales, redshifts, and expansion rates in the early universe to those

observed today.

By construction, at high redshifts the LTB metric converges to a FRW metric, and

the central void disappear (see Eq. 10), and physical results derived for FRW space
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times still hold in the early universe, even though we are considering an LTB space

time. But starting from an approximately uniform universe at a high redshift ze in the

LTB model, the expansion rate and matter density become gradually inhomogeneous,

and a uniform comoving physical scale l in the early universe at ze, for example the

sound horizon, is not uniform at some later redshift z. In particular the comoving size

at t = t0 = tBB(0) depends on how much relative expansion there has been at different

positions since the formation of the uniform scale

l(r(z)) = l(r∞)
A(r(z), t0)

A(r(z), t(ze))

A(r∞, t(ze))

A(r∞, t0)
, (53)

where t0 is the time now for the central observer, and r∞ is the radial coordinate of an

observer very far away from the void. This is a consequence of defining the comoving

physical scale as the scale measured at t0. If instead we fixed the comoving length scales

to be measured in the early universe at t(ze), then indeed l(r(z)) would be independent

of the observer position. The convenience of the above formula is, that the LTB models

we consider are asymptotically FRW, and we can easily compute comoving scales at

infinity.

Normal relations determining early universe quantities, such as the redshift at

matter-radiation equality, are essentially based on the Friedmann and conservation

equations to relate cosmological parameters now to the parameters then

H2(z) = H2
0

[

ΩM(1 + z)3 + (1 − ΩM)(1 + z)2
]

(54)

ρ(z)a3 = ρ(0)a3
0 , (55)

where we have written it for a matter dominated universe. Eq. (10) is the LTB equivalent

to Eq. (54), and since we are considering LTB metrics that asymptotically converge to

FRW metrics the equation for light rays, or null geodesics, (15) at high redshifts have

the usual solution d(1+z) = −da/a, and we can write an asymptotic version of Eq. (10)

that is valid at high redshifts

H2(z) = H2
eff

[

Ωeff
M (1 + z)3 + (1 − Ωeff

M )(1 + z)2
]

(56)

where

Heff = H0(ze)

[

A0(r(ze))

(1 + ze)A(r(ze), t(ze))

]3/2

(57)

and the asymptotic matter density is

Ωeff
M = ΩM (r(ze)) = Ωout = 1 (58)

In summary, any quantity at high redshifts in the LTB model can be computed with

the usual formulas valid for a FRW metric, but using the matter density and Hubble

constant given in Eqs. (57)-(58).

3. Observational Data

To assess the viability of the proposed models we have tested them against a set of

current observational data. We divide the data into two classes: Constraining data sets,
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and prior data. The constraining data sets are actual measurements with errors, that

are used to compute the likelihood of a given model, while the prior data, merely give

ranges inside which the models should be.

3.1. The Cosmic Microwave Background

It is not a priori clear how to compute the spectrum of temperature anisotropies, without

a full perturbation theory for the LTB models, but as shown in section 2.6 we can

compute the comoving distance to the surface of large scattering, and the comoving size

of the sound horizon at large distances. The ratio give the typical size, of the CMB

temperature fluctuations on the sky, or equivalently the scale of the first peak, which is

measured with exquisite precision by the WMAP satellite [25]

θCMB =
rs(zrec)

dC(zrec)
= 0.5952 ± 0.0021◦ = 0.010388 ± 0.00037. (59)

The sound horizon rs(zrec) is calculated using the fitting formula provided by Eisenstein

and Hu [26] with ΩM = Ωout = 1, h = Heff (see Eq. 57). The physical baryon density

in the early universe and the recombination redshift are fixed to their best fit WMAP3

values ΩBH2
eff = 0.0223 and zrec = 1089. The χ2 from the CMB constraint is simply

χ2
CMB =

[θCMB − rs(zrec)/(dC(zrec)]
2

σ2
θ

(60)

3.2. Baryon Acoustic Oscillations

The BAO has been measured at different scales using a variety of techniques, and the

feature has been detected in the 3D two-point correlation function [27, 28], the 3D power

spectrum [29], and the angular power spectrum [30]. In particular Percival et al [29]

have combined the 2DF and SDSS large scale surveys to yield a measure of the BAO

centred at two different redshifts, namely z = 0.2, and z = 0.35.

