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Abstract

In this paper we study the chaotic bands of any Mandelbrot set hyperbolic compo-
nent. We use external arguments in order to identify the hyperbolic components.
If we use harmonics as a tool, we can calculate the chaotic bands. Indeed, as we
clearly show here, the harmonics of the external arguments of a given hyperbolic
component (gene) are the external arguments of the last appearance hyperbolic
components of the chaotic bands corresponding to the gene. Likewise, we show that
only if the hyperbolic component is a cardioid the infinite number of the chaotic
bands of such a cardioid fills up all its chaotic region.
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1 Introduction

We have widely studied the chaotic bands in the one-dimensional (1D)
quadratic maps [1]. By using the harmonics, which were named Fourier-
harmonics in [1], we can calculate the structural components, which are the
last appearance hyperbolic components of any chaotic band [1]. In [1] we have
accomplished these calculations by using symbolic sequences [2,3] as identifiers
[4] of the hyperbolic components [5] and Misiurewicz points [6–10]. However,
in [11] we also have accomplished these calculations by using as identifiers
the external arguments [7,12–14] instead of symbolic sequences. In fact we
use symbolic sequences in 1D quadratic maps and external arguments in the
part of the Mandelbrot set antenna that intersects with the real axis. But 1D
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quadratic maps and the part of the Mandelbrot set antenna that intersects
with the real axis are equivalent [1], hence we can use in both cases the two
identifiers.

Likewise, we also have studied the chaotic bands in the Mandelbrot set [15,16].
In [15] we have used the shrubs in order to study the chaotic region of the
Mandelbrot set, and in [16] we focus on the study of chaotic bands but with
no calculation of their hyperbolic components.

In this paper we have used harmonics in order to calculate for the first time
the last appearance hyperbolic components of the chaotic bands of any Man-
delbrot set hyperbolic component. In some manner this paper finishes papers
[11] and [16]. Indeed, in [15] harmonics are used in order to calculate the last
appearance hyperbolic components of the chaotic bands of the real axis, but
here we enlarge it to all the Mandelbrot set. In [16] we analyze the chaotic
bands in all the Mandelbrot set with no calculation, but here we calculate the
last appearance hyperbolic components. Therefore, the use of harmonics as a
tool for the calculation of the last appearance hyperbolic components of the
chaotic bands in all the Mandelbrot set can be considered the main contribu-
tion of this paper. More specifically, we clearly show that given the external
arguments (.ā1, .ā2) of a hyperbolic component of the Mandelbrot set, their
successive harmonics, H(i)(.ā1, .ā2), 2 ≤ i ≤ ∞, calculate the external ar-
guments of the last appearance hyperbolic components of the corresponding
chaotic bands.

Let us finish by noting a couple of things. First, by using the exact words of
J. Hubbard, our paper is based on ”the use of computers as an experimental
mathematical tool” [17]. That is to say, the methodology used is not the
typical of the mathematicians, whose statements have to be proved, but that
of experimental scientists. Indeed, we use the computer as an experimental
tool and consequently the obtained results are valid while other experimental
results do not contradict them. And second, we want to note that external
rays are drawn by using an algorithm from W. Jung [18].

2 Hyperbolic components on the real axis

When external arguments are used as identifiers, let us remember how to
calculate the harmonics of the antenna hyperbolic components that intersect
with the real axis [11]. External arguments can be given in two forms: rational
number or binary expansion. The formulas used to calculate harmonics are
much simpler when using binary expansions rather than rational numbers.
Indeed, as can be seen in [11], given a hyperbolic component, whose pair of
external arguments expressed as binary expansions is (.ā1, .ā2), the binary
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expansions of the pairs of the external arguments of the order i harmonics of
(.ā1, .ā2) are given by a very simple formula:

H(i)(.ā1, .ā2) =


.a1 a2a2 · · · a2︸ ︷︷ ︸

i

, .a2 a1a1 · · · a1︸ ︷︷ ︸
i


 (1)

One can also calculate the external arguments of the order i harmonics in the
normalized rational form [11]:

H(i)(
a1

2p − 1
,

a2

2p − 1
) =


a12

ip + a2
∑j=i−1

j=0 2ip

2(i+1)p − 1
,

a22
ip + a1

∑j=i−1
j=0 2ip

2(i+1)p − 1


 , (2)

but the formula is more complex, and therefore we use it much less.

