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SUMMARY 

 
The infection of BHK cells by Sindbis virus gives rise to a drastic inhibition of cellular 

translation, while under these conditions the synthesis of viral structural proteins directed by the 

subgenomic 26S mRNA takes place efficiently. In this report, the requirement for intact 

initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this 

end, SV replicons that contain the protease of human immunodeficiency virus type 1 or the 

poliovirus 2Apro replacing the sequences of SV glycoproteins have been constructed. BHK cells 

electroporated with the different RNAs synthesize protein C and the corresponding protease at 

late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation 

of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR 

or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis 

at late times of infection by the recombinant viruses is slightly affected in BHK cells that 

contain proteolyzed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK 

cells infected with a recombinant virus that synthesizes luciferase and transfected with a 

replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been significantly 

hydrolysed the translation of genomic SV RNA was deeply inhibited. These findings indicate a 

different requirement for intact eIF4G in the translation of genomic and subgenomic SV 

mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, 

placed under the control of a second duplicate late promoter, is also resistant to the cleavage of 

eIF4G. In conclusion, despite the presence of a cap structure in the 5‘ end of the subgenomic SV 

mRNA, intact eIF4G is not necessary for its translation.  
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INTRODUCTION 
 
Sindbis Virus (SV) belongs to the Togaviridae family and is a prototype member of the 

Alphavirus genus. The SV genome is a single stranded RNA of positive polarity of about 

11.7Kb. The two-thirds located at the 5’ end of the genome encode for the non-structural 

proteins (nsP1-4), while the rest of this RNA codifies the structural proteins. The nucleocapsid 

is composed of 240 units of capsid protein (C) wrapped around one copy of the genomic RNA 

and is surrounded by a lipidic envelope that contains the glycoproteins E1 and E2. After virus 

entry, the genomic RNA is initially engaged in translation, directing the synthesis of the early 

proteins nsP1-4. These proteins are necessary to replicate and transcribe the SV RNAs. Viral 

transcription uses the minus-strand RNA complementary to the genome as a template to 

synthesize more copies of genomic 49S RNA and subgenomic 26S messenger RNA (mRNA) 1; 

2. Both mRNAs contain a cap structure at the 5’ end and a poly(A) tail at their 3’ end 3; 4. The 

proteins (C-E3-E2-6K-E1) encoded by the subgenomic mRNA are synthesized as a polyprotein 

that is proteolytically processed. Once the C protein is made, it is liberated to the cytoplasm by 

autocatalytic activity 5. Translation of the 26S mRNA continues, associated to the endoplasmic 

reticulum membranes, giving rise to the synthesis of the three glycoproteins E3, E2 and E1 and 

the viroporin 6K 1; 2; 6. All the cleavages between the glycoproteins and 6K are accomplished by 

cellular proteases present in the vesicular system, during their trafficking to the plasma 

membrane  where virus budding takes place 1; 2.  

The SV lytic cycle exhibits two well-defined stages. During the early phase cellular 

translation and the synthesis of nsPs from the genomic RNA takes place. About 2-4 hours after 

SV infection the pattern of protein synthesis drastically changes in such a way that the structural 

proteins are mostly synthesized 7. Thus, SV infection constitutes one of the best models to study 

the regulation of translation in animal virus-infected cells. The aim of the present work was to 
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gain an understanding of the requirements for translation of SV subgenomic mRNA under 

conditions that hamper the translation of either cellular and SV genomic mRNAs 3; 4; 7. To this 

end, the requirement for a canonical translation initiation complex to translate this subgenomic 

mRNA was assayed. Since eIF4G plays a key role in the regulation of the initiation of protein 

synthesis in many virus-cell systems analysed, we have studied the relevance of this factor for 

the initiation of translation of the SV RNAs 8; 9; 10. 

eIF4G is a large modular polypeptide that interacts with different cellular and viral 

proteins. There are two isoforms of eIF4G in eukaryotic cells, known as eIF4GI and eIF4GII, 

which exhibit similar biochemical activities 9. The eIF4G interacts with eIF4E (cap binding 

protein) 11 and eIF4A (RNA helicase) 12; 13, forming the eIF4F complex. In addition, eIF4G can 

bind to the 43S preinitiation complex by interacting with eIF3 14. Recently it was reported that 

eIF4G also interacts with PABP (PolyA binding protein) 15; 16; 17, thus promoting the 

circularization of mRNA. All these features make eIF4G essential for the correct assembly of 

the translation initiation machinery. Besides, eIF4G can also interact with other translation 

regulatory proteins such as nuclear cap binding protein CBP80, the decapping enzyme Dcp1, the 

eIF4E kinase Mnk1 and heat-shock proteins such as hsp27 9. Moreover, viral proteins such as 

NSP3 from rotavirus, influenza virus NS1 18; 19 and the 100 KDa adenoviral late protein 20, also 

bind to eIF4G. Notably, eIF4G associated with eIF4A can directly interact with the internal 

ribosome entry site (IRES) from both encephalomyocarditis virus (EMCV) or foot and mouth 

disease virus (FMDV) 21.  

Picornaviral proteases have the ability to bisect the two forms of eIF4G, while some 

retroviral proteases selectively cleave eIF4GI, leaving eIF4GII intact to a large extent. 

Furthermore, picornavirus proteases have just one cleavage recognition site in eIF4G, 

dividing the factor in two moieties, while the proteases from retroviruses hydrolyze eIF4G at 

two different sites, yielding three cleavage products 22; 23; 24; 25; 26; 27. The proteolysis of eIF4G 

impairs the translation of newly made cellular mRNAs, but translation of the mRNAs 

already engaged in translation are much less affected 28; 29; 30.Curiously, some mRNAs from 

viruses that do not hydrolyze eIF4G during their infections can be efficiently translated when 
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eIF4G has been cleaved. This is the case of the EMCV RNA, that contains an IRES element 

in its leader sequence 31; 32. In addition, the expression of poliovirus 2Apro in cells transfected 

with a plasmid encoding 2A proteolyzed eIF4G efficiently, impairing the translation of 

typical capped virus mRNAs from the vesicular stomatitis virus (VSV) or the recombinant 

vaccinia virus T7 33. Besides, inducible  expression of poliovirus 2Apro  from a stable HeLa 

cell line led to eIF4G cleavage and strongly inhibited cellular and vaccinia virus protein 

synthesis (VV) 34. In contrast, evidence has been provided that some vaccinia RNAs have a 

low requirement for intact eIF4F 35; 36. Moreover, it has been reported that adenovirus and 

VSV infection induce a progressive dephosphorylation of eIF4E impairing cap-dependent 

translation, while viral mRNAs continue to be translated 20; 37. Although alphavirus infection 

does not lead to cleavage of eIF4G, it was of interest to test whether or not this factor was 

required to translate SV mRNAs. Here we report that the SV subgenomic mRNA is 

translated in BHK cells that contain eIF4G cleaved by poliovirus 2Apro or the protease of 

human immunodeficiency virus type 1 (HIV-1 PR). 