In [29] the power spectrum is calculated in a reference cosmology, and then the

comoving distance scale is either dilated, using a fixed factor, or deformed using a 3 node

spline fit. In principle one would need a full perturbation theory for LTB geometries to

recalculate the 3D power spectrum, using our best fit model, but if we take into account

that the observed galaxies are divided into redshift slices, and that the LTB universe

at constant redshift behaves locally like a homogeneous FRW universe (e.g. Eq. (10)

is a local analogy to the normal FRW Hubble rate equation), we can then, as a first

approximation, relate the ΛCDM power spectrum calculated in [29] to the LTB power

spectrum through a dilation. In Fig. 3 we show the fractional difference between a

simple dilation of the comoving scale, and a full modelling around the relevant redshifts

z = 0.2 and = 0.35. The dilation is an excellent approximation, the difference being less

than 2% over the relevant redshift range. We stress, however, that a comprehensive test

of LTB models against large scale structure data has to await the development of the

linear perturbation theory for LTB space times, an approach that is outside the scope

of this paper [31].
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Figure 3. The fractional difference in the comoving distance used in the reference

model in [29] compared to the best fit GBH model (red, full line) and constrained

model (blue, dashed line). To the left (right) is shown the the dilation at z = 0.2

(z = 0.35), and in parenthesis in the legend is indicated the dilation.

The relevant BAO quantity to test against is the observed peak (in the case of

real space) or wiggle wavelength (in the case of Fourier space), compared to the size

of the sound horizon in the reference model used in [29], which can be interpreted

approximately as the projected size of the BAO on the sky for structures at a given

redshift. The ratio is given as

θBAO(z) =
rs(z)

DV (z)
. (61)

As discussed in Section 2.6, the comoving size of the sound horizon rs(z) is a

function of redshift, due to the inhomogeneous nature of the expansion since the surface

of last scattering A(r(z), t(z))/A(r(zrec), t(zrec)). Because we detect the BAO in the 3D

distribution of galaxies, and not in the 2D projection on the sky, DV is not just the

comoving distance, but rather a combination of longitudinal and transversal distances.

In LTB space-times the longitudinal and transversal Hubble parameters, HL and HT , can

differ significantly, see Fig. 1, and therefore it is important to use the correct longitudinal

expansion rate:

DV (z) =

[

d2
A(z)(1 + z)2 cz

HL(z)

]1/3

. (62)

Percival et al [29] find

θBAO(0.2) = 0.1980 ± 0.0058 θBAO(0.35) = 0.1094 ± 0.0033 (63)

with a 39% correlation, and we use these two measurements as our BAO data set giving

the χ2

χ2
BAO =

∑

i,j

[θBAO(zi) − rs(zi)/DV (zi)] C
−1
ij [θBAO(zj) − rs(zj)/DV (zj)] (64)

with

C
−1 =

(

35059 −24031

−24031 108300

)

(65)
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Figure 4. Apparent magnitude residuals for the two best fit LTB models, standard

open CDM, and the best fit ΛCDM FRW models compared to Type Ia Supernovae

data.

3.3. Type Ia Supernovae

We use the Type Ia Supernovae compilation by Davis et al. [32], which is a compilation

of 192 SNIa consisting of 45 SNe from a nearby SNIa sample [33], 57 SNLS [34] and

60 ESSENCE [35] intermediate redshift SNe and 30 high redshift “Gold” SNe [36],

with internally consistent magnitude offsets. The supernovae span the redshift range

z = 0.01 − 1.7, and we use the magnitude residuals µ to constrain the LTB models.

