
Preprint typeset in JHEP style - HYPER VERSION IFT-UAM/CSIC-08-02, hep-ph/yymmnnn

Primordial magnetic fields from preheating

at the electroweak scale
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Abstract: We analyze the generation of helical magnetic fields during preheating

in a model of low-scale electroweak (EW) hybrid inflation. We show how the inhomo-

geneities in the Higgs field, resulting from tachyonic preheating after inflation, seed

the magnetic fields in a way analogous to that predicted by Vachaspati and Cornwall

in the context of the EW symmetry breaking. At this stage, the helical nature of the

generated magnetic fields is linked to the non-trivial winding of the Higgs-field. We

analyze non-perturbatively the evolution of these helical seeds through the highly

non-linear stages of symmetry breaking (SB) and beyond. Electroweak SB occurs

via the nucleation and growth of Higgs bubbles which squeeze the magnetic fields

into string-like structures. The W -boson charge density clusters in lumps around the

magnetic strings. After symmetry breaking, a detailed analysis of the magnetic field

Fourier spectrum shows two well differentiated components: a UV radiation tail at

a temperature T ∼ 0.23m
H
, slowly growing with time, and an IR peak associated

to the helical magnetic fields, which seems to follow inverse cascade. The system

enters a regime in which we observe that both the amplitude (ρB/ρEW ∼ 10−2) and

the correlation length of the magnetic field grow linearly with time. During this

stage of evolution we also observe a power-law growth in the helical susceptibility.

These properties support the possibility that our scenario could provide the seeds

eventually evolving into the microgauss fields observed today in galaxies and clusters

of galaxies.
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1. Introduction

The origin of magnetic fields (MF) is one of the remaining mysteries in relativistic

astrophysics and cosmology (for reviews see the list of references [1]-[18]). Magnetic

fields play an important role in the evolution of the primordial plasma in the early

universe (possibly also in cosmic phase transitions), in the propagation of cosmic

rays in our galaxy, as well as in clusters of galaxies. They may influence galaxy

formation and large scale structures, and they may generate a stochastic background

of gravitational waves. The connection between magnetic fields and gravitational

waves is particularly intriguing. Since MF induce an anisotropic stress tensor, this

can act as a source of gravitational waves (see [19]). Large amplitude magnetic

fields from primordial turbulence could induce a significant stochastic background of

gravitational waves which could be seen by LIGO or BBO, with a specific spectral

signature.

Magnetic fields have been found on the scale of galaxies and clusters of galaxies

with a magnitude of order the microgauss. There is even some evidence of their

existence on the scale of superclusters (for a review on observational results see [20]).

Summarizing the measured MF values on all scales L :

• galaxies: B ' 50 µG at L < 1 kpc; B ' 5− 10 µG at L ∼ 10 kpc.

• clusters: B ' 1 µG at L ∼ 1 Mpc.

• superclusters: B < 10−2 − 10−3 µG at L ∼ 1− 50 Mpc.

• CMB: B < 10−3 − 10−5 µG at L > 100 Mpc.

• Primordial nucleosynthesis: B < 1011 G at T = 109 K.

where the last bound (BBN) comes from the modification that such a background

would imply for the expansion rate of the universe at primordial nucleosynthesis,

which would change the observed Helium abundance.

The main difficulty in understanding the origin of magnetic fields is not in their

amplitude (i.e. magnitude) but in its correlation scale, from galaxies to clusters to

superclusters. The microgauss order of magnitude of present galactic MF could be

explained easily from an amplification via a dynamo mechanism initiated by a tiny

seed, with B ∼ 10−23−10−30 G (when taking into account gravitational collapse in a

flat ΛCDM model). The explanation of the scale of the magnetic seed in this case is

rather straightforward. The dynamo mechanism is an exponential mechanism which

makes the MF amplitude increase a factor e at every turn of the object (typically

a galaxy) with free charge and thus large electrical conductivity. Since the typical

galaxy has made around 30 turns in their lifetime, the growth factor is e30 = 1013.

Since we observe microgauss, we just need a seed Bseed ∼ 10−19 G over a scale of
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30 kpc. This is the MF after gravitational collapse. Typically a galaxy forms by

gravitational collapse of a lump of matter the size of about a Mpc with density of

order the critical density, and ends collapsing to a size of order 30 kpc and density

ρgal ∼ 106ρc. By flux conservation, the gravitational collapse amplification gives an

extra factor

(ρgal/ρc)
2/3 ∼ 104 ,

which gives a seed Bseed ∼ 10−23 G over a scale of 1 Mpc. This calculation was done

assuming matter domination. If we consider a ΛCDM universe, then gravitational

collapse amplification is greater and the seed can start with Bseed ∼ 10−30 G over a

scale of 1 Mpc. This is the minimal value required for a typical galaxy.

The microgauss amplitude at cluster scales is more difficult to explain via a

dynamo mechanism because it did not have as much time since its formation to

build up from such a tiny seed, and the order of fractions of microgauss amplitude

at supercluster scales is simply impossible to explain by dynamo mechanisms or

gravitational collapse. In any case, even in the presence of dynamo amplification, an

initial magnetic seed is required which is not provided by the dynamo mechanism

itself. Theoretical models trying to account for the origin of the primordial seeds can

be classified in two groups:

• Astrophysical: Biermann battery in intergalactic shocks, stellar magnetic winds

(like in our Sun), supernova explosions, galactic outflows in the inter-galactic

medium (IGM), quasar outflows of magnetized plasma into the intra-cluster

medium (ICM), see Refs. [9, 12, 16], and a recently suggested proposal in

conjunction with high energy cosmic rays [21].

• Cosmological: Early universe phase transitions [22]-[33], magnetic helicity to-

gether with the baryon asymmetry of the universe (BAU) at the electroweak

(EW) transition [34]-[41], via hypercharge and hypermagnetic field generation

before EW transition [42, 43], from second order cosmological perturbations

from inflation [44]-[63], from preheating after inflation [64]-[67], etc.

Moreover, MF have also been observed in quasars at redshift z ∼ 2, again with a

magnitude of order the microgauss. This indicates not only ubiquity but also invari-

ance (within an order of magnitude) with time. Such features cry for a cosmological,

rather than astrophysical, origin of MF. Could it be that some yet unknown mech-

anism directly generated microgauss MF on all scales? The first reaction is to ask

about the dynamo mechanism in galaxies, would it not amplify this microgauss MF

to even larger amplitudes, as can be seen in neutron stars, and even our Sun? The

surprising answer is no, because a few microgauss is the maximum magnetic field

possible on galactic scales, due to the existence of relativistic cosmic rays and ion-

ized gas moving at large speeds. If one computes the total energy density in cosmic
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rays (integrating the measured flux spectrum over all energies), one finds

1

2
ρCRv

2/c2 = 0.5 eV/cm3 ,

and a similar number for the energy density in the ionized gas moving with rotation

speeds of order 200 km/s,

1

2
ρgasv

2/c2 = 0.3 eV/cm3 .

If we assume that magnetic fields are in equilibrium, due to their interaction with

the cosmic rays and the gas, and furthermore we suppose equipartition, then their

energy density (using 1 G = 1.95× 10−20 GeV2) becomes

ρB = B2/(8π) = 0.5 eV/cm3 = (5 µG)2/(8π) ,

which corresponds to a few microgauss, in surprising agreement with observations.

Some people suggest that this argument may also explain the cluster MF value.

The ubiquity of MF with similar amplitude on all scales reminds us of the issue

of Helium abundance in the universe. Early measurements in the fourties indicated

that the Helium mass fraction to Hydrogen in the Universe was about a quarter,

very nearly everywhere. This observation was correctly interpreted by Gamow and

collaborators as indicating a primordial origin. Simple order of magnitude compu-

tation of nuclear interaction rates (mainly those of deuterium, a necessary step in

the reactions from H to He) and comparison with the rate of expansion in the early

universe at temperatures of order the nuclear transitions (i.e. MeV), together with

the then largely unknown neutron decay rate, suggested that the present abundance

of Helium could have been produced from Hydrogen in the early universe and thus

be present everywhere. The other light elements seemed to require further synthesis

in stars and thus depended on location, but the Helium was ubiquitous because it

was there from the very beginning.

Something similar may have happened with magnetic fields, if they were gener-

ated in the early universe by some unknown mechanism and then redshifted until

today. The question is what is the typical energy density which today gives the

order microgauss fields? These fields (if homogeneous) redshift as radiation, i.e.

ρB(a) = ρB(today)(a0/a)4. Like with Helium, we have to ask what was the energy

scale of interactions responsible for the generation of primordial magnetic fields?

Photons are massless so in principle any scale, as long as there are charged particles,

is sufficient to generate magnetic fields, and this is the reason why there is still so

much debate as to their origin. However, was the universe always permeated with

electromagnetic waves? The answer is no, the electromagnetic interaction as we

know it came into being at a very precise time, when the electroweak (EW) force

broke into the weak interactions plus electromagnetism. Before we could not talk
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about photons and magnetic fields. This occurred when the typical energy (or tem-

perature) in the universe was around TEW ∼ 100 GeV. If we construct an energy

density with this scale we get ρEW ∼ 108 GeV4. At that time the universe was (or

became) radiation dominated. If we now redshift this MF energy density until today

(T0 = 2.725 K) we get

ρB(today) = (T0/TEW)4ρEW ∼ 3.04× 10−53 GeV4 = 0.4 eV/cm3

which is precisely the order of magnitude of the present MF energy density.1 This

would be enough to explain the cluster and supercluster values, and would perhaps

require a mild dynamo mechanism to grow to galactic values (if the fraction f � 1).

The question is whether this is just a coincidence or it is hinting directly at its

origin.2 While other mechanisms require a seed with an arbitrary scale (typically

B ∼ 10−23 G, so that today we observe microgauss MF on galactic scales via the

dynamo mechanism), there is no physical reason behind this scale. On the other

hand, the EW scale is a natural scale for the generation on magnetic fields since

it is the scale at which electromagnetism arises for the first time as a fundamental

interaction.

Whether this is sufficient reason to assign the EW energy scale to the origin

of magnetic fields is another issue. In particular, it is not clear how to obtain the

large correlation length of magnetic fields observed at galactic and cluster scales.

Any physical mechanism that creates magnetic fields must be necessarily causal, but

at high temperatures in the early universe there is also a natural coherence scale

given by the particle horizon. At the electroweak scale the physical horizon is 10−10

light-seconds (∼ 3 cm), which today corresponds to a co-moving scale of 0.3 mpc

(∼ 1 AU), clearly insufficient when compared even with the irregular (turbulent)

component of the galactic magnetic field (L ∼ 100 pc), not to mention the regular

(uniform) component, which has correlations L ∼ 10 kpc. It thus seems impossible

to explain the coherent magnetic fields observed on galaxy clusters and supercluster

scales (of order 10 Mpc) with intensities of order µG to nG.

There is however a second coincidence, which makes things even more intriguing.

If we assume that the plasma after the electroweak transition is sufficiently turbulent

to maintain magnetic fields of the largest possible coherence scales via inverse cascade

[29]-[33], then we could reach cosmological scales today. Let us follow the argument.

The largest coherence scale at the electroweak transition is the physical horizon, of

order 3cm. If a strong inverse cascade is active, then the coherence length of the

magnetic fields will grow as fast as the horizon (it cannot grow faster). This means

1We could be even more conservative and suppose that the fraction of magnetic field energy
density to radiation at the time of the EW transition was given by f = ρB/ρrad < 1. In this case,
the present MF magnitude would be B0 ∼ 5 f1/2 µG.

