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Brefeldin A is a macrolide compound that interferes with the secretory pathway 

and also affects protein synthesis in mammalian cells. As a result, this antibiotic 

impedes the maturation of viral glycoproteins of enveloped viruses and viral genome 

replication in several virus species. In the present work, we show that translation of 

subgenomic mRNA from Sindbis virus, which in contrast to cellular translation, is 

resistant to brefeldin A after prolonged treatment. The phosphorylation of eIF2α as a 

result of brefeldin A treatment correlates with the inhibition of cellular translation, 

while late viral protein synthesis is resistant to this phosphorylation. The effect of 

brefeldin A on Sindbis virus replication was also examined using a Sindbis virus 

replicon. Although brefeldin A delayed viral RNA synthesis, translation by non-

replicative viral RNAs was not affected, reinforcing the idea that brefeldin A delays 

viral RNA replication, but does not directly affect Sindbis virus protein synthesis. 

 

 

Key words: Brefeldin A; Sindbis virus; cellular translation; viral protein synthesis; 

Sindbis virus replication 
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 Sindbis virus (SV) is the prototype member of the Alphavirus genus of the 

Togaviridae family. The genome, a positive-strand non-segmented RNA of almost 12 

kb, consists of two open reading frames: the first two-thirds encode non-structural 

proteins (nsPs), while the remaining third encodes structural proteins [1, 2]. The 

genomic 49S RNA also serves as a template for the synthesis of negative RNA which is 

used to generate more genome copies and to transcribe the subgenomic 26S mRNA 

from an internal promoter [2]. The lytic cycle of SV infection has two well-defined 

stages. In the first one, SV genomic RNA is translated to render the non-structural 

proteins, nsp1, 2, 3 and 4. These proteins are required for viral replication and 

transcription [3]. At about 2-4 hours post infection (h p. i.), the pattern of protein 

synthesis drastically changes, and subgenomic RNA translation increases notably while 

genomic RNA is encapsidated in new virus particles. At the time of infection, a rapid 

inhibition of host protein synthesis occurs [2, 4, 5] (38). The ability of a virus to inhibit 

the translation of cellular mRNAs under conditions in which viral mRNAs are 

translated has been observed for a variety of positive- and negative-strand RNA viruses, 

including poliovirus and influenza virus, and for many species of DNA viruses such as 

adenoviruses, herpesviruses and poxviruses [6-8]. How this blockade is accomplished 

remains still poorly understood in many cases, and different viruses may use different 

mechanisms to achieve this differential inhibition of translation [6-8].  

 Brefeldin A (BFA) is a macrolide compound capable of disrupting the vesicular 

system and blocking glycoprotein secretion in eukaryotic cells [9-13]. The molecular 

target of BFA is a subset of Sec7-type GTP-exchange factors (GEFs), which activate a 

GTP-binding protein known as ADP-ribosylation factor 1 (ARF1) [14]. ARF1 recruits 

the COPI coat and AP-1/clathrin coat protein complexes involved in the formation of 
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transport vesicles [15]. BFA inhibits the GDP-GTP exchange reaction between GEF 

and ARF1, leading to the inhibition of ARF activation [14, 16]. As a consequence, coat 

proteins are released from Golgi membranes, provoking the loss of control of fusion and 

budding membranes [9, 12, 15, 17-21]. BFA possesses antiviral activity against 

enveloped viruses, since it impedes the maturation of viral glycoproteins and the 

production of infectious particles which mature on the plasma membrane or within the 

cell [22-26]. The replication of viruses such as poliovirus or Vesicular Stomatitis Virus 

is inhibited by BFA, since RNA replication of these viruses requires continuous 

synthesis of lipids to provide new membranes to which viral replication complexes 

attach. Therefore, this compound acts against some non-enveloped viruses, interfering 

with genome replication, which requires an intact vesicular system [22, 27-30]. BFA 

also decreases protein synthesis in culture cells. Thus, BFA treatment of rat GH3 

pituitary cells leads to an inhibition of protein synthesis at the initiation level [31, 32]. 

Presumably, this effect is due to the stress situation of the endoplasmic reticulum caused 

by the disorganization of the membrane system [32-34]. We have now analyzed the 

action of BFA on the translation of BHK-21 cells and SV infected cells and also tested 

the effect of BFA on SV mRNA synthesis. Our results indicate that BFA delays viral 

translation by retarding viral RNA synthesis.  
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Cell culture and viruses 

Baby hamster kidney (BHK-21) cells were grown at 37ºC in Dulbecco’s Modified 

Eagle’s medium (DMEM) supplemented with 5% fetal calf serum (FCS) and non-

essential amino acids. Wild-type (wt) SV and SV-Luc stocks were obtained from the 

cDNA clones pT7SVwt [35, 36] and pToto1101/Luc, respectively (generously provided 

by Charles M. Rice, Rockefeller University, NY) [37]. They were propagated and 

titered in BHK-21 cultures. 