The residual µ, and apparent and absolute magnitudes m and M are related to the

luminosity distance dL as

µ = m − M = 5 log10

[

dL

1Mpc

]

+ 25 (66)

The exact absolute magnitude of a SNIa is unknown, and we include an arbitrary offset

µ0, when calculating χ2 for the model fit to the observed SNIa

χ2
SNIa =

∑

i

[

µobs
i − (µmodel(zi) + µ0)

]2

σ2
i

(67)

where µ0 is determined by minimising χ2
SNIa. µ has a logarithmic dependence on dL,

and the zero point µ0 is degenerate with the local overall scale of the expansion rate

(Hin in the GBH model, and H0 in the constrained model, see Figs. 8 and 6).

Even though the Supernova data set is by far the largest of the three, the error bars

on individual SNe are large, and internally there is a large scatter, as can be appreciated

in Fig. 4, where the residuals are compared to the best fit GBH LTB models, and the

open CDM and ΛCDM FRW models. Note that the predicted curves for the best fit

GBH model and the best fit ΛCDM model start to deviate significantly beyond redshift

z = 1, and therefore it would be extremely useful to have a complete Supernovae data

set at high redshifts, which could help discard one of the models against the other one.
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The three data sets discussed above are obtained through different means, and relate

to different physical observations, and hence they are not correlated in any way. This

independence allow us to find the total likelihood by simply multiplying the individual

likelihood functions.

3.4. Priors

Even though we do not include them in the likelihood analysis, we still require our

models to obey three additional priors: Two of them concern the local universe, and as

such are priors at z = 0. They are the observed lower age limit on globular clusters in

the Milky Way of 11.2 Gyr [37] (2-σ limit) and the HST key project [38] measure

of the local value for the Hubble parameter Hin = 72 ± 8 (1-σ limit). The third

prior is the gas fraction as observed in clusters of galaxies. This is a very powerful

observation for limiting alternative models: Clusters of galaxies sit at the bottom of

deep gravitational potential wells, and supposedly the gas fraction is representative

for the universe as a whole, because neither gas nor dark matter can escape out

of the potential well. This universal prior can be compared to the gas fraction we

deduce far away from the void, by combining the WMAP satellite and Big Bang

Nucleosynthesis bound on the physical baryon density ωb = ΩbH
2
eff = 0.0223 with the

physical matter density at infinity ωm = ΩoutH
2
eff = H2

eff . The current observational

limits are fgas = ωb/ωm = 0.1104 ± 0.0016 ± 0.1 (random+systematic) [39], while for

our best fit models (see Table 2) we find fgas = 0.127 − 0.134 in agreement at 2-σ with

observations.

Model H0 Hin Hout Ωin r0 ∆r

units 100 km s−1 Mpc−1 Gpc r0

GBH − 0.5 − 0.85 0.30 − 0.70 0.05 − 0.35 0.3 − 4.5 0.1 − 0.9

Constrained 0.50 − 0.95 0.4 − 0.89 0.33 − 0.63 0.05 − 0.35 0.5 − 4.5 0.1 − 0.9

Table 1. Priors used when scanning the parameters of the two models. In the

constrained model H0 is only a pre factor for H0(r) and the span of Hin and Hout

are derived from the priors on Ωin and H0.

4. Analysis and results

To test the full and the constrained GBH LTB model, we have performed a parameter

scan over the models and for each set calculated the χ2. The priors are given in

table 1, and have been chosen to encompass the best fit 2-σ limits, except where large

degeneracies exist, and also to be reasonable, taking into account the HST key project

[38], and acceptable matter densities.
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Figure 5. To the left/right the CMB spectrum for the best fit GBH/constrained-GBH

model (red line) compared to WMAP3 data (diamonds) [41], and including cosmic

variance (grey shading).

4.1. The best fit models

In table 2 are given the best fit for the two models. It is interesting to notice that both

have very similar values, and in fact this seems to hint that current data prefer the

simpler constrained model with a homogeneous big bang. Both best fit models have

local Hubble rates on the low side but still in agreement with the HST project, and the

local time to Big Bang is well inside the limits given by globular clusters.