2Some authors suppose that the generation occurred earlier in the form of hypermagnetic fields
and was then converted into ordinary magnetic fields at the EW scale [43].
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that it grows like the scale factor squared during the radiation dominated era. This

ideal situation could only last while there is a plasma and thus it is bound to stop

acting at photon decoupling, when the universe becomes neutral. Since then, the

correlation length can only grow with the expansion of the universe, as the scale

factor. If we take this effect into account from the electroweak scale until today we

find, using the adiabatic expansion relation T ∝ a−1,

ξ0 = ξEW

(
adec

aEW

)2
a0

adec

= 3 cm

(
TEW

Teq

)2
Teq

T0

∼ 6× 1025 cm = 20 Mpc , (1.1)

where we have made the approximation that equality and decoupling occurred more

or less simultaneously (a careful computation gives only a minor correction). The

surprising thing is that this simple calculation gives precisely the order of magnitude

for the largest correlation length of cosmic MF ever observed (i.e. cluster scales). If

the agreement in the magnitude of the primordial MF seed seemed peculiar, the fact

that an inverse cascade could also be responsible for the observed correlation length

becomes a surprising coincidence, probably hinting at an underlying mechanism.

It is therefore worthwhile exploring the conditions that could have taken place at

the electroweak transition which could give rise to a significant fraction of energy

density in magnetic fields, and be responsible for a sustained period of inverse cascade

until photon decoupling. It has been shown in Refs. [30]-[33] that one important

ingredient is the generation of magnetic fields with a non trivial helical component,

which guarantees an optimal amplification of the magnetic correlation length through

inverse cascade. A very good account of the large number of works investigating these

issues, with a complete list of references is given in Ref. [9] (see also [27]-[43]).

In this paper we propose a scenario in which the electroweak transition takes

place at the end of a brief period of hybrid inflation3 It has been conjectured that

preheating and early reheating in this model could provide an alternative mechanism

to generate the baryon asymmetry in the universe [70]-[76] and a way to source

gravitational waves [77]. In this paper we analyze whether it could also give rise to

primordial magnetic fields with the required amplitude and correlation length. This

issue has been partially addressed in a recent letter [78]. Here we will present a

complete account of the results obtained and a detailed description of the approach

employed in the analysis. Our set up provides a specific realization of some of the

proposals described above. In particular, we will see how helical magnetic fields arise

from the inhomogeneities in the spatial distribution of the Higgs field, along the lines

conjectured by Vachaspati [34, 36] and Cornwall [38] some years ago.

The paper is organized as follows. In section 2 we describe the hybrid inflation

model that we will be using and revise, following Ref. [73], how to solve the quan-

3Note that we do not need a 60 e-fold period of inflation, just a few (∼ 5) e-folds of low
scale thermal inflation [68, 69] to cool down the universe. The amplitude of CMB temperature
fluctuations would be determined by the usual 55 e-folds of high-scale (e.g. GUT) inflation.
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tum evolution of the system from the end of inflation until non-linearities start to

become important. Beyond this time, a fully non-perturbative approach is required.

Fortunately, the time evolution at this stage can be described within the classical ap-

proximation as demonstrated in Ref. [73]. Details on the methodological set up and

the lattice implementation are presented in section 3. Section 4 analyzes the mech-

anism leading to helical magnetic fields following from the inhomogeneities in the

Higgs field, which are seeded by the Higgs quantum fluctuations that arise from the

period of linear quantum evolution. Strings of magnetic flux, carrying non-vanishing

helicity, are clearly observed. They persist and are even enhanced as the system pro-

gresses towards the true vacuum. We also analyze here the structure of the plasma

of W−charges which accompany the magnetic fields during this period. The fate

of these magnetic fields at later times is discussed in section 5, where we present a

detailed study of the spectrum of the magnetic field. We will show that there is a

significant helical magnetic field remnant whose amplitude and correlation length are

amplified linearly in time. In section 6 we will discuss lattice and finite volume inde-

pendence of our results, as well as the dependence of magnetic field production on the

Higgs- to W-mass ratio. Conclusions and prospects for further work are presented

in section 7. Finally, a few technical points about the lattice discretization of the

classical equations of motion, the Maxwell equations and electromagnetic radiation

are described in the Appendices A, B and C. Appendix D is devoted to an analysis

of the Gaussian random fields that provide the initial Higgs field distribution.

2. The model

The scenario we will be considering is that of preheating after a period of hybrid

inflation which ends at the EW scale. This was first introduced in Ref. [70] to

provide a new mechanism for the generation of baryon asymmetry in the Universe

(BAU). It has been extensively studied since then both in connection with BAU [70]-

[76] and in relation with the production of gravitational waves [77]. In this paper

and in Ref. [78] we include for the first time the Hypercharge field in order to study

the generation of electromagnetic fields during preheating (preliminary results can

be found in [79]). In this section we will introduce the model and describe the first

stages of evolution after inflation ends which provide the initial conditions for the

non-linear approach addressed in section 3.1.

The Hybrid inflation model is attained by extending the Standard Model with

the addition of a scalar field, the inflaton, singlet under the gauge group. The scalar

sector thus includes the Higgs field: Φ = 1
2
(φ0 1l + iφaτa) (τa are the Pauli matrices)

and the singlet inflaton χ which couples only to the Higgs via the scalar potential:

V(Φ, χ) = V0 +
1

2
(g2χ2 −m2) |φ|2 +

λ

4
|φ|4 +

1

2
µ2χ2 , (2.1)
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where |φ|2≡2Tr Φ†Φ, µ is the inflaton mass in the false vacuum and m
H

=
√

2m≡√
2λ v the Higgs mass, with v=246 GeV the Higgs vacuum expectation value at the

electroweak scale. The gauge sector contains both the SU(2) and the hypercharge

U(1) fields with

Gaµν = ∂µAaν − ∂νAaµ + g
W
εabcAbµAcν (2.2)

and

FY
µν = ∂µBν − ∂νBµ, (2.3)

their respective field strengths. The covariant derivative is:

Dµ = ∂µ −
i

2
g

W
Aaµτa −

i

2
g

Y
Bµ, (2.4)

with g
W

the SU(2) gauge coupling and g
Y

the hypercharge coupling. In this work we

can safely ignore fermionic fields since the time scales involved in the perturbative

decay of the Higgs field into fermions are much larger than the ones considered here.

With all these definitions the Lagrangian density of the model becomes:

L = −1

4
GaµνGµνa −

1

4
FY
µνF

µν
Y + Tr

[
(DµΦ)†DµΦ

]
+

1

2
∂µχ∂

µχ− V (Φ, χ) . (2.5)

For our analysis we have fixed the W mass and the Z to W mass ratio to the

experimental values [80]. We have analyzed three different values of the Higgs to W

mass ratio: m
H
/m

W
= 2
√

2λ/g
W

= 2, 3 and 4.65. The Higgs-inflaton coupling has

been fixed to g2 = 2λ as in super-symmetric models [71, 81] and we have taken the

inflaton bare mass µ = 10−5gv ≈ 0.

The extraction of the electromagnetic content of the SU(2)×U(1) fields in the

Lagrangian proceeds in the usual way. Fixing the unitary gauge, Φ(x) = ρ(x) 1l, the

Z-boson field and the electromagnetic field are extracted from appropriate orthogonal

combinations of the SU(2) and hypercharge vector potentials:

Zµ(x) = cos θW A3
µ(x) + sin θW Bµ(x) , (2.6)

Aγµ(x) = sin θW A3
µ(x)− cos θW Bµ(x) . (2.7)

with ϕ(x) = Φ(x)(1, 0)T the Higgs doublet. This separation can only be done unam-

biguously when the Higgs field is on the true vacuum, i.e. in the broken symmetry

phase. However even in that phase there can be points where the Higgs field vanishes

and the symmetry is locally restored (a typical example of a configuration exhibiting

such behavior is the sphaleron). At those points there is no unique way to define the

electromagnetic fields. In fact ’t Hooft was the first to point out in Ref. [82] the con-

sequences of this ambiguity in the Georgi-Glashow model, tying it to the appearance

of non-trivial configurations like monopoles or strings, acting as sources of magnetic

fields. In Ref. [34] Vachaspati pointed out that a similar mechanism was at work in

the electroweak model where the sources for magnetic field generation are tied to the
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presence of non-homogeneous phases in the Higgs field. In the following sections we

will analyze in detail how this mechanism is realized during the period of preheating

after inflation.

2.1 Linear quantum evolution

Following Refs. [73, 74], we will address here the first stages of evolution starting at

the end of inflation.

The period of inflation is characterized by the fact that the Higgs and inflaton

fields are displaced from the true minimum of the potential. In this case, inflation

is driven by the false vacuum energy, V0 = λv4/4. During this time the inflaton

homogeneous mode, χ0 ≡ 〈χ〉, dominates the dynamics. After only about 5-10 e-

folds the Universe has cooled down and all other particle species have been diluted,

remaining in the de Sitter vacuum.4

The interaction between the Higgs and inflaton fields drives the end of inflation

and triggers EW symmetry breaking. The way this proceeds is as follows. Close to

the time when inflation ends, denoted by tc, the time evolution of the inflaton zero

mode can be approximated by:

χ0(t) = χc(1− V m(t− tc)) (2.8)

where χc = χ0(tc) ≡ m/g. Here V denotes the inflaton dimensionless velocity,

defined through this equation and fixed to V = 0.024 in our analysis [73]. The

variation of χ0(t) induces, via the Higgs-inflaton coupling, a time dependence of the

effective Higgs mass parameter, m2
φ = −M3(t− tc) ≡ −2V m3(t− tc), which changes

from positive to negative, triggering electroweak symmetry breaking. Accordingly,

the time when inflation ends, tc, is characterized as the critical point where the Higgs

field becomes massless.

As described in detail in Refs. [73, 74], it is possible to solve exactly the quantum

evolution of the system around tc if non-linearities in the Higgs field and the inter-

action with the gauge fields are neglected. As we will see below, this is a reasonable

assumption at this stage. In this approximation the Higgs field is effectively described

as a free scalar field with a time dependent mass mφ(t). Its quantum evolution can be

solved in terms of Airy functions [73]. After tc, low momentum modes of the Higgs

field grow exponentially in a process known as “tachyonic preheating” [71]. Due

to the tachyonic growth, low momentum Higgs field modes acquire large occupation

numbers and, soon after tc, they evolve as classical modes. This is a very fast process

so that all other modes can be taken to remain in the quantum vacuum (ground)

state, justifying thus the linear approximation. These modes will be later populated

through the interaction with the Higgs field tachyonic modes. Once non-linearities

4For electroweak-scale inflation and the range of momenta we will be considering, de Sitter
vacuum is indistinguishable from the Minkowski vacuum.
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start to become relevant the approximation ceases to be valid and a full non-linear

treatment is required. Our strategy for dealing with the later stages of evolution will

be presented in the next section.

3. Methodological set up

Beyond the quantum linear evolution described in the previous section we have to

deal with the non-linear dynamics of the Higgs field and its coupling to the gauge

fields. Our approach is based upon the classical approximation (details can be found

in [73, 74] - see also [76]). The validity of this approximation relies on the fast growth

of tachyonic modes as explained previously. In what follows we will describe several

aspects of our procedure.

3.1 Initial conditions for the the non-linear evolution

As mentioned previously the initial stages after the end of inflation (t = tc) lead

to a rapid growth of the tachyonic modes which tend to behave classically. The

correlation functions of the Higgs field resulting from the initial quantum evolution

can be computed. Our approach is to use these results as initial conditions for the

classical evolution of the system. The quantum fluctuations translate into stochastic

initial conditions for the Higgs field, whose correlations are designed to match the

Weyl-ordered quantum expectation values. The matching of the two methods is done

at an initial time t = ti > tc that must be large enough for classical behaviour to set

in and small enough to make the non-linear terms small. This leaves a window of

possible values of ti. We tested the robustness of the results with respect to changes

in ti within these limits, giving confidence on the self-consistency of our approach.

Given the linear character of the initial quantum evolution, the Higgs field mo-

mentum modes φαk , at t = ti behave as Gaussian random variables of zero-mean

following a Rayleigh distribution:

exp
(
− |φ

α
k |2

(σαk )2

) d|φαk |2
(σαk )2

dθαk
2π

, (3.1)

where θαk is the phase of the complex random variable φαk . The dispersion of the

modulus is expressed in terms of the power spectrum P (k, ti) = k3(σαk )2, and can

be computed analytically in terms of Airy functions [73]. For practical purposes it

is better to work with a simple functional fit to the power spectrum (Eq. (D.1)).