 

RESULTS 

Cleavage of eIF4G by HIV1 PR and poliovirus 2Apro in BHK cells. Translation of the SV 

subgenomic mRNA. The aim of this work was to analyze the translation of the SV subgenomic 

mRNA under conditions where eIF4G has been proteolitically degraded by two viral proteases, 

HIV-1 PR or poliovirus 2Apro. These proteases cleave eIF4G in different manners (see above). 

Under these conditions, cap-dependent translation mediated by eIF4E does not occur 9; 10; 29; 30. 

Initially, different constructs were engineered, based on an SV replicon that bears the capsid 

protein (C) followed by the protease gene (Figure 1(b)). These replicons lack the rest of the SV 

late sequences and efficiently express the gene placed after C 6. Since this capsid protein is 

endowed with autoproteolytic activity, the translation efficiency of this mRNA can be estimated 

by measuring the synthesis of the C protein. Two different replicons were obtained, bearing 

either HIV-1 PR (Rep C-PR) or the poliovirus 2Apro gene (Rep C-2A) (Figure 1(b)). BHK cells 

were electroporated with the in vitro transcribed RNAs from plasmids encoding Rep C and Rep 
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C-PR. After 16 hpe the integrity of eIF4G was estimated by western blotting, and protein 

synthesis was analyzed by SDS-PAGE. Previous analyses of eIF4G using specific antibodies 

have revealed the existence of two proteins of ∼220 and ∼150 KDa respectively in BHK cells. 

As already described, eIF4G exhibits different mobility patterns in SDS-PAGE in mammalian 

cells, possibly due to post-translational modifications 24; 29. Most probably, the protein of 150 

KDa corresponds to a full-length eIF4G which has not undergone the putative post-translational 

modification. Alternatively, it has been proposed that it could be a breakdown product of eIF4G 

29. Both polypeptides of 220 and 150 KDa disappeared in 2Apro and in HIV-1PR expressing cells 

(Fig.2(a) and (b), upper panels) 31; 38. In cells electroporated with Rep C-PR there is about 70% 

of eIF4GI cleavage as measured by densitometry of the 220 KDa band (Figure 2(a), upper 

panel). In agreement with previous reports, eIF4GII remained uncleaved in these cells (Figure 

2(a), middle panel) 26; 32. We could only detect the C-terminal proteolytic fragment with the anti-

eIF4GI and anti-eIF4GII antibodies in BHK-21 cells 31. The presence of saquinavir (SQ), a 

specific inhibitor of the HIV protease, prevented eIF4GI cleavage (Figure 2(a), upper panel), 

while SQ itself had no effect on the expression of Rep C (Figure 2(a), lower panel). Since the 

percentage of electroporated cells in this experiment was about 70%, as estimated by the 

remaining cellular translation as well as the percentage of cell rounding (see below), the amount 

of uncleaved eIF4G may correspond to non-electroporated cells that do not express HIV-1 PR 

(Figure 2(a)). Notably, the synthesis of C protein from cells electroporated with Rep C-PR was 

similar in the absence or presence of SQ, i.e. the level of C synthesis was the same when eIF4GI 

was intact or had been cleaved (Figure 2(a)). As previously observed in our laboratory, C 

protein is more efficiently synthesized when Rep C is used, as compared to replicons that bear 

another gene located after the C sequence, even when the SV 6K gene is placed 6. 

The HIV-1 PR uses eIF4GI as a substrate, while eIF4GII is poorly recognized 26; 32. By 

contrast, poliovirus 2Apro can bisect both forms of this initiation factor 23. Hence, it was of 

interest to test the effect of 2Apro activity on the translation of the SV subgenomic mRNA. To 

this end, cells were electroporated with transcription buffer or with the RNAs obtained from 

Rep C, Rep C-2A, Rep L2A and Rep C-2C  6; 39. The protease synthesized from Rep C-2A 
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contains four extra aminoacids at its N-terminus that do not hamper its proteolityc activity as 

compared with the native 2Apro produced from Rep L2A (Figure 2(b), lower and middle panels). 

Over 90% cleavage of both forms of the initiation factor was seen at 8 hpe (data not shown) and 

at 16 hpe (Figure 2(b), upper and middle panels). Under these conditions significant amounts of 

C protein synthesis were still observed (Fig.2(b), lower panel). As a control, a replicon that 

encodes poliovirus 2C (Rep C-2C) was employed (Fig.1(b)). The levels of C synthesis with Rep 

C-2A were 2-fold higher as compared to Rep C-2C, irrespective of the amount of intact eIF4GI 

and eIF4GII present in cells (Figure 2(b)). Similar to Rep C-PR (Figure 2(a), lower panel), C 

expression from Rep C was 3-fold higher than from Rep C-2A (Figure 2(b), lower panel) and 2-

fold higher as compared with Rep C-6K (Data not shown). These differences in the expression 

of the replicons were reproduced in three independent experiments. These findings support the 

notion that the translation of the SV subgenomic mRNA can occur even when both forms of 

eIF4G have been proteolyzed.  

The levels of subgenomic mRNAs were examined in transfected cells (Fig.3(a)) to 

determine if the different amounts of C synthesis obtained from Rep C, Rep C-PR and Rep C-

2A were the reflection of a partial inhibition of translation. For this purpose, real-time RT-PCR 

was carried out to quantitate the number of SV RNA molecules in 2x105 cells. After transfection 

and RNA extraction, real- time RT-PCR revealed that the amount of SV subgenomic RNA was 

10-fold higher than SV genomic RNA from Rep C-expressing cells (data not shown). The level 

of SV subgenomic mRNA obtained from BHK cells transfected with Rep C-PR was about 60% 

as compared to the subgenomic mRNA synthesized from cells transfected with Rep C (Figure 

3(a)). In the case of Rep C-2A, the level of SV subgenomic RNA was about 40% compared 

with Rep C (Figure 3(a)). The amount of genomic RNA was much more diminished than 

subgenomic mRNA in Rep C-2A-expressing cells (Figure 3(a)). Taking into account the RNA 

levels, the normalization of translation data revealed that C synthesis was 70% in Rep C-PR and 

Rep C-2A compared to the control Rep C (Figure 3(b)). 