The best fit models both give an excellent luminosity redshift distance relation, that

are in as good an accordance with current Type Ia SNe as the ΛCDM model (see Fig.

4). This comes as no surprise: LTB models can be constructed that fit any luminosity-

redshift relation [40]. Our model fit is done though under the simultaneous constraints

of the other probes, and as such is more constrained. In the transition zone between the

void and the surrounding Einstein-de Sitter space (at r ∼ r0) there is a significant (up

to ∼10%) difference between HT (r), which is related to dL, important for supernova

observations, and HL(r), important for the longitudinal part of the Baryon Acoustic

Oscillations (see Fig. 1). This difference marks a fundamental observational signature

between LTB and FRW models. A set of very well observed Type Ia SNe at z 0.1− 0.2,

such as the SDSS II SN survey [23], together with the BAO observations already done

at similar redshifts, will put strain on either model.

Because we currently do not have a full perturbation theory for LTB space times,

we were not able to make a full likelihood analysis comparing our model to all

the WMAP data. Nonetheless, to get an idea of how bad the models fit the full

body of WMAP temperature anisotropy observations, we have calculated a standard

temperature anisotropy spectrum using as input Heff and Ω = Ωout = 1 (see Fig. 5).

Even though we fix the physical baryon density, and only fit the first peak of the

CMB, the obtained model is not too bad, and it is reassuring that other people have

proposed Einstein-de Sitter models that do fit the WMAP3 CMB observations using

a non standard primordial spectrum and a hot neutrino component (e.g. [42]). Very
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recently an LTB model similar to ours was proposed [43] and the authors managed to

make a reasonable fit to the full WMAP TT and TE data by adding a running of the

tilt in the primordial spectrum. In a more complete analysis at low l-values and large

angles one could expect an effect similar to that of a cosmological constant, since we

have a non-trivial curvature at low redshifts, and hence an even better fit that do not

have to rely on ad hoc features or a large running of the tilt in the primordial power

spectrum may indeed be possible.

4.2. Likelihood contours and degeneracies

We have marginalised over different dimensions in parameter space by integrating over

the likelihood, given as L ∝ exp(−χ2/2). The marginalised 1-σ and 2-σ likelihoods for

the individual data sets, and also the 3-σ limits for the combined data sets are shown

in Figs. 8 and 6.

In the normal ΛCDM model, if ωb is fixed, there is a well known strong degeneracy

between Ωm and H0[44] for a given size of the sound horizon on the sky θA. In our model

the relevant Ωm for the CMB is Ωout = 1, that fixes the size of the sound horizon, and

we have also fixed ωb. Then the size of θA depends essentially on H0 or Hin, which is

reflected in the likelihood constraint from CMB on Hubble rates as seen in the figures.

Nonetheless we can to some extent change dA by introducing curvature, allowing us to

choose a higher value for Hin or H0, either by having a large void size, r0, or making

the void very underdense Ωin ≪ 1. This can be seen by the widening of the 2-σ limit in

the H-r0 plot for large values of r0, and the asymmetric 2-σ errors in the H-Ωin plots.

Ωin and r0 are the major parameters determining the luminosity-redshift relation,

and are hence constrained by the Type Ia SNe and the BAO. While only the relative

value of Hubble rate play a role for the SNe, the BAO does limit H , and there is some

strain between the BAO and the Type Ia SNe, as seen in the Ωin-r0 plots.

An obvious degeneracy is that of r0 and ∆r/r0 because the effect of a larger void

can also be obtained by making a smoother, and hence broader, transition. Current

data does not have any sensitivity to Hout, because it mainly affects the Hubble rate at

very high redshift, where no good observational data exist. The relative transition width

∆r/r0 is also not very well constrained. The only thing we can deduce, in agreement

with the good fit to the data given by the ΛCDM model, is that no sudden transition

is allowed. The lower limit on ∆r/r0 is mainly limited by the Type Ia SN data, and to

a lesser extent the BAO.