Notice that we have introduced a momentum cut-off, removing modes which have

not become tachyonic (classical). As explained in Ref. [73], this is compensated by

a renormalization of the parameters.

The study of the properties of this 4-component Gaussian random field is col-

lected in Appendix D. Its features depend on several parameters: the Higgs mass,

the initial inflaton velocity V , the momentum cut-off and the choice of initial time
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ti. The first two appear combined in a new scale M = (2V )1/3m characteristic of the

initial linear evolution. The main conclusion drawn in Appendix D, is that to a large

extent all these parameter dependencies translate into setting two main scales: a spa-

tial length scale, ξ0, and the Higgs dispersion, σ, which determines the magnitude of

the Higgs field.

More specifically, in Appendix D we study the distribution of local maxima in

|φ(x)|. These “peaks” are the seeds that will later grow with time and develop into

bubbles which start expanding and colliding among themselves once the Higgs fields

enters the non-linear regime characteristic of symmetry breaking. This process was

described in detail in Ref. [73]. Note that the multicomponent character of the Higgs

field affects the results but, more importantly, it gives rise to new observables, some

of which are intimately connected to the physical phenomena which are the main

goal of this paper. This will be described in the next section.

To complete the description of the initial conditions, we mention that, similarly

to the high-momentum modes of the Higgs field, all other non-tachyonic modes are set

to zero. These include the non-homogeneous modes of the inflaton and the vector

potentials of the SU(2) and hypercharge gauge fields. The initial time-derivatives

of these quantities are also set to zero except for the gauge fields which have to

be chosen such that the Gauss constraint is satisfied as an initial condition. The

dynamic equations guarantee that the constraint will continue to hold at later times.

The aforementioned robustness of the results to the choice of initial time ti implies

that our physical conclusions do not depend on minor modifications of these initial

conditions.

3.2 Numerical procedure

In order to study the non-linear evolution of the system with our stochastic ini-

tial conditions we have made use of the lattice approach. This has the advantage

that classical equations of motion are discretized preserving full gauge invariance of

the system. Generally speaking the procedure is standard. Details on the lattice

Lagrangian and the lattice form of the equations of motion are presented in Ap-

pendix A. At early times the errors associated to discretization are very small due

to the cut-off form of the initial spectrum. This shows up in the very mild depen-

dence of the results on the spatial a and temporal at lattice spacings. This contrasts

with other situations in which lattice techniques have been used. As time evolves

higher momenta of the fields grow and start to play a role, eventually leading to

a breakdown of the approximation. We have explicitly analysed that this does not

occur for the range of times covered in this paper. A different approach needs to be

followed if one wishes to reach times in which full thermalisation has been reached.

Notice, however, that this goal also demands the introduction of fermionic degrees

of freedom which can be safely ignored in our time span. Our present results can be

used as initial conditions for the study of the late time behaviour of the system.
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Another approximation needed
Ns ma mat pmin/m

64 0.65 1/40 0.150

80 0.52 1/40 0.150

100 0.42 1/40 0.150

100 0.52 1/40 0.125

100 0.65 1/40 0.100

120 0.65 1/40 0.080

Table 1: List of lattice parameters: a and at
are respectively the spatial and temporal lattice
spacings, Ns is the number of lattice points and
pmin = 2π/(Nsa) is the minimum momentum. The
Ns = 120 lattice has only been used for the study
of the initial configuration. The number of different
configurations of each lattice ranges from 80 to 200,
depending of the lattice and the choice of parame-
ters.

for the numerical procedure is to

put the system in a box with pe-

riodic boundary conditions. The

physical volume, V = L3 is given

in terms of the minimum momen-

tum: L = 2π/pmin. The latter has

to be chosen judiciously to lie well

within the tachyonic band of the

Higgs field. The dependencies of

the results can be monitored by

using different values for the pa-

rameters of the simulation. In Ta-

ble 1 we enumerate the different

lattice sizes, spacings and physi-

cal volumes that we have used.

Due to its relevance for the

goals of our paper, we will now

explain in detail how the electromagnetic and Z fields are defined in our lattice

approach. This can only be done unambiguously when the Higgs field is in the true

vacuum, i.e. in the broken symmetry phase. One can compute, in a gauge invariant

way, the field associated to the Z-boson potential as:

Zµ(m) =
−iTr

[
n̂(DµΦ(m))Φ†(m)

]
|φ(m)||φ(m+ µ)|

(3.2)

≡ −iTr
[
τ3

Φ†(m)

|φ(m)|
Uµ(m)

Φ(m+ µ)

|φ(m+ µ)|
Bµ(m)

]
a→0−→ aµgZZµ(x) , (3.3)

where we have introduced the adjoint unit vector n̂ = naτa, with components:

na(x) =
ϕ†(x)τaϕ(x)

|ϕ(x)|2
, (3.4)

with ϕ(x) = Φ(x)(1, 0)T the Higgs doublet. The Z boson coupling is denoted by

gZ and ai = a, a0 = at. Dµ is the lattice covariant derivative operator defined

in Eq. (A.6) of Appendix A. Uµ(n) and Bµ(n) are, respectively, the SU(2) and

hypercharge link fields introduced in Appendix A. Notice that continuum quantities

are defined with calligraphic letters to distinguish them from the lattice quantities.

Our definition of the Z boson potential corresponds to the standard one in the unitary

gauge.
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We define the Z boson and hypercharge field strengths through the clover aver-

ages 5

F Z
µν(m)=〈∆µZν(m)−∆νZµ(m)〉clov

a→0−→ aµaνgZFZµν(x) +O(a4) (3.5)

and

FY
µν(m)=〈∆µθν(m)−∆νθµ(m)〉clov

a→0−→ aµaνgY
FYµν(x) +O(a4) , (3.6)

where Bµ(m) ≡ exp(iθµ(m)τ3/2) is the hypercharge link, ∆µ is the lattice derivative

operator introduced in Eq. (A.8) and 〈O〉clov denotes the clover averages defined in

Eqs. (B.2)-(B.3). In terms of them we can compute the lattice electromagnetic field

strength as:

F γ
µν(n) = sin2(θW )F Z

µν(n)− FY
µν(n)

a→0−→ aµaνeFγµν(x) +O(a4) , (3.7)

where Fγµν is the corresponding continuum electromagnetic field strength. This pro-

vides a lattice gauge invariant definition of the electromagnetic field which is equiv-

alent to the usual definition in the unitary gauge.

4. The mechanism underlying magnetic field generation

In this section we study the production of magnetic fields during the first stages of

our EW preheating scenario. This analysis is performed in two steps. The first is to

investigate the presence, size and structure of the magnetic fields generated by our

Gaussian random field initial distribution. This complements the results presented

in Appendix D. Then we will track the evolution of these magnetic fields through

the highly non-linear stages associated to EW symmetry breaking. This is a crucial

period where there are no viable alternatives to our methodological approach.

4.1 Initial Magnetic fields

A close look at our expression of the photon field reveals that Abelian electromag-

netic fields are present in the first stages of the evolution. The discussion on how this

comes about follows a line of argument very similar to that developed by Vachaspati

in Ref. [34]. The tachyonic preheating phase leads to a multicomponent Gaussian

Higgs field. The SU(2) and hypercharge gauge fields remain very small. This is incor-

porated into our initial conditions by setting the hypercharge and SU(2) magnetic-

like fields to zero and fixing the corresponding electric fields in order to satisfy the

Gauss constraint. We work in the Aµ = 0 gauge, which on the lattice corresponds

to Uµ(t = ti) = Bµ(t = ti) = 1l. Projecting onto the Z and electromagnetic fields we

5Corrections to the continuum approach of the time-space clover averages are order O(a0a
2).
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Figure 1: (Left) Locus of points where the value of the Higgs field norm is below 0.03 v .
(Right) Locus of points where twice the magnetic energy density (| ~B|2) is above 0.03m4.
Data correspond to mt = 5 and mH = 2mW .

obtain:

Zµ(x) =
i

gz
Tr
[
n̂Ω(x)∂µΩ†(x)

]
(4.1)

FZ
µν(n) =

i

gz
Tr
[
n̂
(
∂νΩ(x)∂µΩ†(x)− ∂µΩ(x)∂νΩ

†(x)
) ]

Fγµν(x) = tan θWFZ
µν(x) ≡ i sin θW

gW
Tr
[
n̂
(
∂νΩ(x)∂µΩ†(x)− ∂µΩ(x)∂νΩ

†(x)
) ]

,

expressed in terms of the SU(2) matrix:

Ω(x) =
Φ(x)

|φ(x)|
. (4.2)

It becomes clear that electromagnetic fields are sourced by the presence of inhomo-

geneities in the Higgs field orientation. This is one of the essential ingredients in

Vachaspati’s proposal for magnetogenesis.

The size and spatial distribution of this initial electromagnetic and Z fields can

be obtained from the multicomponent Gaussian random field. In Appendix D we

displayed the histogram of magnetic field values. Here we will focus on another aspect

which is particularly interesting for the later evolution. This is the spatial distribution

of points where the magnetic field intensity is larger. To investigate this, we show

in Fig. 1 a 3-dimensional plot displaying the locus of points where the magnetic

energy density is above 0.03 m4 for our initial configuration at mti = 5. Notice

that the regions of higher magnetic energy density exhibit a string-like geometry.
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Figure 2: Histogram of Higgs winding number for the initial configuration mt = 5 for
pmin = 0.15m.

Indeed, this spatial distribution tracks the location of regions of low Higgs field

value, which are also presented in the figure. Although, the strings seem to end at

certain spatial points, this is simply a reflection of the spreading of magnetic flux

lines. Our electromagnetic field satisfies the Maxwell equations without magnetic

sources or sinks. According to our formulas the initial magnetic-like component of

the Z-boson field strength is directly proportional to the electromagnetic field and

has identical structure.

There is another important feature of magnetic fields which we have investigated.

It corresponds to whether the initial field gives rise to a sizable helicity. In a finite

volume the total magnetic helicity is defined both in configuration and in momentum

space as:

H ≡
∫
d3x h(x) =

∫
d3x ~A · ~B ≡ −i

V
∑
k

~k

|~k|2
· ( ~B(~k)× ~B∗(~k)) , (4.3)

where V is the volume of space. Notice that this equality makes use of Maxwell’s

condition ~∇ ~B = 0, which is ensured by our magnetic field definition (3.7). At our

initial time, by virtue of Eqs. (4.1), this quantity is proportional to the winding of the

Higgs field. This is defined as the index of the map from the spatial volume to the

group SU(2)=S3, provided by the matrix Ω(x). A histogram of the winding obtained

for our initial Gaussian random field configurations is displayed in Fig. 2. The

data are well described by a Gaussian distribution. Since we have not included CP

violating terms, the mean value of the winding number is zero. However, we observe

a non-zero dispersion from which one can obtain a non-zero volume-independent

topological susceptibility χ = 0.52 × 10−4m3. This translates into a corresponding
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Figure 3: We show the time evolution of the electric (transverse ET and longitudinal EL)
and magnetic energy densities averaged over 150 configurations for mH = 3mW , ma = 0.42
and pmin = 0.15m.

non-vanishing helical magnetic susceptibility χH ≡ 〈H2〉/V = 0.38(3)m3. The Z

helical susceptibility at this initial stage is χZ ≡ tan−4 θW χH .

In the next subsection we will study the evolution of this helical magnetic field

during the highly non-linear epoch of symmetry breaking. This provides a connec-

tion between magnetic field helicity, Z-strings and the occurrence of configurations

carrying non-trivial Chern-Simons number. This result, which relates baryon num-

ber generation and magnetic helicity, has been proposed, although along somewhat

different lines, by Cornwall [38]. The connection has been studied recently by Copi et

al. [83]. They showed that the sphaleron decay indeed gives rise to helical magnetic

fields.