Cleavage of eIF4G profoundly blocks the translation of newly-made mRNAs, while 

protein synthesis of cellular mRNAs already engaged in translation is not greatly inhibited 28; 29; 
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30. To analyze whether the first event of translation of the subgenomic 26S mRNA can take 

place or not in cells containing cleaved eIF4G, we carried out a run-off assay (scheme of the 

protocol in Figure 4(a)). When cells are incubated in hypertonic medium run-off of polysomes 

occurs, thus blocking initiation of translation, while elongation still occurs. A return to normal 

medium leads to initiation of translation on mRNA in treated cells 30. Cells were electroporated 

with Rep C, Rep C-2A or mRNA transcribed from pTM1-2A containing EMCV IRES, followed 

by a 2Apro sequence (EMC IRES-2A) (scheme in Figure 1(d)). As a control, cells electroporated 

with transcription buffer in the absence of RNA were used. Over 95% of eIF4GI and eIF4GII 

were cleaved in 2Apro-expressing cells at 16 hpe (Figure 4(b), upper and middle panels). Under 

these conditions, C synthesis in cells electroporated with Rep C was 3-fold higher than in Rep 

C-2A- expressing cells (Figure 4(b), lower panel). This result was similar to that shown in 

Figure 2B. At 16 hpe NaCl was added to a final concentration of 300 mM, and the cells were 

incubated for 2h. Under these hypertonic conditions, protein synthesis was blocked to a great 

extent (Fig.4(b), lower panel). Upon return to normal medium, cellular protein synthesis was 

quickly reestablished in cells electroporated with transcription buffer (Fig.4(b), lower panel). As 

expected, cellular mRNAs cannot initiate their translation when eIF4G was hydrolyzed by 2Apro 

produced from EMC IRES-2A (Figure 4(b)). In contrast, the translation of C protein from the 

SV subgenomic mRNA was restored after return to normal medium. Thus, the (3:1) ratio 

observed for C synthesis from Rep C and Rep C-2A was recovered  even when both eIF4GI and 

eIF4GII were proteolyzed by 2Apro (Fig.4(b)). This finding indicates that the first initiation event 

directed by subgenomic mRNA takes place when eIF4G has been cleaved. 

Recombinant viable SVs that express HIV-1 PR or poliovirus 2Apro. Once we found that 

the late SV mRNA could be translated in BHK cells containing cleaved eIF4G, we decided to 

construct recombinant SVs that express the two different viral proteases as depicted in Figure 

1(c). We expected these viruses to be viable since they contain all non structural and structural 

SV genes. The protease gene is placed under the control of a duplicated late promoter. The 

heterologous protein is less efficiently produced from these recombinant SVs than in the 

previous constructs using replicons 40. Unlike the replicons, in this case the subgenomic 26S 
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mRNA remains intact, directing the synthesis of all SV late proteins, while the heterologous 

protease is synthesized from another subgenomic mRNA. Once the different plasmids were 

obtained, the transcribed RNAs corresponding to wt SV, SV-PR and SV-2A were electroporated 

and protein synthesis and the integrity of the two isoforms of eIF4G were examined at 8 hpe in 

three independent experiments. HIV-1 PR was analyzed by western blotting in cells treated or 

not treated with SQ (Figure 5(b), lower panel). The expression of HIV-1 PR in this system led to 

over 85% cleavage of eIF4GI, while SQ blocked this proteolysis (Figure 5(a), upper panel). The 

synthesis of C protein in HIV-1 PR-expressing cells with SQ was about 25-35% higher as 

compared to that observed in the absence of the inhibitor, and was similar to wt SV (Fig.5(b), 

upper panel). The expression of poliovirus 2Apro from the corresponding recombinant SV caused 

a drastic cleavage of both eIF4GI and eIF4GII (Figure 5(a)). The production of SV C protein 

was nearly 50-60% as compared to wt SV (Fig.5(b), upper panel). A background of about 10-

20% cellular protein synthesis was seen in cells electroporated with SV-PR (without SQ) and 

SV-2A (Fig.5(b), upper panel), most probably corresponding to non-electroporated cells. 

The levels of SV RNAs were then analyzed by real time RT-PCR as described above. As 

with to Rep C, the amount of SV subgenomic mRNA in wt SV electroporated cells was 10-fold 

higher as compared with SV genomic RNA (data not shown). Both SV-PR and SV-2A exhibited 

a decrease of about 40-50% of subgenomic mRNA compared to controls wt SV and SV-PR in 

the presence of SQ (Fig.5(c)). Notably, the amount of SV genomic RNA was greatly diminished 

in SV-PR and SV-2A transfected cells (Figure 5(c)). Thus, the presence of SQ abrogates the 

inhibition of SV RNAs (Fig.5(c)). The normalization of translation of SV structural proteins, 

taking into consideration the values of SV subgenomic RNA, reflected the fact that the 

expression from the two recombinant viruses was similar to wt SV, even when both forms of 

eIF4G were cleaved by the two viral proteases (Figure 5(d)). 

Next, citotoxicity of the recombinant SVs was analyzed. The expression of HIV-1 PR or 

2Apro in BHK cells enhanced cell rounding to about 80% compared with wt SV (data not 

shown). Moreover, the titer and the morphology of the plaques were them analyzed. The virus 

titer obtained for SV-PR was one order of magnitude lower in the absence (107 pfu/ml) than in 
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the presence (108 pfu/ml) of SQ and the plaques were smaller and irregular when the protease 

inhibitor was absent (data not shown). These findings are consistent with the reduction of SV 

genomic RNA observed in SV-PR and SV-2A-infected cells (Figure 5(c)), indicating that the 

inefficient replication of genomic RNA in the presence of HIV-1 PR or 2Apro in the later phase 

of SV infection impaired or diminished virus yield. The remaining cellular protein synthesis 

obtained in SV-PR, in the absence of SQ and SV-2A (Figure 5(b), upper panel), may correspond 

to non electroporated cells that continue uninfected.  

Culture supernatants were also employed to infect BHK and COS-7 cells in order to 

analyze SV protein synthesis and eIF4G cleavage. Infection occurred with the recombinant SV-

PR as evidenced by the synthesis of viral proteins, although the cleavage of eIF4G was low 

(about 10-20%) (data not shown). These findings point to the idea that SV-PR readily loses its 

ability to express the protease gene when it replicates, even in the presence of SQ.  

 

Effect of eIF4G cleavage on the translation of genomic SV RNA. The SV non-structural 

proteins (nsPs) are synthesized during the early phase of infection upon translation of the 

genomic 49S RNA 2; 7. To assay the requirement of intact eIF4G for the translation of genomic 

RNA, it is necessary to cleave eIF4G very early during SV infection. To this end, we have 

employed two strategies to cleave eIF4G efficiently. One of them was based on the transfection 

of the SV replicon containing the poliovirus leader sequence followed by the 2Apro gene that 

replaces the region corresponding to the SV subgenomic RNA (Rep L2A) (Fig.1(b)). Synthesis 

of poliovirus 2Apro may occur either by internal initiation on genomic RNA, or after 

transcription of the corresponding subgenomic RNA. The other strategy made use of the 

electroporation of EMC IRES-2A RNA (Figure 1(d)). 2Apro expression from EMC IRES-2A is 

low, but it led to the cleavage of 80-100% eIF4GI and eIF4GII after 2 hpe (Figure 7(a)). To 

quantitate the translation of the genomic SV RNA, recombinant virus Toto1101/Luc (SV-Luc) 

containing the luciferase gene placed inside the nsP3 sequence was employed (Figure 1 (c)) 41.  