It should be stressed though, that even though our LTB models give very good fits

with χ2 that are comparable to that of the ΛCDM model, current data do put significant

constraints on the models, and they will probably be challenged by new observational

data in the near future, and can be falsified.
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Model H0 Hin Hout Heff Ωin r0 ∆r tBB

units 100 km s−1 Mpc−1 Gpc r0 Gyr

GBH − 0.58±0.03 0.49±0.2 0.43 0.13±0.06 2.3±0.9 0.62(>0.20) 14.8

Constrained 0.64±0.03 0.56 0.43 0.42 0.13±0.06 2.5±0.7 0.64(>0.21) 15.3

Table 2. Best fit values with 2-σ error bars for the two models. The likelihood

contours are not closed for ∆r, and only a lower limit can be given. In the GBH model

Hout is unconstrained. For the central values of the other four parameters Hout = 0.49

minimises χ2. Notice that naturally the best fit GBH model and the constrained model

give similar best fit values, and error bars. Ie. among all the different GBH models a

model with a homogeneous Big Bang is preferred.
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Figure 6. Likelihoods for the GBH model: The likelihood for the combined data

set is shown in yellow with 1-, 2-, and 3-σ contours, while the individual SNIa, BAO,

and CMB data sets are shown in blue, purple, and green respectively with 1- and 2-σ

contours.

4.3. Bayesian analysis

In this section we would like to find out whether a homogeneous FRW model of the

universe (including the accelerated expansion in terms of a vacuum energy with constant

equation of state w) can be used with confidence when analysing present cosmological

data, or should we rather be more general and assume an inhomogeneous LTB model

of the universe?
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Figure 7. . . . Figure 6 continued.

The standard frequentist analysis of parameter estimation, given a set of data, is

not very useful for model selection, since it is difficult to compare models with different

number of parameters. For a discussion about probability theory and model selection

see Refs. [45, 46, 47, 48]. For instance, the usual method of comparing minimum χ2 per

effective degree of freedom normally misses the point and is not very decisive. Other

methods to decide which model gives the best description, given the data, include various

Information Criteria, e.g. Akaike [49] and Bayesian [50], which use more or less ad hoc

formulae without much justification and normally do not compare well among eachother.

However, in the last few years there has been a flourishing of several independent

analysis based on the Bayesian evidence associated with a given likelihood and a given
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Figure 8. Likelihoods for the constrained model: The likelihood for the combined

data set is shown in yellow with 1-, 2-, and 3-σ contours, while the individual SNIa,

BAO, and CMB data sets are shown in blue, purple, and green respectively with 1-

and 2-σ contours.

cosmological model, within some given priors, both theoretical and observational, see

e.g. Refs. [51, 52, 53, 54].

The Bayesian evidence is based on Bayes theorem, which relates the posterior

distribution P(θ,M|D) for the parameters θ of the model M given the data D, in

terms of the likelihood distribution function L(D|θ,M) within a given set of priors

π(θ,M),

P(θ,M|D) =
L(D|θ,M) π(θ,M)

E(D|M)
, (68)
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where E is the Bayesian evidence, that is the average likelihood over the priors,

E(D|M) =

∫

dθ L(D|θ,M) π(θ,M) . (69)

The prior distribution functions contain all the information about the parameters

before observing the data, e.g. our theoretical prejudices, our physical intuition about

the model, the ranges of parameters obtained from previous experiments, etc. The

Bayesian evidence is very useful because it allows a comparison of models within a

complete set Mi=1...N (in our case, N=2). We can compute the posterior probability

for each hypothesis (model) given the data D using again Bayes theorem, P(Mi|D) ∝
E(D|Mi) π(Mi), where E(D|Mi) is the evidence of the data under model Mi and