At later stages, the Chern-Simons number creation processes stop, leaving behind

a remnant magnetic helicity component [36], which is preserved in a plasma with

high electrical conductivity. Thus, this could provide a signature of EW generation

of primordial magnetic fields.

4.2 Magnetic strings through symmetry breaking

We will now focus upon the evolution of the system from the initial Gaussian random

field situation until the onset of symmetry breaking. To have a global picture of the

process we show in Fig. 3 the time evolution of the expectation value of the Higgs

field from the initial time mti = 5 of our classical evolution. Notice the strong initial

oscillations for times smaller than mt = 20, which are then progressively damped at
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Figure 4: Top: (Left) The location of the bubbles in the Higgs field norm (in red) with
a lower cutoff set at 0.7 v and the locus of points with twice the magnetic energy density
(| ~B(~x)|2) (in blue) higher than 0.01m4. (Right) Locus of points where the magnetic energy
density is above 0.03m4. Bottom: (Left) Two-dimensional contour plots of the Higgs
field norm. (Right) Two-dimensional contour plots of the magnetic energy density. Data
correspond to mt = 15 and mH = 2mW .

larger times. The figure also displays the fraction of the total energy density carried

by electromagnetic fields. We split it into its magnetic and electric components,

and for the latter we analyze separately longitudinal and transverse parts. 6 We

observe that between mt = 10 and mt = 15, there is an explosive growth of the

electromagnetic fields correlated with the first minimum in the oscillation of the

6The technicalities involved in the lattice definition of transverse and longitudinal fields as in
the definition of the W bosons charge densities and currents are discussed in Appendix B.
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Figure 5: Top: (Left) Helicity of the magnetic field. (Right) Helicity of the Z-boson field.
Bottom: (Left) Two dimensional contour plots of the helicity of the magnetic field. (Right)
Two dimensional contour plots of the helicity of the Z-boson field. Data correspond to
mt = 15, for mH = 2mW .

Higgs field expectation value. The data in the figure corresponds to m
H

= 3m
W

, but

similar behaviour is observed for the other ratios studied.

We will now present the spatial structure observed for the magnetic fields at

mt = 15 after the strong oscillation region. The corresponding distribution of the

Higgs field modulus has been presented in Ref. [73]. There we showed that the initial

Gaussian peaks lead to bubbles which expand and collide with neighbouring ones.

This is illustrated in the top left of Fig. 4 where we display a snapshot of the Higgs

field norm at mt = 15. At this time bubble shells (in red), that have grown out

of the peaks in the initial Gaussian random field, fill almost all the volume of the

box. Magnetic fields (shown in blue in the figure) appear as string-like structures
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Figure 6: Averaged l2Hl(r0), Eq. (4.4), at mt = 15. We also show the l2 asymptotic
behaviour for the mH/mW = 4.65 model. The other data corresponds to mH/mW = 2.

localized in the region between bubbles, where the Higgs field remains closer to the

false vacuum for a longer period of time. This linkage between magnetic strings

and Higgs field minima is even more evident in the two dimensional contour plots

presented in the bottom half of Fig. 4.

The structures observed in the regions of maximal magnetic density are repro-

duced when looking at the helical part alone. This is exemplified by the comparison

of Fig. 5 with Fig. 4. The figure also shows how the correlation between magnetic

and Z boson fields, implicit in our initial conditions, is still preserved once gauge

fields and non-linearities have started to play a role. An interesting observation can

be made here concerning the connection with baryon number generation. Analysis

of the cold EW transition show that sphaleron-like configurations, with non-trivial

Chern-Simons number, are also located between bubble shells [74]-[75]. For non-

zero Weinberg angle, sphalerons look like magnetic dipoles [84] and it is tempting to

correlate the observed helical magnetic flux tubes with the alignment of sphaleron

dipoles. Although a detailed investigation of this correlation is beyond the scope

of this paper, our results for the distribution of magnetic helicity do indeed hint in

that direction. An evaluation of the net helicity at late times and a discussion on its

persistence will be postponed to section 5.

In the previous figures, the closed string-like structure of the helicity and mag-

netic field appears much more clearly that in the Gaussian random field initial condi-

tion at mti = 5. To quantify the string-like character, we have analyzed the following

quantity:

Hl(r0) =
1

l3

∫
L(r0)

dx3|~h(x)| , (4.4)
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where ~h(x) denotes the helicity density and the integration is on a box of length l, cen-

tered at a point r0 at the center of one of the strings. Figure 6 shows the l-dependence

of l2Hl(r0), averaged over several configurations. The figure is intended to show the

one-dimensional character of the distribution in accordance to our string picture. In

that case, l2Hl(r0) should be l-independent in contrast with the l2-behaviour charac-

teristic of an isotropic distribution. Both regimes are clearly observed in the figure.

The stringy behaviour is displayed up to ml ∼ 10, beyond which the plot shows how

the data tends nicely to a straight line of slope equal to 2. This is to be expected

once the box is big enough to contain several strings. This leads to an estimate of

the string separation of m
H
l ∼ 14, which is a significant fraction of the total length

of the box.

4.3 Charge lumps around magnetic field lines

Up to now we have focused on the distribution of magnetic and Z-boson fields, but

there is important additional information on the nature of the primordial plasma

during these stages of preheating. Note that our initial conditions provide a source

for charged W -currents and a non-trivial charge density. It turns out that there is

charge separation at the initial stage. Positive and negative charges are clustered

into separate lumps which track the magnetic field lines. Figures 7 and 8 show this

effect at mt = 15 and mt = 10, respectively. Note that there is a strong correlation

between the magnetic field lines and the distribution of charges of opposite sign

around them. The effect is seen particularly clear at early times, mt = 10, where

the magnetic flux tubes are well defined, and there are fewer of them. The charge

separation is consistent with the effect that would be produced by a combination

of the drift currents induced by gradient and curvature effects from the magnetic

field. The electric field is also strongly correlated with the location of the charge

lumps, as expected. This charge separation might be responsible for the very slow

screening observed for the longitudinal electric field, which will be discussed in the

next section.

The plasma generated during the first stages of evolution is, as we have shown,

somewhat different from standard MHD plasmas (composed mainly of protons and

electrons, together with photons). Here, long range string-like structures are observed

in the electromagnetic fields, and opposite W -charges cluster in large regions of

space inducing non-trivial electric fields. It is expected that these charge lumps

will eventually disintegrate when the W -fields decay into light fermions (quarks and

leptons), which travel at the speed of light and diffuse the charge, leading at late

times to a standard MHD plasma.

5. Late time evolution

In order to claim a mechanism for cosmological magnetogenesis, the essential question
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Figure 7: Top Left: Locus of points with magnetic energy density | ~B(x)|2, above 0.01m4.
Top Right: Locus of points with electric energy density | ~E(x)|2 above 0.01m4. Bottom:
The distribution of W± charge density, tracking the magnetic field lines. Pink and blue
areas represent negative and positive charge densities respectively. Data correspond to
mt = 15, for mH = 2mW .

is whether the amplitude and correlation length of the generated fields are enough

to seed the large scale magnetic fields observed today. In this section we will present

evidence that a significant fraction of long range helical magnetic fields remains after

EW symmetry breaking and is even amplified at later times, a period in which kinetic

turbulence has been observed [85, 79]. As we will see below, our estimate for the

amplitude of the magnetic field seed gives a fraction ∼ 10−2 of the total energy

density at the EW scale. This could be enough to seed the cluster and supercluster

values without the need for a dynamo mechanism.

More difficult is to address the issue of whether the magnetic field spectrum

experiences inverse cascade, i.e. transference of energy from high to low momentum
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Figure 8: Left: Locus of points with magnetic field density | ~B(~x)|2 above 0.01m4. Right:
The 2-dimensional W -charge distribution localized in lumps of opposite sign facing each
other. Note that the location of the charge lumps is strongly correlated with the magnetic
field flux tubes. These figures correspond to early times, mt = 10, for mH = 3mW .

modes [29]-[33]. Inverse cascade is required to make the coherence length of the mag-

netic field grow (almost) as fast as the horizon until the time of photon decoupling.

Our approach does not allow to extrapolate the time evolution for sufficiently long

times. Nevertheless, we will provide some evidence that inverse cascade might be at

work. However, additional work is required to analyze if it can be sustained for a

sufficiently long time. This might require a full magnetohydrodynamics treatment

of the time evolution for which our set up will provide an initial condition.

5.1 Magnetic helicity and electromagnetic energy densities

We will first analyze in detail how electromagnetic fields evolve in time, paying

particular attention to the evolution of the magnetic field helicity long after SSB.

As mentioned above, the relevant quantity for helicity in the absence of CP vi-

olation is the helical susceptibility χH . Its time evolution, for different values of

the m
H
/m

W
ratio, is displayed in Fig. 9. At the same time we display the helical

susceptibility of the Z boson magnetic field, rescaled by tan4 θW to make it agree

with the initial electromagnetic helicity, see discussion after Eq. ( 4.3). The late time

behaviour, after mt ∼ 60, gives further support to the Vachaspati-Cornwall’s conjec-

ture. It corroborates that, while the Z boson helicity is damped in time, the magnetic

helicity is preserved and even increases with a power law dependence in time given

by tα with α= 0.7(1), 0.8(1), 0.3(1) for m
H
/m

W
= 2, 3 and 4.65 respectively. The

corresponding helical susceptibilities at mt = 100 are 0.11(2), 0.26(1), 0.12(2) m3.

Note that the model with m
H

= 3m
W

is more efficient than the others in generating
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Figure 9: We display the time evolution of the helical susceptibilities for the magnetic
field (with fit tα) and the Z-boson field (with fit tβ). The latter is rescaled by tan4 θW to
match the initial electromagnetic helicity. Top left is for mH/mW = 2, averaged over 80
configurations, with α = 0.7(1) and β = −0.27(4). Top right is for mH/mW = 4.65, aver-
aged over 80 configurations, with α = 0.3(1) and β = −0.33(5). Bottom is for mH/mW = 3,
averaged over 200 configurations, with α = 0.8(1) and β = −0.82(4). All data correspond
to ma = 0.42 and pmin = 0.15m. The top left figure also shows the time evolution of the
Higgs mean to illustrate the time when SSB takes place.

helicity at late times. This suggests a non monotonic dependence of the helicity on

the Higgs to W mass ratio, a feature also observed in the generation of Chern-Simons

number [75, 74]. In the remaining of this section we will focus on results for this

particular value of the mass ratio. Comments upon the dependence on m
H
/m

W
are

deferred to section 6.2.

The late time evolution of the integrated magnetic, longitudinal and transverse

electric energies, for m
H

= 3m
W

is presented in Fig. 10. A large fraction of the

electromagnetic fields generated after SSB is preserved by the time evolution. From

mt ∼ 60 onwards, the transverse energy densities increase with time, again with a

power law dependence: tα, with α = 0.350(1) and 0.330(1) for electric and magnetic
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Figure 10: We display the log-log plot of the time evolution of the electric (transverse
and longitudinal) and magnetic energy densities. The exponents of the power law fits
are: Transverse electric field: 0.350(1); Magnetic field: 0.330(1) and Longitudinal electric
field: −0.234(2). For mH = 3mW , ma = 0.42 and pmin = 0.15m, averaged over 200
configurations.

energy densities respectively. At these late times, transverse electromagnetic fields

are composed of an admixture of radiation and long range seed fields. In section 5.2

we will see how to separate these two components by analyzing the electromagnetic

field power spectra. Note also that there is a significant fraction of longitudinal

electric fields, even at the later stages of the evolution. As already mentioned, the

slow screening of the longitudinal component of the electric field is tied to the presence

of large charged lumps around magnetic field lines, see Figs. 7 and 8, which persist

even at late times.