BHK cells electroporated with transcription buffer, EMC IRES-2A, Rep C or Rep L2A 

were subsequently infected with SV-Luc at 1 hpe. As described previously, the expression of 
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2Apro does not block subsequent infections with poliovirus or EMCV 34. 2Apro–expressing cells 

from Rep L2A or EMC IRES-2A exhibited an efficient cleavage of both eIF4GI and eIF4GII in 

such a way that at 4 hpi no intact eIF4G was observed (Figure 6(a)). After 2 hpi, a profound 

inhibition of host protein synthesis was found in these cells (Figure 6(b)). At 6 hpi the SV-Luc 

structural proteins were measured. The synthesis of C protein was lower in cells electroporated 

with transcription buffer than in those electroporated with Rep C since, in this last case, C was 

generated from Rep C and SV-Luc. PE2 precursor and E1 glycoprotein were only produced 

from SV-Luc, so they were synthesized in a similar fashion in both cases (Figure 6(b)). Notably, 

SV-Luc structural proteins were deeply inhibited in 2A-expressing cells (Figure 6(b)). 

Transcription to yield subgenomic mRNA require the synthesis of non structural proteins to 

form the replicative complexes. Thus, the inhibition of the SV structural proteins in 2Apro-

expressing cells may be due to the blockade of genomic RNA translation. Luciferase activity 

was determined in each case to quantitate genomic RNA translation. A significant inhibition of 

luciferase synthesis (about 60-80%) was found throughout the time course in 2Apro-expressing 

cells as compared to cells electroporated with transcription buffer or Rep C (Figure 6(c)). These 

results have been reproduced in three independent experiments.  

Next, the inhibition of protein synthesis was calculated, considering the amount of 

genomic RNA present. To quantitate this RNA in SV-Luc infected cells real time RT-PCR was 

employed using oligonucleotides that hybridize with the nsP2 gene. In cells superinfected with 

an SV replicon and SV-Luc the genomic RNA level was higher than in cells only infected with 

SV-Luc, since the nsP2 gene is contained in both constructs (Figure 6(d)). On the other hand, 

from 3-5 hpi genomic RNA is not only employed in translation and RNA replication, but it is 

also encapsidated to form viral particles 2; 41. However, SV-Luc did not produce an effective 

infection when 2Apro was co-expressed in the early phase of the viral cycle since structural 

proteins were inhibited (Figure 6(b)). Therefore, the genomic RNA level at 2 hpi was taken to 

normalize the luciferase activity data in control infected cells. The amount of SV-Luc genomic 

RNA present in cells electroporated with EMC IRES-2A was similar to control cells at 2 hpi 

(Figure 6(d)). However, it progressively decreased in 2A-expressing cells as compared to those 
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electroporated with transcription buffer throughout the time course, possibly due to the 

inhibition of nsPs synthesis (data not shown). Relative luciferase activity was corrected taking 

into account the values of SV-Luc genomic RNA. At 2 hpi genomic RNA translation was about 

30% when both forms of eIF4G were cleaved (Fig.6(e)). In addition, nsP1 was analyzed by 

western blotting, employing specific antiserum. The amount of nsP1 that accumulated in non-

infected cells electroporated with Rep L2A was approximately 35-40% as compared with Rep 

C-expressing cells at 6 hpe (Figure 6(f)).  

To analyze if the first translation initiation event directed by genomic RNA takes place 

even to a lesser degree, cells were electroporated with EMC IRES-2A or transcription buffer as 

a control and were infected at 1, 2, 4 or 6 hpe with SV-Luc. As expected, eIF4G was hydrolyzed 

by 2Apro in a time-dependent manner and was almost totally cleaved at 4 hpe (Figure 7(a)). To 

analyze genomic RNA translation, luciferase activity was measured at 3 hpi in each case (Figure 

7(b)). In accordance with the results shown in Figure 8, luciferase activity obtained when SV-

Luc was added at 1 hpe was 25-35% in 2A-expressing cells, as compared to the control. 

Notably, when cells were infected with SV-Luc at 2, 4 or 6 hpe, a decrease of about 85-90% 

was observed in genomic RNA translation in cells electroporated with EMC IRES-2A (Figure 

7(c)). A significant correlation between inhibition of SV-Luc genomic translation and eIF4G 

proteolysis was found (Figure 7(a) and (c)). Therefore, the genomic SV mRNA, as occurs with 

cellular mRNAs, is translated in a cap-dependent manner, while 26S mRNA can be translated 

when the cap binding protein eIF4E does not form part of the eIF4F complex.  

 

Effect of eIF4G cleavage on the translation of RNAs from a recombinant SV-bearing GFP 

protein. Next, we wanted to analyze the requirement of intact eIF4G for the translation of SV-

GFP RNAs. This SV recombinant expresses a heterologous gene placed under the control of a 

duplicated late promoter (Figure 1(c)), and produces two types of subgenomic mRNAs. One is 

the canonic subgenomic mRNA, and another contains the 26S leader sequence followed by a 

heterologous protein coding sequence (GFP) (Figure 8(a)). To accomplish efficient cleavage of 

eIF4G, BHK cells were electroporated with EMC IRES-2A; as controls, EMC IRES-2C (Figure 
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8(d)) or a transcription buffer were used. Cells were infected 2 h before or 1 h after 

electroporation with in vitro synthesized RNAs. Both forms of eIF4G were proteolyzed before 

genomic translation (Figure 8(c), left upper and middle panels) or subgenomic RNAs translation 

(Figure 8(c), right upper and middle panels). When eIF4G was cleaved before SV-GFP 

infection, the viral late proteins and GFP synthesis were radically inhibited (Figure 8(c), left 

lower panel). Notably, normal levels of structural protein synthesis occurred when eIF4G was 

proteolyzed immediately before subgenomic translation (Figure 8(c), right lower panel). In this 

instance, the levels of SV structural proteins or GFP synthesis from SV-GFP were similar, 

irrespective of the amount of intact eIF4G present in BHK cells (Figure 8(c), right lower panel). 

These results were reproduced in three independent experiments and indicate that late protein 

synthesis is hampered in 2Apro expressing cells when eIF4G is cleaved before SV-GFP infection 

by inhibition of genomic RNA translation. However, the translation of 26S and the second 

subgenomic mRNAs occurred in the absence of intact eIF4G when cells were electroporated at 

2 hpi. The translation of the two different subgenomic mRNAs points to the relevance of the 

subgenomic 26S leader sequence in providing independence for intact eIF4G. 

