

Conjuntos de Julia alternados

G. Pastor, G. Alvarez, A. B. Orue, V. Fernandez, D. Arroyo y M. Romera INSTITUTO DE FÍSICA APLICADA, CSIC, C/ SERRANO 144, 28006 MADRID, ESPAÑA.

Introducción

Un proceso natural puede modelizarse utilizando sistemas dinámicos discretos. En la naturaleza existen muchas interacciones diferentes; por lo que podemos pensar que un proceso natural puede explicarse por la iteración alternada de diferentes dinámicas [1]. Para simplificar, suponemos sólo dos dinámicas discretas diferentes: $D_1 y D_2$. La dinámica resultante será: $D : x_0 \xrightarrow{D_1} x_1 \xrightarrow{D_2} x_2 \xrightarrow{D_1} x_3 \dots$, donde $\{x_0, x_1, x_2, \dots\}$ son los valores de la variable x que describe el sistema físico [2]. Las propiedades de conexidad del conjunto de Julia para un polinomio complejo $P_c(z)$ de grado $d \ge 2$ están íntimamente relacionadas con las propiedades dinámicas de los puntos críticos, como nos dice el teorema de Fatuo-Julia: (*i*) El conjunto de Julia es conexo si y sólo si las órbitas críticas están acotadas. (*ii*) El conjunto de Julia es totalmente no-conexo si (pero no sólo si) todas las órbitas críticas acotadas son aperiódicas. El teorema de Fatuo-Julia para polinomios cuadráticos complejo $P_c(z) = z^2 + c$, d = 2, se conoce como la dicotomía fundamental. Cada P_c del mapa cuadrático tiene un punto crítico simple en 0 y una órbita crítica simple. (*i*) El conjunto de Julia de P_c es conexo si la órbita de 0 es no-acotada En este trabajo mostraremos que, si iteramos alternativamente dos mapas cuadráticos, el conjunto de Julia alternado puede ser, además de conexo y totalmente no-conexo, también no-conexo.

Entonces, el conjunto de Julia alternado $K_{c_1c_2}$ es noconexo si las órbitas acotadas de los puntos críticos son periódicas y es totalmente no-conexo si las órbitas acotadas de los puntos críticos son aperiódicas. Para un valor dado del parámetro c_2 , es posible encontrar, por medio de un programa de ordenador, las zonas de conexidad de c_1 en las proximidades de c_2 que originan conjuntos de Julia alternados rellenos $K_{c_1c_2}$ conexos, no-conexos y totalmente no-conexos. En las Figs. 3a y 3b (puntos A y B de la Fig. 2b) las órbitas críticas son no-acotadas. En la Fig. 3c (punto C de la Fig. 2b) las órbitas de $\pm \sqrt{-c_1}$ son no-acotadas, pero la órbita de 0 es periódica de periodo 15. Fijémonos que el punto crítico C está dentro del disco de la zona no-conexa (Fig. 2b), no en el cuerpo principal de esta zona. El punto D de la Fig. 2b está cerca de la frontera entre las zonas gris y blanca (es imposible, con programas de computación de precisión finita, determinar un valor de c_1 en esta frontera). En la Fig. 3d, que corresponde al punto D, las órbitas de $\pm \sqrt{-c_1}$ son no-acotadas, pero la órbita de 0 es acotada. Esta órbita crítica es no-periódica. Por tanto, el conjunto de Julia alternado es totalmente no-conexo. En la Fig. 3e (punto E de la Fig. 2b) las órbitas de los dos puntos críticos son no-acotadas, pero la órbita de 0 es periódica de periodo 1. Fijémonos que el punto E está en el cuerpo principal de la zona gris de la Fig. 2b. Finalmente, en la Fig. 3f (punto F de la Fig. 2b) todas las órbitas críticas son periódicas de periodo 1.

1. Conjuntos de Julia alternados

Definimos el conjunto de Julia alternado relleno $K_{c_1c_2}$ (ó $K_{c_2c_1}$) como el conjunto de puntos del plano complejo cuyas órbitas están acotadas cuando iteramos alternativamente el sistema:

$$P_{c_1c_2}: z_{n+1} = \begin{cases} z_n^2 + c_1 & \text{is } n \text{ es par} \\ z_n^2 + c_2 & \text{is } n \text{ es impar} \end{cases}$$

ó $P_{c_2c_1}: z_{n+1} = \begin{cases} z_n^2 + c_2 & \text{si } n \text{ es par} \\ z_n^2 + c_1 & \text{si } n \text{ es impar} \end{cases}$ Las iteraciones par e impar de $P_{c_1c_2}$ responden a: $z_{2i} = z_{2i-1}^2 + c_2 \text{ y } z_{2i+1} = z_{2i}^2 + c_1.$ Es fácil probar la siguiente proposición: Proposición (i) Si z_{2i} es acotada, z_{2i-1} también es acotada. (ii) Si z_{2i} es no-acotada, z_{2i+1} también es no-acotada. Dado que el estudio de la conexidad de los conjuntos de Julia de $P_{c_1c_2}$ es una tarea difícil, se introduce el siguiente polinomio cuártico complejo auxiliar: $Q_{c_1c_2}$: $z_{n+1}^* = (z_n^{*2} + c_1)^2 + c_2$ (2.5) para probar el siguiente teorema: Teorema 2.1 La acotación/ no-acotación de $\{Q_{c_1c_2}^{\circ n}\}$ implica la acotación/ noacotación de $\{P_{c_1c_2}^{\circ n}\}$. Por lo tanto, ya se puede enunciar el siguiente teorema: Teorema 2.2 El conjuntos de Julia del sistema alternado $P_{c_1c_2}$ y el conjunto de Julia del sistema cuártico $Q_{c_1c_2}$ son lo mismo para los dos valores dados del parámetro c_1 y c_2 .