5.2 Electromagnetic field spectrum

To investigate whether inverse cascade is active during the late time evolution we

have analyzed the electromagnetic Fourier spectrum. Figs. 11 and 12 display the

time evolution of 〈k2| ~E(k)|2〉/V and 〈k2| ~B(k)|2〉/V , where ~E(k) and ~B(k) are the

Fourier components of the electromagnetic fields and V is the physical volume. The

most remarkable feature in the spectrum is the peak at small momenta that develops

with time, which is distinctly separated from the high momentum component. This

behaviour suggests that the spectrum contains two uncorrelated distributions which

describe respectively electromagnetic radiation and the long range electric and mag-

netic seed fields. Following this indication, we have performed fits to the spectrum
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Figure 11: We plot 〈k2| ~E(k)|2〉/V vs k, averaged over 150 configurations. The lines
represent fits to the radiation and seed field electromagnetic components according to Eqs.
(5.3), (5.5) respectively. Results are presented at mt = 105, 145, 185 and 265. In all cases
mH = 3mW , ma = 0.42 and pmin = 0.15m.

where this separation is made explicit:

~F (k) = ~F seed(k) + ~F rad(k) (5.1)

with ~F = ~E or ~B. For the expectation values of the electric and magnetic correlators

we obtain accordingly:

〈| ~E(k)|2〉 = 〈| ~Eseed(k)|2〉+ 〈| ~Erad(k)|2〉 (5.2)

〈| ~B(k)|2〉 = 〈| ~Bseed(k)|2〉+ 〈| ~Brad(k)|2〉

In the remaining of this section we will describe these two components, starting

with the electromagnetic radiation and ending with the infrared component which

describes the magnetic field seed.

5.2.1 Electromagnetic radiation

The radiation component dominates the electromagnetic energy density, its contri-
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Figure 12: The same as in Fig. 11 but for the magnetic component: 〈k2| ~B(k)|2〉/V.

bution being a factor of 5-10 larger than the one coming from seed fields. Its profile

is very well described by:

1

V
〈| ~Erad(k)|2〉 =

2wE
eβ(wE−µE) − 1

(5.3)

1

V
〈| ~Brad(k)|2〉 =

2k

eβ(wB−µB) − 1
,

with wE(B) =
√
k2 +m2

E(B) and parameters given in Table 2. As illustrated in figures

11 and 12, this distribution fits very well the high momentum part of the spectrum

but fails in reproducing the low momentum peak. Eq. (5.3) represents free massive

thermal radiation with non zero chemical potential at temperatures slightly rising

with time, which we interpret as an effect induced by the plasma of the W -fields.

Similar information can be extracted from the distribution of local values of the

norm of the transverse electric and magnetic fields. For free photons this should

follow a Maxwellian distribution (see Appendix C):

P (B) =

√
2

π

( 3

〈B2〉

)3/2

B2 e
− 3B2

2〈B2〉 , . (5.4)
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mt TE/m mE/m µE/m TB/m mB/m µB/m

105 0.32(1) 0.77(1) 0.61(1) 0.32(1) 0.66(1) 0.60(1)

125 0.33(1) 0.74(1) 0.58(1) 0.33(1) 0.61(2) 0.57(2)

145 0.34(1) 0.75(1) 0.58(1) 0.33(1) 0.60(2) 0.56(2)

165 0.34(1) 0.76(2) 0.59(1) 0.34(1) 0.61(2) 0.57(2)

185 0.34(1) 0.82(1) 0.63(1) 0.34(1) 0.65(2) 0.60(2)

205 0.35(1) 0.84(1) 0.64(1) 0.34(1) 0.64(2) 0.59(2)

245 0.35(1) 0.93(1) 0.68(1) 0.35(1) 0.64(1) 0.59(2)

265 0.36(1) 0.93(1) 0.67(1) 0.35(1) 0.65(2) 0.59(2)

Table 2: Parameters of the fit to the high momentum part of the transverse electric and
magnetic spectra in Eq. (5.3), for mH = 3mW , ma = 0.42 and pmin = 0.15m. Errors in
parenthesis combine both systematic and statistical effects.

where B = | ~B(~x)|. Our data does indeed reproduce this behaviour at late times.

In Fig. 13 we display the time evolution of the distribution of magnetic field norms,

starting from mt = 5. Although initially the distribution differs significantly from the

Maxwellian one, it is approached as time evolves and photons thermalise. There is,

however, a systematic mismatch when we fit the tail of the Maxwellian distribution,

even at large values of mt. This signals again a deviation from free radiation, like

the one observed in the low momentum part of the magnetic and electric spectra. It

is in this deviation where the contribution of the seed magnetic fields reside.
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Figure 13: We show the time evolution of the distribution of magnetic field norms. Left:
For mH = 3mW we display the log of P (B)/B2 vs B2/B2

max (i.e. normalized to the value at
the peak of the distribution) . Right: For mH = 3mW we compare the initial distribution
of the local magnitude of the magnetic field at mt = 5 with the one obtained at mt = 265,
the latter fitted to a Maxwellian distribution. The fit to the mt = 5 data is described in
Appendix D.
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5.2.2 Electric and magnetic seeds

We turn now to the analysis of the infrared part of the spectrum, which is the relevant

one for the generation of the LSMF seed field. This low momentum part has been

fitted to:

1

V
〈| ~Eseed(k)|2〉 =

2k

eβ̂E(ŵE−µ̂E) − 1
, (5.5)

1

V
〈| ~Bseed(k)|2〉 =

2k

eβ̂B(ŵB−µ̂B) − 1
,

with ŵE(B) =
√

(k − k0
E(B))

2 + m̂2
E(B) and parameters given in Tables 3, 4. This

could represent again massive radiation at non-zero chemical potential if it were not

for the peculiar shift k0 in the frequency ŵ. We interpret the value of k0 ∼ 0.3m as

a characteristic momentum scale of the long range electromagnetic fields.

mt T̂E/m m̂E/m µ̂E/m k̂0
E/m

105 0.11(1) 0.33(5) 0.30 (4) 0.29(1)

125 0.13(1) 0.24(4) 0.22(3) 0.29(1)

145 0.14(1) 0.21(5) 0.18(3) 0.30(1)

165 0.13(1) 0.25(5) 0.23(3) 0.29(1)

185 0.09(2) 0.49(8) 0.48(6) 0.27(1)

205 0.11(1) 0.36(6) 0.35(3) 0.29(1)

225 0.10(2) 0.39(10) 0.38(3) 0.28(1)

245 0.11(1) 0.37(7) 0.35(3) 0.30(1)

265 0.10(1) 0.45(7) 0.44(4) 0.28(1)

Table 3: Parameters of the fit to the low momentum part of the transverse electric
spectrum in Eq. (5.5), for mH = 3mW , ma = 0.42 and pmin = 0.15m.

A quantitative estimate of the energy density and correlation length of the seed

electromagnetic fields can be obtained from our fits to the low momentum part of

the spectrum. The mean energy density is computed from the integral of the seed

field spectrum as

〈ρFseed〉 =
1

2V
∑
~k

|~F seed(k)|2

V
, (5.6)

with F = E(B). The correlation length, ξE(B), is extracted from

ξ =
2π

k̄
, with k̄2 =

∑
~k k

2 |~F seed(k)|2∑
~k |~F seed(k)|2

. (5.7)

Table 5 and Fig. 14 summarise our results. We have tested finite volume indepen-

dence by comparing two different physical volumes: pmin = 0.125m and pmin = 0.15m.
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mt T̂B/m m̂B/m µ̂B/m k̂0
B/m

105 0.11(1) 0.32(7) 0.30(3) 0.29(1)

125 0.13(1) 0.24(7) 0.21(4) 0.31(1)

145 0.13(1) 0.24(6) 0.22(3) 0.29(1)

165 0.13(1) 0.27(6) 0.23(4) 0.29(1)

185 0.13(2) 0.18(10) 0.16(8) 0.32(3)

205 0.11(1) 0.31(7) 0.29(4) 0.30(1)

225 0.11(1) 0.26(5) 0.25(4) 0.31(1)

245 0.10(1) 0.37(9) 0.36(2) 0.29(1)

265 0.11(2) 0.33(9) 0.32(3) 0.30(1)

Table 4: Parameters of the fit to the low momentum part of the magnetic spectrum in
Eq. (5.5). For mH = 3mW , ma = 0.42 and pmin = 0.15m.

The numbers in Table 5 come from an average of the results obtained at these two

physical volumes, with errors given by the dispersion between them.

We obtain a magnetic seed whose mean energy density increases linearly with

time. Within the time ranges we have analysed, its fraction to the total comes out

to be of order ∼ 10−2. Assuming the magnetic field expands as radiation, this would

give magnetic fields today of order 0.5µG, which are in the range of the observed ones

in galaxies, and even in clusters of galaxies, where no-extra amplification through a

dynamo mechanisms is expected.

mt 〈ρEseed〉(×102) mξE 〈ρBseed〉(×102) mξB

105 0.62(5) 25.3(1) 0.58(3) 25.7(6)

125 0.73(2) 25.2(1) 0.61(1) 24.5(9)

145 0.76(4) 24.8(9) 0.72(2) 24.8(3)

165 0.76(4) 26.0(10) 0.77(1) 25.4(6)

185 0.83(1) 27.6(1) 0.79(2) 26.0(10)

205 0.89(2) 27.7(2) 0.79(6) 27.2(5)

225 0.91(5) 27.9(5) 0.87(1) 28.0(5)

245 1.06(9) 27.6(4) 0.88(1) 28.1(2)

265 1.12(7) 27.9(2) 0.92(2) 28.4(7)

Table 5: Fraction of total energy and correlation length of the seed electromagnetic fields.
They are both derived from the infrared spectrum as described in Eqs. (5.6) and (5.7).
The results are obtained by averaging (over 150 configurations) the values obtained for
pmin = 0.15m and pmin = 0.125m, with errors reflecting the dispersion between them.
Data correspond to mH = 3mW , ma = 0.42.

– 29 –



 0.0065

 0.007

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 140  160  180  200  220  240  260  280

ρB
se

ed
/ρ

0

mt

 24

 26

 28

 30

 32

 140  160  180  200  220  240  260  280

m
ξ B

mt

Figure 14: We show the time evolution of ρBseed (left) and mξB (right), for mH =
3mW , ma = 0.42. The results are obtained by averaging the values obtained for
pmin = 0.15m and pmin = 0.125m, with bands representing the dispersion in the errors.
The fits are ρBseed/ρ0 = 0.0035(5) + 2.3(3) × 10−5mt and mξB = 20.1(4) + 0.033(2)mt
respectively.

Concerning the correlation length, it is difficult to make a definitive statement

about the presence of inverse cascade, given the small time scales we can explore with

our numerical simulation. Nevertheless, within the time span we have analyzed, our

results clearly show a linear increase of the magnetic correlation length with time

(see Fig. 14). This result is robust under changes of pmin and lattice spacing. The

observed growth is described by mξB(t) = 20.1(4) + 0.033(2)mt, giving at mt = 265

a characteristic length scale for seed magnetic fields of order mξB(mt = 265) ∼
30(1). This is much larger than the thermal correlation length, mξthermal ∼ 10, and

represents a significant fraction of the physical volume. It also implies a considerable

increase from the initial value at mt = 5, obtained from the initial spectrum to be

mξB(mt = 5) ∼ 17. From these results we can safely conclude that the time evolution

has succeeded in amplifying the correlation length of the magnetic seed generated at

SSB. Nevertheless, a more detailed study, including plasma effects, would be required

to determine whether ξ will be further amplified at late times.

In addition to the direct analysis of the spectrum we have also followed an al-

ternative strategy to separate both the magnitude and the scale of the magnetic

remnant from the radiation bath. A common way to do this, which has been exten-

sively used in the literature, is through the computation of several spatial averages of

the electromagnetic fields. Following Ref. [28], we introduce the following averages:

• A line average:

B(1)(l) =
1

l

∫
C

~B · d~x , (5.8)

with C a straight line of length l.
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Figure 15: We show the dependence with ml of the three spatial averages (5.8)−(5.10),
for mt = 245. The lines are extracted from our fits to the infrared and radiation parts of
the spectrum. Note that the fall-off at large distances is just a volume effect.