π(Mi) is the prior probability of the i-th model before we see the data, usually taken

to be identical, i.e. π(Mi=1...N ) = 1/N . Finally, the ratio of the evidences for two

competing models is called the Bayes factor,

Bij ≡
E(D|Mi)

E(D|Mj)
. (70)

This expression provides a mathematical representation of Occam’s razor, because more

complex models tend to be less predictive, lowering their average likelihood (within the

priors) in comparison with simpler, more predictive models. Complex models can only

be favoured if they are able to provide a significantly improved fit to the data. In simple

cases where different models give vastly different maximum likelihoods there is no need

to employ model selection techniques because they provide only minor corrections to

the standard inference, but they are essential when the difference between maximum

likelihoods is only marginal, as will be the case at hand. The Bayes factor (70) is then

used to give evidence of (i.e. favour) the model Mi against the model Mj using the so

called Jeffreys’ scale, a particular interpretation of the Bayes factor which strengthens its

veridic roughly each time the logarithm ln Bij increases by one unit, from 0 (undecisive)

to greater than 5 (strongly ruled out).

Unfortunately, the computation of the Bayesian evidence (69) is rather involved

and typically requires extensive computational power, unless the number of parameters

is significantly reduced. When the likelihood of the data given the model parameters

is a single isolated peak, far from the edges of the prior ranges, then there is a simple

approximation to the logarithm of the Bayesian evidence,

ln E = lnLmax − ln A −
n
∑

i

ln ∆θi , (71)

where A is the normalisation of the likelihood, and ∆θi = bi−ai is the range of parameter

θi ∈ [ai, bi], i = 1 . . . n. Moreover, for the case of a Gaussian likelihood,

L(θ) = A exp
[

− 1

2
xTC−1x

]

,

we find A = (2π)−n/2/
√

det C, where C is the covariance matrix and xi = θi − θ̄i. It is

clear that whenever the prior ranges are too big for the likelihood, the Bayesian evidence
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is penalised. Moreover, the more parameters there are, the larger the difference in ln E,

and the larger the logarithm of the Bayes factor, as expected.

We will now apply this discussion to the case at hand. We will compare the standard

flat ΛCDM model with a constant equation of state parameter, w, while fixing all other

cosmological parameters but ΩM . Thus our FRW model has here 2 parameters, which

we believe are the most constraining, since others like the local rate of expansion do not

provide significant extra information. We performed a calculation of the minimum χ2

within a grid of 5000 models, where w ∈ [−2.0, 0.0] and ΩM ∈ [0.0, 0.6]. The maximum

likelihood corresponds to a χ2
min(ΛCDM) = 197.05 for w = −1.005 and ΩM = 0.276.

On the other hand, the constrained GBH model has 4 independent parameters,

the local rate of expansion H0 = 100 h km/s/Mpc, the local matter fraction Ωm ≡
ΩM(0), the transition distance r0, and the width ∆r/r0, providing a grid of several

million models within the ranges h ∈ [0.50, 0.95], Ωm ∈ [0.05, 0.35], r0 ∈ [0.5, 4.5]

and ∆r/r0 ∈ [0.1, 0.9]. We found that the maximum likelihood corresponds to a

χ2
min(GBH) = 197.845 for h = 0.659, Ωm = 0.124, r0 = 2.47 Gpc and ∆r/r0 = 0.638.

At face value it seems that the inhomogeneous model provides as good a fit to the

data as the FRW one. If we compute the usual minimum χ2 per effective number of

degrees of freedom (i.e. the number of data points minus the number of parameters),

we find

χ2
min(ΛCDM)/d.o.f. = 1.021 , χ2

min(GBH)/d.o.f. = 1.036 , (72)

so that both models seem excellent descriptions of the data, the first one being slightly

better. However, there are other indicators more appropriate for model comparison, like

the (corrected) Akaike Information Criterion (AIC), computed as

AIC = χ2
min + 2k +

2k(k − 1)

N − k − 1
, (73)

where k is the number of parameters and N is the number of data points. In our case this

gives AIC(ΛCDM) = 201.1, while AIC(GBH) = 206.0, which would clearly favour

the homogeneous FRW model. On the other hand, if we choose to compare models with

the Bayesian Information Criterion (BIC), computed as

BIC = χ2
min + k ln N , (74)

we find BIC(ΛCDM) = 207.6, while BIC(GBH) = 218.9, which would very strongly

favour the homogeneous FRW model. Clearly, neither method gives a good assessment

for choosing among models. This is the reason why the Bayesian evidence has been used

recently in the context of model comparison.