Plasmids 

The replicon repL26S C-luc was obtained by in vitro transcription from the plasmid pT7 

repL26S C-luc. This plasmid is derived from pT7SVwt and contains the luciferase gene 

between the SV C protein sequence and the SV 3’noncoding region with deletion of the 

sequence encoding for E3, E2, 6K and E1 proteins. The first three codons encoding for 

E3 are maintained to facilitate the autoproteolytic cleavage of C protein.  

The non-replicative RNA 49S-luc was obtained by in vitro transcription from 

pToto1101/Luc digested with BssH II, which eliminates the 3’ non-coding region. The 

resulting RNA was polyadenylated post-transcriptionally with PolyA polymerase 

(Invitrogen).  

The non-replicative RNA L26S C-luc was obtained by in vitro transcription from pT7 

C+ Luc. This plasmid contains the subgenomic sequence from repL26S C-luc after the 

T7 promoter sequence, which permits the in vitro production of this mRNA. 

Viral infections 

BHK-21 cells were infected with wild type SV or SV-Luc at a multiplicity of infection 

of 10 PFU/cell. After 30 minutes of adsorption, the medium was removed and culture 

plates were incubated with fresh DMEM medium supplemented with 5% FCS. 
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BFA (5 μg/ml) (Sigma) was added to the wt SV infected cultures at different h p. i. At 

the indicated times, proteins were labelled for 30 min with 200 μl methionine/cysteine-

free DMEM supplemented with 1 μl Trans label [35S] Met-Cys (15 mCi/ml, Amersham 

Biosciences) per well in the presence or absence of the inhibitor. Cells were collected in 

sample buffer, boiled for 4 min and analyzed by SDS-PAGE and fluorography. 

Western blot analysis 

The phosphorylation state of the translation initiation factor eIF2 was determined by 

Western blotting [38]. BHK 21 cells were infected, treated with BFA, or infected and 

treated with BFA after virus adsorption. At different h p. i., cells were collected in 

sample buffer and proteins were fractionated by SDS-PAGE in 15% polyacrylamide 

gels and transferred to nitrocellulose membranes by wet transfer. Membranes were 

blocked with PBS containing 5% low-fat dry milk. Anti-eIF2 (Santa Cruz) or anti-

phosphorylated-eIF2 (Biosource) antibodies were then added, and the membranes were 

washed with PBS containing 0.2% Tween 20. Goat anti-rabbit horseradish peroxidase-

conjugated antibodies (Pierce) and the ECL kit (Amersham Biosciences) were used to 

detect bound antibodies. Chemiluminescence was detected by exposure to Agfa X-ray 

film. 

Measurement of luciferase activity 

BHK-21 cells were infected with SV-Luc or electroporated with 20 μg of RNA. At 

different hours post-electroporation (h p. e.), cells were lysed in a buffer containing 

0.5% Triton X-100, 25 mM glycylglycine (pH 7.8) and 1 mM dithiothreitol. Luciferase 

activity was determined using a Monolight 2010 apparatus (Analytical Luminescence 

Laboratory), as described previously [39].  

Analysis of mRNA by real-time PCR 
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SV RNA levels in infected cells were determined by real-time quantitative reverse 

transcription (RT)-PCR as previously described [40, 41]. Briefly, total RNA was 

extracted from 2x10
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5 cells at the times indicated in each figure, using the RNeasy 

commercial kit (Qiagen) following the manufacturer’s recommendations. The isolated 

RNA was resuspended in 30 μl of nuclease-free water, and 3 μl were subjected to 

analysis. Real-time quantitative RT-PCR was performed with the LightCycler thermal 

cycler system (Roche Diagnostics) using the RNA Master SYBR Green I kit (Roche 

Diagnostics) as described [40, 41]. Data analysis was done using the Roche Molecular 

Biochemicals LightCycler software, version 3.3. The specificity of the amplification 

reactions was confirmed by analyzing the corresponding melting curves. 
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Effect of BFA on protein synthesis in BHK-21 and SV infected cells 

To test the effect of BFA on protein synthesis, SV-infected or uninfected BHK-

21 cells were treated with different concentrations of BFA after viral adsorption. 