 The leader sequence of the subgenomic SV mRNA contains 49 nt from the cap structure 

until the initiator AUG codon. To map the regions in this sequence that confers high 

translatability to this mRNA, three deletion variants in the leader sequence placed before eGFP 

gene were constructed (Figure 8(b)). The first 11nt from the 5’-end must remain in the three 

constructs, because they are necessary for efficient transcription 42. Thus, one of the constructs 

lacks nucleotides from 11 to 31 (SV-GFPΔ11-31), another lacks nt 31-49 (SV-GFPΔ31-49) and 

the third one lacks nt 11-49 (SV-GFPΔ11-49) (Figure 8(b)). Notably, the synthesis of SV 

structural proteins was similar in all three SV-GFP variants, but GFP synthesis was significantly 

decreased in SV-GFPΔ11-49. The ratio between C and GFP expression diminished about 20-

30% from SV-GFPΔ11-31 and 50-60% from SV-GFPΔ11-49 compared with SV-GFP or SV-

GFPΔ31-49 (Figure 8(d), lower panel). Curiously, GFP was still synthesized even when large 

region of the leader region was deleted (Figure 8(d), lower panel). These results were 
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reproduced in two independent experiments and indicate that only a profound modification of 

the leader sequence of subgenomic SV mRNA leads to inhibition of GFP translation. 

To test the dependence on eIF4G intactness of the different leader deletion variants, BHK 

cells were infected with SV-GFPΔ11-49, SV-GFPΔ11-31 or SV-GFPΔ31-49 at a multiplicity of 

10 pfu/cell. 2 hpi, cells were electroporated with EMC IRES-2A, EMC IRES-2C or 

transcription buffer as a control. As shown in figure 8(d), upper and middle panel), both forms 

of eIF4G were significantly proteolyzed. Of interest, translation of the different deletion variants 

still occurred even when eIF4G was bisected (Figure 8(d), left panels). This result suggest that 

the presence of the initial 11 nt suffices to confer eIF4G independence for the translation of the 

SV subgenomic mRNA. 

DISCUSSION 
 
The majority of late viral mRNAs have the ability to be translated under conditions in 

which host cell protein synthesis is deeply inhibited 8. This is the case of the translation of SV 

subgenomic mRNA. The alphavirus 26S mRNA contains a particular structure that confers on it 

a high translatability under conditions that are detrimental for cellular protein synthesis 3; 4; 43. 

There are at least two sequences that could be involved in this feature. One of them is the UTR 

sequence placed at the 5’ end. This sequence from SFV confers on chimaeric mRNAs that 

encode a reported gene, the capacity to be translated in the presence of low amounts of initiation 

factors 44. In the case of the UTR sequence of the SV subgenomic mRNA, which contains 49 nt, 

also provides a good translatability to chimeric mRNAs bearing the GFP gene as shown in this 

paper. Another sequence implicated in subgenomic mRNA translatability is included in the C 

gene. SV subgenomic mRNAs which contain the first 226 nt from the capsid gene are translated 

10-fold more efficiently than those lacking this sequence 3; 4. The first 170 nt downstream of the 

translation initiation codon may be folded into an extensively base-paired structure. This hairpin 

structure could recruit some initiation factors present at low concentrations; alternatively, it 

could pause the 40S ribosome subunit at the AUG initiation codon 4. We now provide evidence 

that, indeed, the SV 26S mRNA does not require the eIF4F complex. For these assays, we have 
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developed two effective protease expression systems to hydrolyze eIF4G. The first one is based 

on the use of SV replicons or recombinant viable SV to obtain good expression of the proteases 

in a high percentage of BHK cells. The second system utilizes in vitro transcribed mRNAs, 

which contain the EMCV IRES followed by the poliovirus 2A gene. This mRNA is 

electroporated into cells, leading to a low expression of this protease.  

Our present results indicate that the SV subgenomic mRNA can be translated when eIF4G 

is proteolyzed by 2Apro or HIV-1 PR. These findings suggest that eIF4E, at least when forming 

part of the eIF4F complex, is not required to initiate SV subgenomic mRNA translation. It has 

been described that the interaction between eIF4G and PABP is essential for the correct 

recruitment and assembly of the translation machinery 45. The hydrolysis of eIF4G by these two 

viral proteases separates the PABP-binding domain in eIF4G impairing its interaction.  

Moreover, the proteolisis of eIF4G by HIV-1 PR separates the Mnk-1 interaction domain of 

eIF4GI 27. This kinase phosphorylates eIF4E, increasing its cap-binding activity, thus enhancing 

subsequently cap-dependent translation 9. 

The dependence of cellular mRNA translation on eIF4G is evident when newly-formed 

mRNAs are examined. Once cellular mRNAs are bound to the protein synthesizing machinery, 

subsequent initiation events may not require the participation of an intact eIF4F complex 28; 29; 30. 

When cellular mRNAs are stripped of ribosomes by inducing the run-off of translation with 

hypertonic medium, the mRNAs cannot participate in initiation if eIF4G has been proteolyzed 

30. This is not the case for SV subgenomic mRNA, since it can interact with ribosomes and 

initiation factors to accomplish the first initiation event when eIF4G has been cleaved. The 

capacity of the subgenomic mRNA to be translated after eIF4G proteolysis and treatment with 

hypertonic medium, clearly indicates that intact eIF4F is not required to build up the initiation 

complex directed by this mRNA. Comparison of the translation of SV genomic and subgenomic 

mRNAs points to their different ability to participate in translation in cells lacking intact eIF4G. 

Thus, the finding that protein synthesis directed by SV genomic mRNA is inhibited by about 

60-80% when eIF4G is hydrolyzed by poliovirus 2Apro, indicates that genomic RNA is more 

similar to cellular mRNAs in its translation behaviour than subgenomic mRNA. Moreover, 
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when eIF4G is proteolyzed before SV-Luc and SV-GFP infection, the structural SV protein 

synthesis is blocked, indicating a reduction in non-structural protein synthesis when 2Apro is co-

expressed. These data point to the different behaviour between early and late SV RNAs, as 

regards the requirement for eIF4G. However, normal levels of structural proteins are 

synthesized when eIF4G is proteolyzed before subgenomic translation. In this instance, the 

amount of SV C or GFP synthesis from SV-GFP is similar, irrespective of intact eIF4G. The 

observation that one RNA with a subgenomic leader sequence placed upstream of the GFP gene 

can be efficiently translated in SV infected cells when eIF4G is cleaved by 2Apro, provides 

evidence that a short sequence could contribute to cap independent translation. 

The findings obtained with SV-GFP deletion variants suggest that there is not an essential 

region between nucleotides 11-49 to be translated when eIF4G was hydrolyzed by 2Apro. 

However, the absence of the last 38 nt of the leader 26S sequence diminished GFP expression. 

In addition, the presence of 42 nt from the luciferase leader sequence after the first 11 nt of SV 

26S mRNA severely impaired subgenomic mRNA translation (unpublish data). These results 

suggest that it is not just the length but the sequence of nucleotides 11-49 what is important for 

the efficient expression of GFP from SV-GFP. In this regard, VSV mRNAs also contain short, 

unstructured 5’UTRs (from 11 to 49 nt) and can be translated in absence functional eIF4F 

complex 37. These features may contribute to the translatability of VSV RNAs and SV 

subgenomic RNA. Beside, a number of adenovirus late mRNAs contain the so-called tripartite 

sequence at their 5’ ends. In accordance with the findings described here, these capped 

adenovirus mRNAs are also capable of being translated when eIF4G is cleaved by poliovirus 

infection 46; 47; 48. The unstructured conformation of the leader region of some adenovirus 

mRNAs may confer the translation properties of the tripartite sequence 49.  