If we compute the Bayes factor (70) by performing the integral of the likelihood

over the priors, (69), we find

ln E(ΛCDM) = −103.1 , ln E(GBH) = −106.7 , (75)

and therefore the logarithm of the Bayes factor is ln B12 = 3.6, which clearly favours

the homogeneous FRW model against the GBH-LTB model. It seems that the bayesian

evidence method discards significantly, but not very strongly, the inhomogeneous model
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versus the usual FRW model. It is possible that, in the future, better data sets

and stronger priors on cosmological parameters may discard once and for all the

inhomogeneous model. For the moment, a local void with a size of several Gpc, with

matter well below average, and a local rate of expansion of 71 km/s/Mpc, can account

for both the distant (CMB), intermediate (SNIa) and local (BAO) data sets.

5. Discussion and Conclusions

We have shown that present observations do not exclude the possibility that we live close

to the center of a large void. This is a appealing possibility which effectively gets rid of

the necessity to introduce an ad hoc cosmological constant in our model of the universe.

Moreover, it is consistent with early universe cosmology in terms of inflationary initial

conditions for the origin of large scale structures. Perhaps these voids arise due to large

non-perturbative inhomogeneities associated with the stochastic nature of the inflaton

evolution [15], or due to large non-gaussianities in the primordial spectrum coming from

inflation that could arise due to phase transitions or in multifield inflation [55, 56]. In

fact, we already know there can be other voids in our local patch of the universe, with

a Gpc scale, as exemplified by the observed cold spot in the CMB [14].

We have analysed the likelihood of such an interpretation of the present acceleration

of the universe, using data from the Cosmic Microwave Background (on large scales),

Supernova Ia (at intermediate scales), Baryon Acoustic Oscillations, the present age

and the local rate of expansion (at small scales). All the data seems to be consistent at

the 95% confidence level with a local void of size around 2.5 Gpc, within an Einstein-de

Sitter universe on large scales, without the need to introduce a cosmological constant.

The apparent acceleration of the universe can be interpreted here as due to the curved

path of photons in this locally open universe.

We have performed a Bayesian analysis in order to compare two competing models,

the predominant ΛCDM model and our GBH inhomogeneous model. While the usual

frequentists analysis does not discard the GBH model against the ΛCDM model, there

seems to be strong but not decisive (bayesian) evidence against the GBH model. It

is possible that in the near future, with much better cosmological data on large scale

structures and an extended set of supernovae at intermediate and high redshift, we

may be able to constrain and definitely rule out the inhomogeneous LTB model. We

should also mention that the data seems to favour a homogeneous Big Bang since the

constrained GBH model gives the same likelihood contours and minimum χ2 than the

unconstrained model, while having one parameter less.

At the moment we are studying the effect that a generic LTB model has on the

growth of structure in order to constrain further the GBH model with data from ISW-

LSS correlations and the Lyman-α forest within the Alcock-Paczynski-test analysis [31].

In conclusion, we cannot discard that we live in an inhomogeneous local void

within an asymptotically Einstein-de Sitter universe. The possibility that we have

misinterpreted the present acceleration and that the cosmological constant is nothing
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but a mirage has been addressed recently [57, 58, 59]. We have added to the discussion

the comparison with a large, albeit incomplete, set of cosmological observations, and

the bayesian analysis appropriate for model selection. We hope in the future to provide

further constraints on the model and possibly rule it out.
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