• The average magnetic flux over a surface of area l2:

B(2)(l) =
1

l2

∫
S

~B · d~S , (5.9)

• A volume average:

~B(3)(l) =
1

l3

∫
S

~Bd3x . (5.10)

As discussed in Ref. [28], the spatial and statistical averages 〈B2
(i)(l)〉 can be easily

computed in terms of the spectra of the fields. For instance, the line average for a

volume V is given by:

〈B2
(1)(l)〉 =

1

V
∑
~k

|Bk|2

V
W 2(k1, l) (5.11)

with

W (ki, l) =
2 sin(kil/2)

kil
. (5.12)

Analogous expressions can be found for the other two quantities. The advantage of

these averages is that they filter out the high momentum part of the spectrum and

allow to recover, at large l, information about the low momentum modes. We have

checked that our fits to the spectrum correctly reproduce the spatial averages. This

is illustrated in Fig. 15, where we present results for the three averages at mt = 245

compared with the predictions obtained from our fits to the spectrum. The quality

of the agreement can be considered very good given that the continuum lines are

directly obtained from the fits to the spectrum (Eqs. (5.3), (5.5) and Tables 2 - 4),

and not as a result of a fit to the spatial averages.

To summarize, we have found evidence of the presence of a long range helical

magnetic field, whose amplitude and correlation length are linearly increasing with
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Figure 16: Comparison of the fraction of total energy carried by electric (transverse and
longitudinal) and magnetic fields. Top left: for two different values of the minimum mo-
mentum: pmin = 0.1 and 0.15 for fixed ma = 0.65. Top Right and down: 3 different lattice
spacings ma= 0.65, 0.52,0.42, for the longitudinal, transverse and magnetic components of
the energy. The lines are the extrapolation of the results to the continuum a→ 0 limit. For
mH = 2mW which, from the point of view of lattice artefacts, is the worst case situation.

time. This is accompanied by the growth of a similar long range electric field. The

fate of these electromagnetic field depends on the subsequent evolution of the plasma

which is not addressable within our classical approximation and would require a

magnetohydrodynamics treatment including the effects of fermion fields. Our results

for the power spectrum of the seed fields can be used as initial conditions for a MHD

treatment as the one developed in Ref. [31].

6. Dependence on methodological and model parameters

In this section we study the (in-)sensitivity of our results to the lattice and finite

volume artefacts. We conclude that all our qualitative results are unaffected by both

types of approximations. Furthermore, we estimate the size of the systematic errors
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Figure 17: Left: Lattice spacing dependence of the magnetic susceptibility for mH =
2mW ,ma = 0.65, 0, 52, 0.42 and N = 64, 80, 100. Right: Temporal lattice spacing depen-
dence of the magnetic susceptibility for mat = 0.05, 0.025.

induced by these cut-offs. The lattice artefacts, though sizable, follow the expected

O(a2) dependence allowing an extrapolation of the most relevant quantities to the

continuum limit.

We also analyze the dependence of our magnetic field production mechanism

on the Higgs to W -boson mass ratio m
H
/m

W
. It follows from our scenario that,

initially, the helical susceptibility χH is independent of the Higgs self-coupling. At

later times however, we observe a non-monotonic dependence upon the mass ratio,

which is maximal at our intermediate value m
H
/m

W
= 3.

6.1 Lattice and finite volume artefacts

In order to determine the size of the errors introduced by our numerical approach,

we have performed simulations at different values of the physical volume and of the

spatial and temporal lattice spacings. The list of simulation parameters is given

in Table 1. The selection of values implies a delicate compromise among different

factors. As shown in Ref. [73], to avoid important finite volume effects, we need

lattices with momentum discretization pmin = 2π/L ≤ 0.15m. On the other hand,

concerning lattice artefacts, we have seen in Ref. [74] that cut-off independence of

certain particular quantities (as the Chern-Simons number) requires m
W
a ≤ 0.3.

Most of our lattices satisfy both requirements.

In Figs. 16 and 17 we present results exhibiting the lattice and finite volume de-

pendence of the electromagnetic energy densities and of the magnetic helicity. They

correspond to the most disfavourable case of m
H

= 2m
W

. No noticeable dependence

on the volume is appreciated. Lattice spacing artefacts are somewhat stronger but

do not change the general pattern of behaviour. To analyse this effect in more detail,

we display in Fig. 18 the a2 dependence of the electromagnetic field energy densities
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Figure 18: Continuum extrapolation of the magnetic, transverse electric, longitudinal
electric and Z-boson susceptibility. For mH = 2mW and mt = 95, 145, 190, and mt =
60, 190 for the susceptibility.

and Z-boson susceptibility at various times. In all cases the results are consistent

with the expected quadratic dependence. This allows the extrapolation of the results

to the continuum limit, displayed as a continuous line in Figs. 16 and 17. The right-

hand side of the last figure shows that for the case of the magnetic susceptibility

the values obtained for the different lattice spacings are compatible within statistical

errors. Nonetheless, assuming that the lattice spacing dependence depends smoothly

on time, we can obtain an extrapolation to the continuum limit lying approximately

5% above the values obtained for the smaller spacing.

With respect to finite size effects, long range quantities are expected to be the

most affected. Thus, it is essential to test that the low momentum part of the

magnetic power spectrum is not biased by finite volume artefacts. In Fig. 19 we

present results for pmin = 0.125m and 0.15m. The agreement is very good for the

ratio m
H
/m

W
= 3 and preserves the same quality for the other 2 values of the m

H
to

m
W

mass ratios that we have studied.
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6.2 The Higgs to W boson mass ratio

Most of the results presented in the previous sections correspond to a Higgs to W -

mass ratio of 3. Qualitatively the picture remains the same for the other two ratios

analyzed: m
H

= 2m
W

and m
H

= 4.65m
W

. In Fig. 20 we compare the electromagnetic

energy densities and helical susceptibility as a function of time for different values

of the ratio m
H
/m

W
. We have chosen here not to normalize the energy densities to

the total one, in order to exhibit the independence of the initial magnitude of the

electromagnetic fields and helical susceptibility on the value of Higgs self-coupling λ,

which also determines the mass ratio. Other features of the initial configuration such

as string lengths and widths are also λ-independent, and depend only on the mass

parameter M that fixes the Higgs Gaussian random field (see Appendix D). This

λ-independence is preserved in the first Higgs oscillation but lost afterwards, once

non-linearities and the presence of the gauge fields modifies the dynamics. At late

times equipartition would indicate that the total fraction of energy density carried

by the electromagnetic field would again become λ-independent. Since ρ0 = m4/4λ,

the fraction of energy densities in units of m4 should tend to behave as 1/λ at late

times. This is indeed the tendency observed in the data.

7. Conclusions

In this paper we have analyzed the production of primordial magnetic fields in a

model of low-scale EW hybrid inflation. Some partial aspects of our study were

anticipated in Ref. [78]. For that purpose we have studied, with the help of lattice

non-perturbative techniques, the preheating and early reheating periods after the

end of a inflationary period. Our work includes, for the first time, the full Standard
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Figure 20: Time evolution of the energy densities, in m4 units, in the: Top Left: lon-
gitudinal electric field; Top Right: transverse electric field; Bottom Left: magnetic field.
Bottom Right: χH in m3 units. Energy densities are not normalized to the total energy
density in order to emphasize λ independence in the initial stages of the evolution.

Model, SU(2) ⊗ U(1), gauge degrees of freedom. The period of low-scale inflation

which sets the initial conditions of our work could be brief. We do not need the full

60 e-folds that are necessary to account for the CMB anisotropies. All that is needed

is a period of thermal inflation at the EW scale which would cool down the universe

during at least 10 e-folds, and set the stage for a cold (quantum) EW transition.

The metric fluctuations responsible for large scale structure could be produced at

the primordial (high energy scale) inflation. This secondary stage only redshifts scales

by another e10 factor, but is irrelevant for horizon size fluctuations today, while is

enough to erase all relativistic and non-relativistic species. This scenario was first

proposed in Ref. [70] and has recently been considered in Ref. [69].

The main results of our work can be summarized in the following three observa-

tions. First, this set up provides a concrete realization of the mechanism proposed

by Vachaspati [34] and Cornwall [38], by which inhomogeneities of the Higgs field

phases act as sources for the generation of magnetic fields and − this is essential

− with non-trivial helicity. To the best of our knowledge this is the first time that

this mechanism has been observed in a fully non-perturbative set-up. Second, the
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generated magnetic field would have, when red-shifted until today, an amplitude of

∼ 0.5µG. This is enough to explain the values of magnetic fields observed in clusters,

while those in galaxies would require a small amount of enhancement via the usual

dynamo mechanism. Third, the correlation length of the generated magnetic field

grows linearly with time within the time span we have analyzed. For m
H

= 3m
W

we

find mξB ∼ 0.03mt, as shown in Fig. 14. This linear growth seems to be sustained

by the non-trivial dynamics of the plasma made of W -bosons and could be expected

to hold until the decay of the Higgs, the W and the Z bosons into light fermions.

Our approach does not allow us to extrapolate these results from then onwards.

Nevertheless, the helical nature of the generated magnetic field warrants that the

effect of the primordial plasma would be that of preserving and even amplifying the

magnitude of the helicity and the magnetic field correlation length [31]- [33].

We have distinguished three different stages in the evolution after inflation ends:

tachyonic growth of the Higgs-field low momentum modes, symmetry breaking and

late time evolution after SSB. In what follows we will summarize the main features

characterizing each of these stages.

During the first tachyonic stage, non-linearities in the Higgs potential and gauge

fields can be neglected and the quantum evolution of the system can be exactly

solved. Quantum fluctuations of the Higgs-field infrared modes are described by a

multi-component Gaussian random field. As described in detail in section 4, mag-

netic fields are already present at this stage with a non-trivial helical susceptibility

directly related to the winding number susceptibility of the Higgs as a Gaussian ran-

dom field. Although SU(2)⊗ U(1) gauge fields are very small at the end of inflation,

the magnetic fields arise through the presence of inhomogeneities in the Higgs field

phase, thus corroborating Vachaspati’s conjecture. Along this period, the spatial dis-

tribution of the magnetic field is determined by that of the Higgs field, a feature that

is maintained and even enhanced during the second stage of evolution corresponding

to symmetry breaking.

The period of SSB arises via the formation of bubbles in the Higgs field norm

that expand with time and collide with each other. Magnetic fields are squeezed

by the expansion in string-like structures localized in the regions between bubbles

(see Fig. 4). This stringy structure is reproduced both in the helicity density and

in the Z boson magnetic field density. We have estimated a characteristic string

separation during this period of m
H
l ∼ 14. Linked to the appearance of the mag-

netic strings we find a non trivial distribution of electric fields and W -boson charge

and current densities. Most remarkably, we see a very non-trivial distribution of

the charge density with the formation of extended charged clusters which track the

position of the magnetic string. This separation of unequal charges induces electric

fields in the plasma. We observe both transverse and longitudinal electric fields also

correlated with the string locations. The clusters persist for a very long time and,

as a consequence, we observe a very slow screening of the longitudinal electric field
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with time, see Fig. 10. We conjecture that these electric fields will be erased as soon

as the plasma of W -bosons decays into light fermions moving close to the speed of

light, which will neutralize much faster than the heavy W -charges.

The third stage of evolution after SSB is characterized by a very slow approach

to thermalisation. To claim a feasible mechanism for magnetogenesis we have to

guarantee that the initial helical magnetic seed is not removed with time. We

have shown in section 5 that the magnitude of the helical susceptibility grows with

time with a power-law behaviour, χH ∝ tα, with α = 0.7(1), 0.8(1) and 0.3(1) for

m
H
/m

W
= 2, 3, 4.65 respectively. At the same time the Z-boson helical susceptibil-

ity decays also with a power law dependence with time. We have observed that the

magnitude of the generated magnetic susceptibility does not depend monotonically

on the Higgs- to W -mass ratio. Of the values we have analyzed, m
H
/m

W
= 3 is the

one that generates larger helical fields.