Concentrations of BFA ranged from 1 to 20 µg/ml. Cellular (Figure 1A) and late viral 

protein synthesis (Figure 1B) were analyzed after 6 hours of BFA treatment by 

metabolic labeling with 35S-Met/Cys. At all the concentrations analyzed, BFA induced 

an inhibition of cellular protein synthesis of around 80%, whereas very little effect was 

observed on viral translation. Notably, SV protein synthesis was not inhibited at the 

highest concentration of BFA whereas cellular translation was strongly blocked by only 

1 µg/ml of this antibiotic. The comparative activity of BFA on cellular and viral protein 

synthesis is represented in Figure 1C. There is a clear differential inhibition caused by 

BFA on cellular as compared to subgenomic SV mRNA translation. 

 Our next aim was to examine the action of BFA on the early and late phases of 

the viral cycle. This was achieved by adding BFA after virus adsorption or at 2 h p. i. 

and analyzing the synthesis of structural viral proteins at 2, 4 and 6 h p. i. by protein 

radiolabeling (Figure 2B). As a control, translation in untreated cells infected by SV 

was estimated (Figure 2A). Addition of BFA after viral adsorption caused 91% 

inhibition of viral translation at 2 h p. i. This inhibition decreased throughout the course 

of infection, and was only 10% at 6 h p. i. However, when BFA was added at 2 h p. i., 

the reduction in viral translation was about 39% at the beginning of infection, and no 

differences in protein synthesis with respect to the untreated cells were observed at 6 h 

p. i. Therefore, BFA only delays but does not inhibit synthesis of SV structural proteins.  

In culture cells, such as rat GH3 pituitary cells, BFA induces eIF2α 

phosphorylation, which could be responsible for the inhibition of translation [32]. 
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Therefore, phosphorylation of eIF2α during BFA treatment and after SV infection of 

BFA-treated or non-treated cells was analyzed (Figure 3). To avoid the potential 

inhibition of virus entry by BFA, this compound was added after virus adsorption. Cells 

were collected at the times indicated in the figure, and phosphorylated or total eIF2 

were detected by Western blotting with specific antibodies. As a control, eIF2α 

phosphorylation was estimated in mock-infected non-BFA-treated cells. In BFA-treated 

cells, the phosphorylated form is detectable from 2 hours of treatment, both in mock 

infected and SV infected cells, while phosphorylation of eIF2α in SV-infected non-

treated cells was detected from 4 h p. i., as described previously [38]. In addition, eIF2 

remains phosphorylated at 4 and 6 h p. i. in SV-infected BFA-treated cells when SV 

translation reaches the levels of non-treated controls. This result suggests that, although 

in BFA-treated cells the eIF2α phosphorylation was initially induced by BFA treatment, 

it did not affect SV RNA translation, which is consistent with previously published data 

(38). On the other hand, inhibition of cellular protein synthesis can be observed after 2 

hours of treatment with BFA, which coincides with an increase in the phosphorylated 

form of eIF2α. 

 To analyze the effect of BFA on translation directed by SV genomic RNA, a 

recombinant virus SV-Luc with the luciferase gene inserted into the nsp3 sequence was 

employed [37]. BHK cells were treated with 5 µg/ml of BFA at 2 hours before infection 

with SV-Luc, after virus adsorption, or at 2 hours post infection. Although in SV 

infected cells, the synthesis of non-structural proteins ceases at 4 h p. i., SV-luc has a 

delayed early phase. For this reason, luciferase activity was measured at 2, 4 and 6 h p. 

i., the time when genomic RNA is being translated (38). The greatest inhibition of 

luciferase synthesis occurred when cells were treated with BFA before infection (Figure 

4A). When BFA was present from the beginning of infection or from 2 h p. i., luciferase 
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synthesis was about 70% as compared to the non-treated control at 4 h p. i., and no 

effect was observed at 6 h p. i. These results indicate that the expression of genomic and 

subgenomic mRNAs of SV is delayed by BFA treatment. Interestingly, these data also 

suggest that the inhibitory effect of BFA would be independent on eIF2α 

phosphorylation, given that it has been described to inhibit translation of SV genomic 

RNA (38).   

Effects of BFA on SV RNA synthesis 

 Since the amount of viral proteins synthesized is dependent on the number of 

copies of RNA, we next determined the effect of BFA on SV RNA synthesis. In this 

experiment, SV-infected BHK cells were treated with BFA immediately after infection, 

and at 2, 4 and 6 h p. i. RNA was extracted and quantitated by real-time PCR, using 

specific oligonucleotides for measuring total RNA (Figure 4B) or genomic RNA 

(Figure 4C). The amount of total RNA in BFA-treated cells was lower than in non-

treated cells during the initial hours of infection. However, at later times a similar 

amount of total RNA was detected in BFA-treated and non-treated cells. These findings 

suggest that SV replication is delayed by BFA, thus accounting for the decreased 

synthesis of both structural and non-structural proteins. Analysis of genomic RNA 

levels revealed that they were lower in BFA-treated cells during the entire treatment 

period, which suggests that BFA interferes with SV RNA synthesis rather than protein 

synthesis. 