As occurs with these adenovirus mRNAs, most probably the leader sequence of the 26S 

mRNA is not translated by internal initiation. Thus, SV structural proteins are not produced 

from genomic RNA in the early phase of SV infection 7; 48; 49. Moreover, eIF2α is 

phosphorylated by PKR during SV infection. This modification inactivates eIF2 activity, 

contributing to the inhibition of cellular translation. Under these conditions, SV subgenomic 
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mRNA continues to be translated 50. Therefore, the initiation of translation of the subgenomic 

SV mRNA could occur by a mechanism that differs from those described for cellular or 

picornavirus mRNAs. 

The fact that SV subgenomic mRNA contains a cap structure raises questions about its 

participation in its translation. One possible function of the cap structure in this RNA is to 

increase the RNA stability in cooperation with the poly(A) sequence 51. The possibility that the 

small ribosomal subunit interacts with the initiation AUG codon without participation of eIF4E 

and the cap structure remains open. Therefore, we can distinguish two different strategies 

followed by animal viruses to originate mRNAs with a high translatability. Both strategies are 

directed at decreasing the requirement for translation initiation factors. One type of these viral 

mRNAs corresponds to uncapped, IRES-containing mRNAs that possess long and highly 

structured 5’ UTRs 9; 52. Another kind of viral mRNA, which is highly translatable, contains 

capped short and unstructured leader sequences 37; 49. Further understanding of the mechanism 

used to assemble the initiation translation complex directed by the SV subgenomic leader 

sequence may provide clues to help identify the factors that are involved in the discriminatory 

recognition between cellular and viral mRNAs.  

Another point of interest in this work is the evidence that viable recombinant SV that 

express HIV-1 PR are feasible, particularly when SQ is present. These recombinant viruses 

induce a clear cytophatic effect and cell rounding, suggesting that the synthesis of HIV-1 PR or 

poliovirus 2Apro suffices to provoke this cytotoxic effect. Moreover, in the absence of inhibitor, 

SV-PR renders lytic plaques with a different morphology than wt SV or SV-PR in the presence 

of the inhibitor. Hence, SV-PR could be employed as a simple and rapid approach to search for 

inhibitors against-HIV-1 PR or poliovirus 2Apro in eukaryotic cells.  

 

 
 
 
 
 
MATERIALS AND METHODS 
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Cell cultures.  Baby hamster kidney (BHK-21) cells were grown at 37ºC in Dulbecco´s 

Modified Eagle´s medium (DMEM) supplemented with 5% fetal calf serum (FCS) and non-

essential amino acids. 

Plasmids.  Construction of the SV replicons Rep C and Rep C-6K have already been 

described 6; 39. Rep C-PR, Rep C-2A and Rep C-2C were made by inserting a PCR product 

encoding HIV-1 PR, or poliovirus 2Apro or 2C respectively after the sequence of the C gene in 

the plasmid pH3’2J-C, employed as a shuttle vector  using NdeI/BamHI restriction sites 40. 

Next, the fragment between the two sites (AatII/XhoI) was transferred to the same sites in the 

vector pT7SVwt (wt SV), described previously 40. Rep L2A was constructed by inserting the 

HpaI/ApaI digested product containing the hybrid sequence from sindbis virus and poliovirus 

obtained by PCR in the same sites of pT7SVwt. To obtain this PCR product we designed four 

oligonucleotides: the first oligonucleotide hybridizes with the HpaI sequence into the SV 

sequence; the second has the junction sequence between the Sindbis virus and poliovirus 

sequences in the opposite direction; the third has a complementary and inverted sequence 

related to the second oligonucleotide; and the fourth has the carboxyl-terminal sequence of 

2Apro, a stop codon and, next, the sequence for ApaI. We made a PCR using the first two 

oligonucleotides and pT7SVwt as a template and another PCR using the last two 

oligonucleotides and the plasmid pSK-L2A as a template 31. Then we used a mixture of these 

products as a template with the oligonucleotides that have the Hpa I and ApaI sites.  

pToto1101/Luc (SV-Luc) was generously provided by Charles Rice (Rockefeller 

University, NY) 41. pT7SV-HIV-1 PR (SV-PR) and pT7SV-2Apro (SV-2A) were generated by 

inserting a PCR product containing the corresponding protease gene digested with XbaI/BamHI 

in the same sites of pH3’2J. The subgenomic promoter casette of pH3’2J1-HIV-1 PR and 

pH3’2J-2Apro was inserted into the SV cDNA clone pT7SVwt using the ApaI/XhoI restriction 

sites. pT7SV-GFP (SV-GFP) was obtained following a similar strategy as for Rep L2A (see 

above) using ApaI/XbaI restriction sites in pT7SVwt and pEGFP-N1 (Clontech) as a template. 

The SV-GFP mutants SV-GFPΔ11-49, SV-GFPΔ11-31 and SV-GFPΔ31-49, that contain 

certain deletions inside SV subgenomic leader sequence placed before eGFP gene (nucleotides 
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11 to 49, 11 to 31 or 31 to 49 respectively), were constructed using specific oligonucleotides 

and SV-GFP as a template.  

pTM1-2A and pTM1-2C were described earlier 53. 

Strains BH10 of HIV-1 and pT7(XLD) were used as a template for HIV-1 and poliovirus 

constructions respectively 54. 

Transfection of BHK-21 cells. BHK-21 cells were electroporated with in vitro synthesized 

RNAs from the different plasmids. Subconfluent cells were harvested, washed with ice-cold 

phosphate-buffered saline (PBS), and resuspended in PBS at a density of about 2.5x106 cell/ml.  

50 μl aliquots of T7 RNA polymerase (Promega) transcription mixture with about 25 μg RNA 

from each different cDNA construct were added to 0.4 ml of cells, and the mixtures were 

transferred to 2 mm electroporation cuvettes (Bio-Rad).  Electroporation was performed at room 

temperature by two consecutive 1.5- kV, 25- μF pulses using a Gene Pulser apparatus (Bio-Rad) 

as described 55. Control BHK cells were electroporated with 50 μl transcription mixture in PBS. 

The cells were then diluted in growth medium and seeded onto culture plates. Viral protein 

synthesis was analyzed by metabolic labeling with [35S] Met-Cys, followed by polyacrilamide 

gel electrophoresis (SDS-PAGE) and fluorography. Western blot analysis was carried out using 

an antibody against SV nsP1 (a gift from V. Stollar, Robert Wood Johnson Medical School, 

New Jersey) at 1:1,000 dilution. The integrity of translation initiation factors was analyzed by 

western blot using anti-eIF4GI antisera raised against peptides derived from the N- and C-

Terminal regions of human eIF4GI 31 at a 1:1,000 dilution or with rabbit antisera against the C-

terminal region of eIF4GII (a gift from N. Sonenberg, McGill University, Montreal, Canada) at 

a 1:500 dilution. Goat antiserum against HIV-1 PR was provided by the EU program 

EVA/MRC Centralised Facility for AIDS Reagents, NIBSC, UK and used at dilution 1:700. 