In order to extract the late time behaviour of the amplitude and correlation

length of the magnetic field seed, we have performed a detailed analysis of the mag-

netic field Fourier spectrum for m
H
/m

W
= 3. It shows two well differentiated and

uncorrelated components: an ultraviolet radiation sector and an infrared peak whose

amplitude increases with time (see Fig. 12). The radiation tail is well described by a

Bose-Einstein distribution of massive photons with a non-trivial chemical potential

at temperatures T ∼ 0.23m
H

slowly rising with time. The low momentum part of

the spectrum carries a fraction f ∼ 10−2 of the total energy density. As mentioned

before, both its amplitude as its correlation length are linearly growing with time

within the analyzed time span, showing indications of an inverse cascade towards

the infrared. However, our time scales are not long enough to demonstrate that

inverse cascade will be sustained at even later times when the composition of the

plasma changes significantly. For the moment we can, nevertheless, rely on the re-

sults in Refs. [31]- [33] which show that helical fields are optimally amplified by MHD

evolution.

In summary, hybrid preheating at the EW scale could be responsible for the ob-

served magnetic fields associated with large scale structures like galaxies and clusters

of galaxies. Both the magnitude and correlation length could be derived from the

highly non-linear and non-perturbative evolution after EW symmetry breaking. Our

analysis provides a concrete realization of the mechanism proposed by Vachaspati

and Cornwall many years ago. This primordial plasma enters a regime in which

helical magnetic field lines experience an inverse cascade towards larger scales. We

observe how both their energy density and correlation length grow linearly with time.

Showing that these magnetic fields evolve as described in the introduction until pho-

ton decoupling would require a detailed follow up with MHD simulations with initial

conditions provided by our work. This result would support our proposal that the

helical magnetic fields produced at the cold EW transition are responsible for the

observed magnetic fields in galaxies and clusters of galaxies.
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A. The Lattice Equations of Motion

To solve the classical equations of motion we discretise them on a lattice preserving

full gauge invariance. In this appendix we introduce the lattice notation and derive

the lattice equations of motion for our particular problem.

As usual, the lattice points are labeled by a vector of integers n = (n0, ~n) in

terms of which the space-time positions are given by: x = (n0 at, ~n a), with at and

a the temporal and spatial lattice spacings related by κ = at/a. The adimensional

lattice scalar fields are derived from the continuum ones as: ΦL(n) = aΦ(x/a) and

χL(n) = aχ(x/a). In what follows we will omit the subscript L, since all fields

will be lattice fields unless explicitly indicated. The Higgs field is expanded as:

Φ(n) =
∑

α φ
α(n) σ̄α, in the basis of 2 × 2 SU(2) matrices: σ̄ ≡ (1l, i~τ), with τa

the Pauli matrices and φα real coefficients. The Standard Model Higgs doublet is

obtained trough the projection: ϕ = Φ (1, 0)T . Gauge fields are given in terms of link

variables: Uµ(n) and Bµ(n) for SU(2) and hypercharge fields respectively. They are

both 2 × 2 SU(2) matrices, with the peculiarity that Bµ(n) is diagonal. Expanded

in the σ̄ basis, they read:

Uµ(n) =
∑

α=0,···,3

uαµ(n) σ̄α , Bµ(n) =
∑
α=0,3

bαµ(n) σ̄α , (A.1)

with uαµ and bαµ real coefficients. The continuum limit of the gauge links is as usual:

Uµ(n) ∼ e
i
2
aµgWAaµτa , (A.2)

Bµ(n) ∼ e
i
2
aµgYBµτ3 ,

where there is no implicit sum in the µ index and where the vector aν ≡ {at, a, a, a}.
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With the previous conventions, the usual U(1) hypercharge transformation is

implemented by acting on the Φ field with right multiplication by a diagonal SU(2)

matrix:

ϕ′(n) = eiα(n) ϕ(n) −→ Φ′(n) = Φ(n) eiα(n)τ3 . (A.3)

The complete SU(2)⊗ U(1) gauge transformation for the Higgs field then reads:

Φ(n)→ Ω(n)Φ(n)Λ(n) , (A.4)

where Λ(n) = exp(iα(n)τ3) represents the U(1) gauge transformation and Ω(n) =∑
α Ωα(n) σ̄α the SU(2) one. The corresponding transformations of the gauge links

are:

Uµ(n) → Ω(n)Uµ(n) Ω†(n+ µ) , (A.5)

Bµ(n) → Λ(n)Bµ(n) Λ†(n+ µ) ,

where µ̂ is the unit vector in the µ direction.

It is useful to introduce a lattice covariant derivative operator defined by:

(DµΦ)(n) = Uµ(n) Φ(n+ µ̂)Bµ(n)− Φ(n) , (A.6)

and its adjoint:

(D̄µΦ)(n) = U †µ(n− µ̂) Φ(n− µ̂)B†µ(n− µ̂)− Φ(n) . (A.7)

In addition we introduce forward and backward ordinary lattice derivatives given by:

(∆µf)(n) = f(n+ µ̂)− f(n) , (A.8)

(∆̄µf)(n) = f(n− µ̂)− f(n) . (A.9)

The discretization of the pure gauge part of the Lagrangian is done in terms of

the plaquette fields:

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †(n+ ν̂)U †(n) , (A.10)

P ab
µν(n) = Bµ(n)Bν(n+ µ̂)B†(n+ ν̂)B†(n) ,

with the transformation properties:

Pµν(n) → Ω(n)Pµν(n) Ω†(n) , (A.11)

P ab
µν(n) → Λ(n)P ab

µν(n) Λ†(n) = P ab
µν(n) .

The pure gauge discretized Lagrangian then reads:

LY(n) =
2

κg2
Y

∑
i

Tr [1− P ab
0i (n)]− κ

g2
Y

∑
i 6=j

Tr [1− P ab
ij (n)] , (A.12)

LSU(2)(n) =
2

κg2
W

∑
i

Tr [1− P0i(n)]− κ

g2
W

∑
i 6=j

Tr [1− Pij(n)] . (A.13)
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And the complete lattice Lagrangian is:

LL(n) = LY(n) + LSU(2)(n) + Tr
{

(DµΦ)†(n) (DµΦ)(n)
}

(A.14)

+
1

2
∆µχ(n) ∆µχ(n)− κV (Φ(n), χ(n)) ,

where all the derivatives are lattice derivatives and all matter fields are adimensional

lattice fields. To simplify notation we have introduced the lattice metric tensor ηµν

with non-zero elements: η00 = 1/κ and ηii = −κ, i = 1, 2, 3. This allows to raise

four-dimensional indices in the usual way. The potential, V (Φ(n), χ(n)), has the

explicit form:

V (Φ(n), χ(n)) = − M2
L Tr{Φ†(n)Φ(n)}+ λ

(
Tr{Φ†(n)Φ(n)}

)2

(A.15)

+
µ2
L

2
χ2(n) + g2χ2(n) Tr{Φ†(n)Φ(n)} ,

with ML = am, µL = a µ, and where g and λ are the same coupling constants

appearing in the continuum Lagrangian.

We have now all the necessary ingredients to write the lattice equations of motion.

They are derived by imposing that the variation of the lattice action with respect to

each of the fields in the Lagrangian vanishes. We obtain:

(∆µ∆̄µχ)(n) = κ
{
µ2
L + 2g2 Tr[Φ†(n)Φ(n)]

}
χ(n) , (A.16)

(DµD̄
µΦ)(n) = κ

{
−M2

L + g2 χ2(n) + 2λTr[Φ†(n)Φ(n)]
}

Φ(n),

(D̄A
ν G

µν)(n) = κ Jµ(n) ,

(D̄Y
ν F

µν)(n) = κ JµY(n) ,

with the currents given by:

Jµ(n) =
igW

2

[
Φ(n) (DµΦ)†(n)− (DµΦ)(n) Φ†(n)

]
, (A.17)

JµY (n) =
igY
2

[
(DµΦ)†(n) Φ(n)− Φ†(n) (DµΦ)(n)

]
3
σ̄3/2 ,

where the sub-index 3 in the second equation denotes the component, of the term

between brackets, along σ̄3/2. The covariant derivatives, (DµΦ)(n) and (D̄µΦ)(n),

are given by Eqs. (A.6), (A.7). We have also introduced two additional covariant

derivative operators: DA
µ and DY

µ , obtained from the standard one by setting either

the hypercharge or the SU(2) gauge links to the identity, i.e.:

(DA
µΦ)(n) = Uµ(n) Φ(n+ µ̂)− Φ(n) , (A.18)

(DY
µ Φ)(n) = Φ(n+ µ̂)Bµ(n)− Φ(n) .
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The corresponding expressions for the plaquette fields are:

(DA
µPρν)(n) = Uµ(n)Pρν(n+ µ̂)U †µ(n)− Pρν(n) , (A.19)

(DY
µ P

ab
ρν )(n) = P ab

ρν (n+ µ̂)− P ab
ρν (n) .

The tensors Gµν and Fµν , appearing in the equations of motion, are defined from the

traceless part of the plaquettes by:

Fµν =
i

2gY
[P ab
µν(n)− P ab

νµ(n)] , (A.20)

Gµν =
i

2gW
[Pµν(n)− Pνµ(n)] .

In order to simplify the problem of solving the lattice equations of motion it is

convenient to fix the temporal gauge, realized on the lattice by fixing the temporal

component of the hypercharge and SU(2) links to unity: B0(n) = 1l , U0(n) = 1l. In

this gauge, the lattice equations of motion can be used to solve for the fields at time

n0 + 2 in terms of the fields at times n0 and n0 + 1. The lattice equations associated

to the gauge fixed degrees of freedom become constraint equations analogous to the

continuum Gauss law:

(D̄A
kG

0k)(n) = κ J0(n) , (A.21)

(D̄Y
k F

0k)(n) = κ J0
Y (n) .

As proved in Ref. [74], these constraints are preserved by the lattice evolution. It

is hence sufficient to impose them on the initial conditions. The way this is done

for our numerical simulations follows exactly the procedure described in Ref. [74] for

SU(2) where we refer the reader for further details.

B. Lattice version of the Maxwell equations

In this appendix we present the derivation of the lattice version of the Maxwell

equations used in order to define the W charge and current densities. Starting from

the continuum expressions:

~∇ ~E(x) = ρ(x) , ~∇~ (x) + ∂0 ρ(x) = 0 (B.1)

~∇ ~B(x) = 0

~∇× ~E(x) + ∂0
~B(x) = 0

~∇× ~B(x)− ∂0
~E(x) = ~ (x) .

we look for a discretization that preserves the Bianchi identities.
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In section 3.2, we have defined the electromagnetic lattice field strength, F γ
µν(n),

in terms of clover averaged Z and B field strengths. The clover average of a space-

time tensor, like F0i(n), is given by:

〈F0i(n)〉clov ≡
1

2

(
F0i(n) + F0i(n− 0̂)

)
, (B.2)

while for a spatial tensor we have:

〈Fij(n)〉clov ≡
1

4

(
Fij(n) + Fij(n− ı̂) + Fij(n− ̂) + Fij(n− ı̂− ̂)

)
. (B.3)

From them we extract the lattice electric and magnetic fields:

Ei(n) =
1

e aat
〈Fi0(n)〉clov , Bi(n) =

1

2 e a2
εijk 〈Fjk(n)〉clov . (B.4)

The electromagnetic ~E and ~B fields, defined above, verify the following Bianchi

identities:

~∆I · ~B(n) = 0 , ~∆I × ~E(n) +
1

κ
∆0

~B(n) = 0 , (B.5)

where we have introduced an improved lattice derivative given by:

(∆I
µf)(n) =

1

2

(
f(n+ µ̂)− f(n− µ̂)

)
. (B.6)

We now define accordingly the longitudinal and transverse components of the electro-

magnetic fields. The projection is done in momentum space with Fourier transformed

fields:

~E(~k) =

∫
d3~x ~E(~x) e−i

~k·~x , ~B(~k) =

∫
d3~x ~B(~x) e−i

~k·~x , (B.7)

with lattice momenta: ki = 2πni/(Ns a), ni ∈ ZZ. Transverse components, ~At, of a

vector ~A, are defined such that q̂ · ~At = 0, where:

~q =
1

2
(~v − ~v∗), with vi =

1

a
(e−ikia − 1) , (B.8)

and with q̂ the unit vector in the direction of ~q.