Effect of BFA on viral replication 

 Since BFA blocks genome replication of some viruses [22, 27-29], our next aim 

was to determine whether BFA inhibited SV replication using the SV replicon repL26S 

C-luc (Figure 5A). BHK cells were treated for 4 hours with 5 μg/ml BFA and then 

electroporated with repL26S C-luc. BFA was maintained after electroporation, and cells 
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were collected at 2, 4, and 6 h p. e. Luciferase activity, which reflects the level of 

proteins translated from subgenomic mRNA, is shown in Figure 5B. An acute effect of 

BFA can be observed within the first hours of electroporation, while at 6 h p. e. the 

luciferase activity is similar to that found in untreated controls. In addition, the effect of 

BFA on translation of the non-replicative RNAs 49S-luc and L26SC-luc was assayed. A 

schematic representation of these RNAs is shown in Figure 5A. Both RNAs were 

electroporated in BHK cells previously treated with BFA for 4 hours. BFA was 

maintained during and after electroporation, and cells were collected at 2, 4 and 6 h p.e 

to measure luciferase activity (Figures 5C and 5D). In both cases, luciferase activity in 

BFA-treated cells was higher than in untreated control cells, indicating that BFA had no 

inhibitory effect on the translation of non-replicative RNAs. The fact that neither the SV 

49S-derived RNA was affected by BFA is consistent with the results obtained with the 

SV-Luc virus (Figure 4A).  

These findings suggest that BFA interferes with the SV replicative RNA but 

does not inhibit the non-replicative forms, supporting the idea that the action of BFA on 

SV is due to the delay in RNA synthesis. 

 

DISCUSSION 

The fungal metabolite BFA is a well characterized inhibitor of the secretory 

pathway in mammalian cells [12, 19, 20]. BFA also causes a potent inhibition of 

cellular protein synthesis, presumably due to the unfolded protein response (UPR) 

triggered in the endoplasmic reticulum as a consequence of disorganization of the 

membrane system [31-34]. Notably, SV protein synthesis is maintained after a 

prolonged treatment with this compound, thus reflecting a differential behaviour 

between cellular and viral mRNAs. Indeed, BFA strongly inhibits cellular protein 
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synthesis, whereas SV translation is only slightly delayed. Notably, the amount of 

phosphorylated eIF2-α increases after two hours treatment of BHK cells with BFA, in 

agreement with previous results reported for GH3 pituitary cells [32]. This finding can 

be interpreted as a consequence of UPR activation [10, 42, 43]. However, this 

phosphorylation might not be the sole cause of translation inhibition induced by BFA, 

since cellular protein synthesis is not completely abrogated, and neither the synthesis of 

luciferase from SV-Luc and the SV-derived genomic RNA in BFA-treated cells is 

inhibited. Moreover, the translatability of exogenous mRNAs transfected in BFA-

treated cells was not affected (data not shown). 

On the other hand, SV protein synthesis is reduced in the presence of BFA only 

at early times after infection. Viral translation recovers throughout the time of treatment, 

so that the levels of SV protein synthesis reach those observed in untreated infected 

cells. The inhibitory effect of BFA is lower when added later during infection, 

suggesting that BFA has an indirect effect on SV protein synthesis. Interestingly, the 

amount of genomic RNA is lower in the presence of BFA as compared to untreated 

cells, indicating that BFA interferes with viral RNA replication. This possibility is 

reinforced by the observation that BFA only reduced the expression of the SV derived 

replicon, whereas non-replicative mRNAs were translated under these conditions. The 

finding that the 49S non-replicative RNA is not inhibited by BFA treatment agrees with 

the idea that the action of BFA on SV is exerted on replication. The resistance of 26S 

mRNA to BFA could be due to its hairpin structures, which may provide translational 

resistance to the conditions induced by this compound.  

The action of BFA on the vesicular system impairs the maturation of viral 

glycoproteins, suppressing the formation of viral particles of enveloped viruses [22-26]. 