The amount of sample loaded in each experiment was tested by western blotting with anti-

eIF4A at a 1:50 dilution (a gift from Dr. H. Trachsel, Institute for Biochemistry and Molecular 

Biology, University of Berne, Switzerland). Anti-rabbit, anti-mouse and anti-sheep 

immunoglobulin G antibodies coupled to peroxidase (Pierce) was used at a 1:10,000 dilution. 
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Viral infections. BHK-21 cells were infected with SV-Luc, SV-PR or SV-GFP at a 

multiplicity of infection of 10 pfu/cell. After one hour of adsorption the medium was removed 

and culture plates were incubated with fresh DMEM medium supplemented with 5% FCS. 

Sindbis virus (SV) wild-type (wt) and recombinants SV-PR, SV-2A, SV-Luc and SV-GFP were 

titered in BHK-21 cultures. In the SV-PR titration saquinavir (SQ) was added at a final 

concentration of 12 μM.  

Analysis of mRNA by real-time RT-PCR. SV RNA levels in transfected cells were 

determined by real-time quantitative reverse transcription (RT)-PCR. For this purpose, total 

RNA was extracted from 2x105 cells at the times indicated in each figure using the RNeasy 

commercial kit (Qiagen) following the manufacturer’s recommendations. The isolated RNA 

was resuspended in 30 µl of nuclease-free water, and 3 µl was subjected to analysis. Real-time 

quantitative RT-PCR was performed with the LightCycler thermal cycler system (Roche 

Diagnostics) using the RNA Master SYBR Green I kit (Roche Diagnostics) as described by 

manufacturer. The primers nSP2-forward (5’-GGAGGGGCTCCAGGCGGACATCG-3’) and 

nSP2-reverse (5’-GCTCCTCTTCTGTATTCTTGGCG-3’) were used to quantitate the SV 

genomic RNA. The primers C-forward (5’-GAACGAGGACGGAGATGTCATCG-3’) and C-

reverse (5’-CAGCGCCACCGAGGACTATCGC-3’) were employed to quantitate the total SV 

RNA. Subgenomic SV RNA was calculated as the difference between total SV RNA and SV 

genomic RNA. These primers were designed to amplify sequences of 250-300 nt to maximize 

the efficiency of the reaction. RT-PCR was carried out in 20 µl of LightCycler RNA Master 

SYBR Green I solution containing 3 mM manganese acetate and a 1 µM concentration of each 

primer. RT was performed at 61ºC for 20 min. After that, PCR amplification was  initiated with 

incubation at 95ºC for 2 min, followed by 45 cycles of 95ºC for 5 s, 58ºC for 12 s, and 72ºC for 

20 s. Data analysis was done using the Roche Molecular Biochemicals LightCycler software 

(version 3.3). The specificity of amplification reactions was confirmed by analyzing their 

corresponding melting curves. 

Hypertonic medium treatment. To produce the ribosomal run-off from polysomes, 150 

mM NaCl was added to cell cultures to reach a final concentration of 300 mM in DMEM 10% 
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FCS for 2 hours. Protein synthesis was then recovered by washing the cells twice with DMEM 

to remove the excess of NaCl in the culture medium 30. After that, cell monolayers were 

incubated with DMEM supplemented with 10% FCS for 2 hours. Protein synthesis was 

estimated as described above at the times indicated in the figure legend. 

Measurement of luciferase activity.  BHK-21 cells were electroporated with the different 

in vitro synthesized RNAs. Control cells were electroporated with 50 μl transcription buffer in 

PBS. Then cells were infected with SV-Luc. At different hours postinfection, cells were lysed in 

a buffer containing 0.5% Triton X-100, 25mM glycylglycine (pH 7.8) and 1mM dithiothreitol. 

Luciferase activity was determined using a Monolight 2010 apparatus (Analytical Luminiscence 

Laboratory) as described previously 53.  

Optical microscopy.  BHK-21 cells were electroporated with wt SV, SV-PR or SV-2A 

and grown on glass cover slips in DMEM with 10% FCS.  At 16 hours post-electroporation 

(hpe) cells were washed with PBS and fixed with 4% (w/v) paraformaldehyde in PBS for 20 

min at room temperature. Finally, cells were washed and mounted in mowiol by inverting the 

coverslip. They were examined by microscopy using an Axiovert 200 inverted microscope 

(Zeiss) with a 20X0.6 Plan-Apochromat Ph2 objective. 
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 FIGURE LEGENDS 

 
Figure 1. Schematic representation of. (a) full-length wt SV RNA genome. (b) SV Replicons 

containing SV C protein followed by heterologous gene, or poliovirus IRES after the SV 

subgenomic promoter (SG.P) and followed by 2Apro, as indicated. (c) Recombinant SV RNAs 
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that possess heterologous genes placed under the control of a duplicated subgenomic promoter 

and recombinant SV containing the luciferase gene placed inside the nsP3 sequence. (d) in vitro 

transcribed mRNAs from pTM1-2A and pTM1-2C that only contain the EMCV leader sequence 

and poliovirus 2A or 2C gene.  

Figure 2. Dependence of 26S mRNA translation on intact eIF4G using different SV 

replicons. BHK cells were electroporated with transcription buffer (BHK), Rep C or Rep C-PR 

and grown in the presence or absence of 12 μM saquinavir (SQ) (a); or with transcription buffer, 

Rep C, Rep C-2A, Rep L2A or Rep C-2C (b). Proteins were labeled with [35S]Met/Cys from 15 

to 16 hpe and processed as described in Materials and Methods ((a) and (b), lower panels). 

Aliquots were analyzed by western blotting with specific antisera against eIF4GI (panel (a) and 

(b), upper panels) or eIF4GII (panel (a) and (b), lower panels). Percentage of Capsid protein 

synthesis or intact eIF4GI and eIF4GII were determined by densitometric scanning of the 

corresponding protein band. Ct, C-terminal fragments of eIF4GI or eIF4GII. C, capsid SV 

protein. Mr (KDa) molecular weight markers. 

Figure 3. Analysis of SV RNA levels by real time RT-PCR. (a) The SV genomic and 

subgenomic RNAs were isolated at 16 hpe from cells transfected with the different SV replicons 

and quantitated as described in Materials and Methods. The data are presented as a relative 

comparison of Rep C-PR or Rep C-2A RNAs levels with Rep C. (b) Representation of 26S 

normalized mRNA translation  considering the level of SV subgenomic mRNA in 

electroporated cells. The C synthesis values were corrected to the relative amount of SV 

subgenomic mRNA and calculated based on values obtained for Rep C.  