The electromagnetic, Fourier transformed, charge and current densities are com-

puted through:

ρ (~k) = q̂ · ~E(~k) , (B.9)

~ (~k) = q̂ × ~B(~k)− 1

at
∆̄0

~E(~k) . (B.10)
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C. Thermal radiation

In the present appendix, we prove the relation:

〈| ~B(~x)|2n〉 = 〈: | ~B(~x)|2n :〉Q(T ) , (C.1)

where the left side of the equality is calculated using the Maxwellian classical distri-

bution:

〈| ~B|2n〉 =

√
2

π

( 3

〈B2〉

)3/2
∫ ∞

0

dBB2n+2e
− B2

2
3 〈B

2〉 , (C.2)

whereas the right hand side is calculated using the thermal quantum distribution in

the canonical formalism. Thus,

〈: | ~B(~x)|2n :〉Q(T ) ≡
Tr(: | ~B(~x)|2n : ρ)

Tr(ρ)
. (C.3)

where ρ is the canonical distribution density matrix:

ρ = e−
H
T . (C.4)

and : O : denotes normal ordering of the operator O. By performing the integral in

Eq. C.2 we obtain the classical thermal averages:

〈| ~B(~x)|2n〉 =
(2n+ 1)!!

3n
(〈| ~B(~x)|2〉)n. (C.5)

Our goal is then to compute the thermal quantum averages

〈: ( ~B(~x) · ~B(~x))n :〉Q(T )

on the canonical distribution at temperature T. The only terms of the normal-ordered

operator that contribute to the expectation values must be diagonal in momentum

space. If we single out that part we obtain

: ( ~B(~x) · ~B(~x))n :=
n∏
i=1

(∑
ai

∫
d~kia

†
ai

(~ki)aai(
~ki)

)
Ga1...an(~k1, . . . ~kn) +X , (C.6)

where X denotes the part that does not contribute to the expectation value and G

is a a coefficient to be specified later.

Next we can evaluate the thermal average of the operator part, which can be

expressed as a product of n(ki, ai), the mean number of photons of momenta ~ki and

polarization ai. Hence, we arrive at

n∏
i=1

(∑
ai

∫
d~ki n(ki, ai)

)
Ga1...an(~k1, . . . ~kn) .
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Now we should unfold the form of the coefficient G. It is given by

1

n!

∏
i

(
vl2i−1

(~ki, ai)vl2i(
~ki, ai)

) ∑
σ∈S2n

δlσ(1)lσ(2)
· · · δlσ(2n−1)lσ(2n)

,

where the sum is over all the permutations of the 2n indices, and

vi(~k, a) =
1

(2π)3/2
√

2k
(~k × ~εa(~k))i .

The sum over all permutations follows from taking all creation annihilation operators

as distinguishable and assigning them to each of the 2n magnetic fields. Nonetheless,

since we are integrating over all values of momenta one has to divide by n! to eliminate

double-counting.

Now we will introduce the matrix M , given by

Mij ≡
∑
a

∫
d~k n(k, a)vi(~k, a)vj(~k, a) = λδij . (C.7)

The left-hand side is a consequence of rotational invariance. Substituting in the

previous formulas we get

1

n!
Ml1l2 · · ·Ml2n−1l2n

∑
σ∈S2n

δlσ(1)lσ(2)
· · · δlσ(2n−1)lσ(2n)

.

The sum over permutations can be factored as follows∑
σ∈S2n

δlσ(1)lσ(2)
· · · δlσ(2n−1)lσ(2n)

= 2nn!
∑

pairings

∏
pair

δ(pair) ,

where a pairing is an arrangement of the 2n indices into pairs (equivalently a per-

mutation made entirely of 2-cycles). The rest of the calculation is very much like a

calculation to nth order in perturbation theory in a model with 2-leg vertices given

by the M matrix and a propagator given by the identity matrix. All diagrams are

now characterized by nl, the number of l-cycles (loops), where l runs from 1 to n.

Applying the standard Feynman rules one arrives at

4nn!
∏
i

(∑
nl

TrMnl

(2l)nlnl!

)
.

The factors 2l and nl! provide the order of the symmetry group of the diagram. The

2l term is associated with cyclic permutations of the vertices and to a change in

orientation. In the previous formula, the sum over nl runs over all possible integers

subject to the constraint
∑

l lnl = n. One can actually perform this sum. Setting

M = λI our expression becomes proportional to λn. Thus, we can eliminate the
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constraint on the nl by summing over n. The constrained sum can be obtained from

the unconstrained one by selecting the term proportional to λn. Hence,

4nn!
∏
l

(∑
nl

(
Dλl

2l

)nl 1

nl!

)
= 4nn! exp{D/2

∑
l

λl

l
} = 4nn!(1− λ)−D/2

whereD is the space dimension, which is 3 in our case. This quantity is the generating

function of all the quantum averages. Differentiating n times with respect to λ we

extract the n-th term that we were looking for:

〈: ( ~B(~x) · ~B(~x))n :〉Q(T ) = (2λ)n(2n+ 1)!! (C.8)

The result for D = λ = 1, given by (2n)!
n!

, serves to crosscheck the result. From the

previous equation (C.8) we get λ = (1/6)〈: |B|2(v) :〉Q(T ) allowing to re-express eq.

(C.8) in the form of eq. (C.5).

To conclude we give the expression of 〈: |B(~x)|2 :〉Q(T ) in terms of the tempera-

ture. Taking the trace of eq. (C.7) we obtain:

〈: |B|2(x) :〉Q(T ) =

∫
d~k

1

(2π)3
2 k n(k, a) .

Taking into account n(k, a) = (ek/T − 1)−1, we can perform the integration:

1

π2

∫
dkk3 1

(ek/T − 1)
=

1

π2

∫
dkk3

∞∑
n=1

−(e−k/T )n =
6

π2
T 4

∞∑
n=1

1

n4
.

The sum over n is the known ζ(4) = π4/90, leading to:

1

2
〈: |B|2(x) :〉Q(T ) =

π2

30
T 4

D. Gaussian Random fields

In this appendix we revisit the predictions of the Gaussian random field model. As

explained in Section 3 of the paper, the initial conditions produced by the quantum

evolution shortly after inflation ends are of this type. Furthermore, this distribution

seeds the generation of magnetic fields and Chern-Simons number. There is an

extensive literature (see Refs. [86]-[89]) on Gaussian random fields and some of the

analytic predictions have been included in our previous papers. However, here we

are dealing with multicomponent fields and some of the predictions and methodology

do not hold in this case. Besides, there are many more relevant observables directly

related to the Physics issues addressed in this paper. To explore these matters within

this paper, we have felt satisfied with its numerical study. Since gauge fields and

non-linearities do not play a role at this stage, we have profited to increase statistics
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and test systematic errors at a low computational cost. These results can then be

used as a reference to compare with our full-theoretical ones.

Our Gaussian random field is homogeneous and isotropic. The power spectrum

was set to match the one produced by the quantum evolution of the Higgs field cou-

pled to a linearly time-dependent inflaton and neglecting the Higgs self-interaction.

The details and nomenclature are explained in our previous paper [73]. We recall

that the Higgs field has 4 real components which are independent random variables

with identical power spectrum which, for simplicity, is fitted to a simple form which

reproduces nicely its shape:

P (k, t) =
1

2m2π2
k2(A(t)e−B(t) k2/m2

+ 1)Θ(
√

2V tm− k) (D.1)

where V is the inflaton velocity at the end of inflation, A and B are time-dependent

parameters and Θ is the Heaviside step function.

It is interesting to be able to trace the dependence of our results on the different

parameters that enter our model. Fortunately, this dependence is greatly encoded in

two scales that characterize the Gaussian random field. One scale fixes the magnitude

of the Higgs field. We choose this scale to be the dispersion σ of the field at one

spatial point. Notice that the physical scale v, giving the expectation value of the

Higgs field in the true vacuum, has not yet entered the scene, since the Gaussian

random field is generated before the self-interaction of the Higgs field affects the

evolution. It is precisely the comparison between σ(t) and v that must be taken

into account in fixing the range of values of the initial times ti for the subsequent

non-linear classical evolution of the system.

In addition, the other scale of the problem is a length scale ξ0 associated to the

Gaussian random field as follows:

1

ξ2
0

≡
∫

dk
k
P (k, t)k2∫

dk
k
P (k, t)

(D.2)

With our choice of velocity V = 0.024 at mti = 5 we obtain σ = 0.139 v, for

m
H

= 3m
W

. Thus, we are safely in the region where non-linearities are still small. On

the other hand mξ0 = 3.09, which determines the adequate ranges of the ultraviolet

and infrared cut-off of our numerical procedure. At mti = 6.5 these numbers have

changed to σ = 0.204 v and mξ0 = 2.95 respectively. This observation allows us to

give results in a way that are valid for all the values of initial times employed in this

work.

In line with previous analysis, we will present our results for the density and

distribution of local maxima of |φ|. The density of maxima is given by 0.0140(4) ξ−3
0 .

The distribution of minimum distances among maxima can be studied directly and

displays an approximate Gaussian distribution with mean 3.1(1) ξ0 and dispersion

0.62(2) ξ0. We have also studied the distribution of values of |φ| at the maxima, ϕ.
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The average height of a peak being 1.52(4)σ. The histogram is much narrower than

the one obtained for a single component Gaussian random field, and is well-fitted to

the following expression

ϕa exp

{
− ϕ2

2σ̃2

}
with a = 10.4(5) and σ̃ = 0.44(1)σ. Nicely enough the results presented are robust

as one changes the ultraviolet, infrared cut-offs and time within their safe windows

(See Fig. 21). Errors quoted are both statistical and systematic.
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Figure 21: Left: Histogram of peak (local maxima) heights, expressed in σ(ti) units.
Right: Distribution of the the local magnetic field intensity B = | ~B(x)| in ξ0(ti) units.

Now we turn to observables which are characteristic of multi-component Gaus-

sian random fields. A crucial role is played by the topological susceptibility χ which

is obtained by dividing the mean value of the winding number square by the volume.

We obtain 1.55(10) × 10−3ξ−3
0 . We can also compute the initial magnetic field dis-

tribution. Notice that, as explained in the paper, despite the fact that SU(2)×U(1)

gauge fields are zero at this stage, our formulas induce a non-zero Z field and a

non-zero magnetic field which is proportional to it. Computing this magnetic field

at each point of space we obtain a distribution which is well fitted by a formula

P (B) = Bb exp

{
−
(
B

d1

)h1
}

+ A exp

{
−
(
B

d2

)h2
}
,

with B = | ~B(x)|, see Fig. 13. Our best fit values of the parameters are b = 1.89(3),

d1 ξ
2
0 = 3.0(1) 10−3, h1 = 0.368(3), d2 ξ

2
0 = 2.61(2), h2 = 1.34(3) , A = 1.0(5) 10−7.

The initial magnetic field distribution has a slower decrease at large values than the

Maxwellian distribution obtained at later times. The aforementioned universality

can be tested here. In particular, it follows that results obtained at different initial
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times ti should fall in the same curve once normalised by the scales of σ and ξ0. This

is clearly seen in Fig. 21.

We have also studied the spectrum of the magnetic field to compare it with the

one obtained once non-linearities set in. In our case the high momentum profile

differs from the thermal tail displayed at later times. Instead, the high momentum

tail is well fitted by a function

exp

{
−
(
k

b

)c}
where bξ0 = 0.01(1) and c = 0.36(4).
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