In addition, BFA also has an inhibitory effect on replication of many non-enveloped 
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viruses without glycoproteins, such as enteroviruses and rhinoviruses. In these cases, 

BFA abrogates viral replication, since this process is associated with the formation of 

vesicular structures [27-30]. BFA is known to affect the control of fusion and budding 

of membranes, and so also influences the process of vacuole formation [9, 12, 15, 17-

21]. Replication of SV alters intracellular membranes, creating new vesicles which are 

linked to viral RNA synthesis [44-46]. Most probably, BFA interferes with the 

formation of the new vesicles by decreasing the replication efficiency, and hence 

affecting viral protein synthesis [27, 28, 30]. This hypothesis also explains the 

differential effect observed when BFA is added at different times after infection, with 

the greatest effect when BFA was present before infection. When SV infection takes 

place in cells previously treated with BFA, the vesicular system is disorganized before 

the replicative complexes are formed. In this case, replication may be more affected 

than when BFA is added after virus adsorption or at 2 h p. i. The formation of the 

vesicles needed for viral replication before BFA addition may result in a lower 

inhibition of replication. However, this inhibition is partial even when BFA is added 

before infection. Thus, viral replication is not completely abolished by the presence of 

BFA, since RNA and protein synthesis increase throughout infection. Therefore, BFA 

may disturb and delay, but not completely block, the formation of viral replication 

complexes. In such conditions, more time is needed to reach adequate levels of SV non-

structural proteins in BFA-treated cells. Thus, the amount of viral RNA and protein 

synthesis finally recovered in the presence of BFA and at 6 h p. i. is comparable to non-

treated controls. 

Taken together, these results provide further insight into effect of the macrolide 

compound BFA on alphavirus infection.  
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FIGURE LEGENDS 

Figure 1. Effect of BFA on cellular and SV late protein synthesis. Mock-infected (A) 

or SV infected BHK cells (multiplicity of infection, 20 PFU/cell) (B) were treated for 6 

hours and then labeled with [35S]Met-Cys during 30 minutes in the presence of the same 

concentrations of BFA. Samples were processed by SDS-PAGE, fluorography and 

autoradiography as indicated in Materials and Methods. (C) SV C protein and a cellular 

protein, both indicated with arrows, were subjected to densitometric analysis to estimate 

the percentage of protein synthesis compared to untreated controls.  

  

Figure 2. Kinetics of cellular and SV late protein synthesis: Effect of BFA. (A) 

Mock-infected cells were treated with BFA and radiolabeled after 2, 4 or 6 hours of 

treatment. (B) SV-infected cells were treated at 0 or 2 h p. i. and radiolabeled at 2, 4 and 

6 h p. i. during 30 minutes. In both cases, BFA was present during labeling. Samples 
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were processed by SDS-PAGE, followed by fluorography and autoradiography. The 

numbers below each lane represent the percentage of protein synthesis with respect to 

non-treated controls calculated by densitometry of the proteins indicated by the arrows.  

 

Figure 3. Phosphorylation of eIF2α. SV-infected or mock-infected cells were treated 

with BFA, added after virus adsorption. After 2, 4 or 6 hours, cells were collected in 

sample buffer and subjected to SDS-PAGE and Western blotting, as described in 

Materials and Methods, using specific antibodies for the phosphorylated (eIF2-P) and 

the non-phosphorylated form of eIF2. As a control, non-treated mock-infected BHK 

cells were used.  

 

Figure 4. Effect of BFA on SV non-structural proteins and RNA synthesis. (A) SV-

luc infected cells were treated with 5μg/ml of BFA two hours before infection and at 

and 2 h p. i. Cells were collected at 2, 4 and 6 h p. i. to measure luciferase activity as 

described in Materials and Methods. (B) Quantitation of total RNA and genomic RNA. 

(C) Genomic RNA molecules in SV-infected cells in the presence or absence of 5 μg/ml 

of BFA. BFA was added at 0 h p. i. and cells were collected at 2, 4 and 6 h p. i. RNA 

was extracted and quantified by real time PCR as described in Materials and Methods. 

Data are presented as percentages of number of molecules of RNA in BFA-treated with 

respect to non-treated cells. 

 

Figure 5. Effect of BFA on SV replication. (A) Schematic representation of the 

different viral RNAs Rep L26S C+luc and L26SC-luc. (B) Luciferase activity at 2, 4 and 

6 h p. e. of BHK cells with the replicative RNA Rep L26S C+luc, in the presence or 

absence of BFA. (C) and (D) show the measurement of luciferase activity at 2, 4 and 6 h 
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p. e. in BHK cells electroporated with the non-replicative RNAs L26SC-luc and 49S-luc 

respectively, in the presence or absence of BFA. 
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