Ejemplo

La Fig. 1 muestra el conjunto de Julia del mapa cuadrático $z_{n+1} = z_n^2 + (-0.76 + 0.1i)$. Como es sabido, este conjunto de Julia es totalmente no-conexo porque (-0.76 + 0.1i) no pertenece al conjunto de Mandelbrot. Sin embargo, el conjunto de Julia alternado $K_{c_1c_2}$, cuando $c_2 = (-0.76 + 0.1i)$ y c_1 toma diferentes valores en la vecindad de c_2 , puede ser conexo, no-conexo y totalmente no-conexo.

 $Figura \ 2$

La Fig. 2a representa las zonas de conexidad para $K_{c_1c_2}$ cuando $c_2 = -0.76 + 0.1i$, la parte real de c_1 está en el intervalo [-0,77, -0,75] y la parte imaginaria de c_1 está en el intervalo [0,09i, 0,11i] (negro si todas las órbitas están acotadas, gris si las hay acotadas y no-acotadas, y blancas si todas son noacotadas). La Fig. 2b es una ampliación del cuadrado a de la Fig. 2a con $c_2 = -0.76 + 0.1i$. La parte real de c_1 está en el intervalo [-0,766, -0,759]y la parte imaginaria de c_1 está en el intervalo [0,099i, 0,106i]. Se dan seis puntos representativos en las zonas de conexidad. A $(c_1 = -0.76 + 0.1i)$ y B $(c_1 = -0.762 + 0.102i)$, en la zona blanca, corresponden a conjuntos de Julia alternados totalmente no-conexos. C $(c_1 = -0.7628 + 0.1028i)$ y E $(c_1 = -0.764 + 0.104i)$, en la zona gris, corresponden a conjuntos de Julia alternados no-conexos. D $(c_1 = -0.763181 + 0.103171i)$ está cerca del límite de las zonas gris/blanca. F $(c_1 = -0.765 + 0.105i)$, en la zona negra, corresponde a un conjunto de Julia alternados conexo.

4. Dibujo de los conjuntos de Julia alternados

En la Fig. 4 se muestran tres ejemplos de conjuntos de Julia alternados rellenos $K_{c_1c_2}$ (a la izquierda) y $K_{c_2c_1}$ (a la derecha) cuando $c_2 = -0.76 + 0.1i$ y c_1 está en la vecindad de c_2 (comparar con la Fig. 1). También se muestran los puntos críticos del polinomio $Q_{c_1c_2}$. Los conjuntos de Julia alternados totalmente no-conexos de la Fig. 4a corresponden al punto B ($c_1 = -0.762 + 0.102i$) de la Fig. 2b, los conjuntos de Julia alternados no-conexos de la Fig. 4b corresponden al punto C ($c_1 = -0.7628 + 0.1028i$) de la Fig. 2b y los conjuntos de Julia alternados conexos de la Fig. 4c corresponden al punto F ($c_1 = -0.765 + 0.105i$) de la Fig. 2b.

Figura 1

En esta sección, de acuerdo con el Teorema 2.2, comprobamos gráficamente que las propiedades de conexidad de los conjuntos de Julia de $Q_{c_1c_2}$ son transferidos a los conjuntos de Julia alternados de $P_{c_1c_2}$

2. Zonas de conexidad

El polinomio cuártico $Q_{c_1c_2}$ tiene tres puntos críticos: 0, $\sqrt{-c_1}$ y $-\sqrt{-c_1}$, pero las órbitas de $\pm\sqrt{-c_1}$ son las mismas, excepto en el punto inicial, debido a la paridad de $Q_{c_1c_2}$. Según el teorema de Fatou-

3. Órbitas críticas

La Fig. 3 muestra las órbitas de los puntos críticos $0 \text{ y} - \sqrt{-c_1} \text{ de } Q_{c_1c_2}$ que corresponden a los puntos A, B, C, D, E y F de la Fig. 2b (para $+\sqrt{-c_1}$ son la misma, excepto en el punto inicial). El segundo punto de las órbitas de $\pm \sqrt{-c_1}$ es c_2 .

Julia, existen tres posibilidades sobre las órbitas de los puntos críticos de $Q_{c_1c_2}$: (i) Las órbitas de 0 y $\pm \sqrt{-c_1}$ están acotadas. Entonces, el conjunto de Julia alternado $K_{c_1c_2}$ es conexo. (ii) Las órbitas de 0 y $\pm \sqrt{-c_1}$ no están acotadas. Entonces, el conjunto de Julia alternado $K_{c_1c_2}$ es totalmente no-conexo. (iii) La órbita de 0 está acotada y las órbitas de

(iii) La órbita de 0 está acotada y las órbitas de $\pm \sqrt{-c_1}$ no están acotadas, o la órbita de 0 no está acotada y las órbitas de $\pm \sqrt{-c_1}$ están acotada das.

de los conjuntos de Julia alternados $K_{c_1c_2}$: $aba'b' \dots$ (a la izquierda) y $K_{c_2c_1}$: $bab'a' \dots$ (a la derecha).

Referencias

[1] M. Romera, M. Small, M.-F. Danca, Deterministic and random synthesis of discrete chaos, Applied Mathematics and Computation 192 (2007) 283-297.
[2] J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132.