Figure 4. Effect of eIF4G cleavage on the reinitiation of SV protein synthesis after 

exposure to hypertonic medium. BHK cells were electroporated with transcription buffer 

(BHK), Rep C or Rep C2A. From 16 to 18 hpe, the concentration of NaCl in the medium was 

increased to 300 mM. At 18 hpe isotonicity was restored. From 15 to 16 hpe, 17 to 18 hpe and 

19 to 20 hpe, cell cultures were labeled for 1h. (a) Schematic representation of the protocol. (b) 
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upper panel: western blotting against eIF4GI. Middle panel: western blotting against eIF4GII. 

Lower panel: Protein synthesis analyzed by fluorography and autorradiography.  

Figure 5. Effect of eIF4G cleavage on the translation of 26S mRNA using recombinant SVs 

that express heterologous proteases. Cells were electroporated with transcription buffer 

(BHK), wt SV, SV-PR or SV-2A RNAs, grown in the presence or absence of 12 μM saquinavir, 

labeled with [35S]Met-[35S]Cys from 7 to 8 hpe. Aliquots of the same samples were analyzed by 

western blotting with specific antisera against eIF4GI ((a), upper panel), eIF4GII ((a), lower 

panel) and HIV-1 PR (B, lower panel) and fluorography and autorradiografy ((b), upper panel). 

Percentage of capsid protein synthesis or intact eIF4GI and eIF4GII were determined by 

densitometric scanning of the corresponding protein band. (c) Analysis of SV RNA levels by 

real time RT-PCR. The SV genomic and subgenomic RNAs were isolated from transfected cells 

and quantitated as described in Materials and Methods. The data are presented as relative 

comparison of SV-PR, in the absence and in the presence of SQ, or SV-2A RNA levels as 

compared to wt SV. (d) Representation of normalized 26S mRNA translation considering the 

level of SV subgenomic mRNA in electroporated cells. C synthesis was corrected to the relative 

amount of SV subgenomic mRNA.  

Figure 6. Dependence of translation of genomic SV mRNA on the integrity of eIF4G. Cells 

were electroporated with transcription buffer (BHK), EMC IRES-2A, Rep C or Rep L2A and 

infected at 1 hpe with SV-Luc. Cells were labeled with [35S]Met-[35S]Cys at different time 

points, as indicated. (a) Integrity of eIF4GI and eIF4GII was analyzed by western blotting. (b) 

Cellular protein synthesis was examined by fluorography and autoradiography. Actine, C 

protein, SV glycoprotein (PE2 and E1) synthesis, nsP1 accumulation and % of proteolysis of 

eIF4GI and eIF4GII were determined by densytometric scanning of the corresponding protein 

band. (c) Cells were collected in luciferase lysis buffer at different time points, as indicated. 

Luciferase activity was measured using a Monolight 2010 apparatus. (d) RNA was isolated at 2 

hpi from SV-Luc infected cells as indicated in Materials and Methods. SV genomic RNA levels 

were analyzed by real time RT-PCR. The data represent the relative comparison with the RNA 
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isolated from cells electroporated with transcription buffer and infected with SV-Luc. (e) 

Normalization of % of luciferase activity at 2 hpi of cells electroporated with transcription 

buffer or EMC IRES-2A and infected at 1 hpe with SV-Luc. The luciferase activity values were 

corrected to the relative amount of SV-Luc genomic RNA and calculated based on values 

obtained for control cells infected with SV-Luc. (f) Cells were electroporated with transcription 

buffer, Rep C or Rep L2A. SV nsP1 accumulation was analysed by western blotting against SV 

nsP1. Luc, luciferase. RLU, relative light units. 

Figure 7. Effect of eIF4G cleavage on genomic SV translation initiation. Cells were 

electroporated with transcription buffer or EMC IRES-2A. (a) One half of cells were collected 

at 1, 2, 4 and 6 hpe and eIF4GI and eIF4GII was analyzed by western blotting. The relative 

amount of intact eIF4G is represented. (b) The other half of the electroporated cells were 

infected at 1, 2, 4 or 6 hpe with SV-Luc and collected in luciferase lysis buffer at 3 hpi. 

Luciferase activity was measured as described in Figure 8. The result is showed as the relative 

luciferase activity in cells extracts (expressed in light units set to 100% of control reactions).  

Figure 8. Effect of eIF4G cleavage on the translation of GFP mRNAs using recombinants 

SV. (a) Schematic representation of mRNAs synthesized from SV-GFP. (b) Schematic 

representation of the SV subgenomic leader sequence placed upstream of eGFP gene and the 

deletion variants. (c) Cells were electroporated with transcription buffer, EMC IRES-2A or 

EMC IRES-2C and infected with 10 pfu/cell of SV-GFP 2h before or 1h after electroporation. 

The cells were collected at time indicated (d) Cells were infected with 10 pfu/cell of SV-

GFPΔ11-49, SV-GFPΔ11-31 or SV-GFPΔ31-49 and at 2 hpi were electroporated with 

transcription buffer, EMC IRES-2A or EMC IRES-2C. The protein synthesis and the integrity 

of initiation factors were analyzed at 16 hpe/18 hpi. (c) and (d) Upper panels: western blotting 

against eIF4GI; middle panels: western blotting against eIF4GII; lower panels: analysis of viral 

protein synthesis by fluorography and autoradiography. L49, genomic 49S leader sequence. 

L26, subgenomic 26S leader sequence. eGFP, enhanced green fluorescence protein. 
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	DISCUSSION 
	The findings obtained with SV-GFP deletion variants suggest that there is not an essential region between nucleotides 11-49 to be translated when eIF4G was hydrolyzed by 2Apro. However, the absence of the last 38 nt of the leader 26S sequence diminished GFP expression. In addition, the presence of 42 nt from the luciferase leader sequence after the first 11 nt of SV 26S mRNA severely impaired subgenomic mRNA translation (unpublish data). These results suggest that it is not just the length but the sequence of nucleotides 11-49 what is important for the efficient expression of GFP from SV-GFP. In this regard, VSV mRNAs also contain short, unstructured 5’UTRs (from 11 to 49 nt) and can be translated in absence functional eIF4F complex 37. These features may contribute to the translatability of VSV RNAs and SV subgenomic RNA. Beside, a number of adenovirus late mRNAs contain the so-called tripartite sequence at their 5’ ends. In accordance with the findings described here, these capped adenovirus mRNAs are also capable of being translated when eIF4G is cleaved by poliovirus infection 46; 47; 48. The unstructured conformation of the leader region of some adenovirus mRNAs may confer the translation properties of the tripartite sequence 49.  
	As occurs with these adenovirus mRNAs, most probably the leader sequence of the 26S mRNA is not translated by internal initiation. Thus, SV structural proteins are not produced from genomic RNA in the early phase of SV infection 7; 48; 49. Moreover, eIF2α is phosphorylated by PKR during SV infection. This modification inactivates eIF2 activity, contributing to the inhibition of cellular translation. Under these conditions, SV subgenomic mRNA continues to be translated 50. Therefore, the initiation of translation of the subgenomic SV mRNA could occur by a mechanism that differs from those described for cellular or picornavirus mRNAs. 