Let us apply it to the main cardioid, whose pair of external arguments in
binary expansion form is (.0̄, .1̄). We name the main cardioid G0, ”G” since
we consider it to be the gene of the harmonics, and ”0” since the period is 1
(or 20). The first harmonic is (.01, .10), which is the pair of external argu-
ments of the first disc of the period doubling cascade, and the next harmonics
are (.011, .100), (.0111, .1000), (.01111, .10000), . . ., which are the external
arguments of the last appearance hyperbolic components (of periods 3, 4, 5,
. . .) of the period-20 chaotic band B0. If we consider now the first disc of the
period doubling cascade (of period 21) as a new gene, G1 = (.01, .10) , its
first harmonic is (.0110, .1001), which is the pair of external arguments of
the second disc of the period doubling cascade, and the next harmonics are
(.011010, .100101), (.01101010, .10010101), (.0110101010, .1001010101), . . . ,
which are the external arguments of the last appearance hyperbolic compo-
nents (of periods 2 · 3, 2 · 4, 2 · 5) of the period-21 chaotic band B1. And so
on; therefore, if we consider now the n-th disc of the period doubling cascade,
whose period is 2n, as a new gene, Gn, its first harmonic is the (n+1)-th disc of
the period doubling cascade, and the next harmonics are the last appearance
hyperbolic components of the period-2n chaotic band Bn.

Of course, 0 ≤ n ≤ ∞; therefore, B0, B1, B2, . . ., B∞ take up all the chaotic
region, from the antenna tip at c = −2, that is the Misiurewicz point m0 =
tip(.0, .1) = H(∞)(.0, .1) = .01 = .10 , to the Myrberg-Feigenbaum point
MF (.0, .1) , that separates the chaotic region and the periodic region.

In Fig. 1 we show a sketch of the period-20 main cardioid, G0, and the pe-
riod doubling cascade discs G1, G2, G3, . . ., whose periods are 21, 22, 23, . . ..
We make evident that the chaotic bands B0, B1, B2, B3, . . . have their ori-
gins in the genes G0, G1, G2, G3, . . ., because H(i)(G0), H(i)(G1), H(i)(G2),
H(i)(G3), . . ., where 2 ≤ i ≤ ∞ , calculate the external arguments of the last
appearance hyperbolic components of the chaotic bands B0, B1, B2, B3, . . ..
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Fig. 1. Sketch of the period-20 main cardioid G0; of the period doubling cascade G1,
G2, G3, . . ., , of periods 21, 22,23, . . .; and the chaotic bands B0, B1, B2, B3, . . ..
These chaotic bands have their origins in the genes G0, G1, G2, G3, . . . since the
harmonics H(i)(G0), H(i)(G1), H(i)(G2), H(i)(G3), . . . , where 2 ≤ i ≤ ∞, calculate
the last appearance hyperbolic components of the chaotic bands B0, B1, B2, B3, . . . .

If instead of the main cardioid, we consider any other cardioid placed
on the real axis, for example the only period-3 cardioid on the antenna,
whose external arguments are (.011, .100), we can calculate again the last
appearance hyperbolic components of the chaotic bands of such a cardioid.
Indeed, now G0 = (.011, .100); and, if its harmonics are calculated according
to Eq. (1), one obtains H(1)(G0) = (.011100, .100011), which is the first

disc of the period doubling cascade, and H(2)(G0) = (.011100
2
, .100011

2
),

H(3)(G0) = (.011100
3
, .100011

3
), H(4)(G0) = (.011100

4
, .100011

4
), . . .,

which are the last appearance cardioids, whose periods are 3 · 3, 3 · 4, 3 · 5,
. . ., of the period-3 · 20 chaotic band B0. Likewise, if one takes again the
first disc of the period doubling cascade as G1 = (.011100, .100011),
and if its harmonics are calculated according to Eq. (1), one obtains
H(1)(G1) = (.011100100011, .100011011100), which is the second disc of the

period doubling cascade, and H(2)(G1) = (.011100100011
2
, .100011011100

2
),

H(3)(G1) = (.011100100011
3
, .100011011100

3
), H(4)(G1) =

(.011100100011
4
, .100011011100

4
), . . . which are the last appearance

cardioids, whose periods are 2 · 3 · 3, 2 · 3 · 4, 2 · 3 · 5, of the period-3 · 21 chaotic
band B1. And so on all the other chaotic bands can be calculated. In Fig. 2
we show a sketch of the chaotic bands of this period-3 hyperbolic component.
The infinite number of chaotic bands B0, B1, B2, . . . take up all the chaotic
region corresponding to the cardioid (.011, .100), from its tip, which is the
Misiurewicz point tip(.011, .100) = H(∞)(.011, .100) = (.011100, .100011),
to the Myrberg-Feigenbaum point MF (.011, .100).

As has just been seen in the two former cases that were placed on the real
axis, by calculating the harmonics of a gene one obtains the external argu-
ments of the last appearance hyperbolic components -that we name sometimes
structural components- of the successive chaotic bands of the gene.

So far we only have dealt with hyperbolic components placed on the real axis
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Fig. 2. Sketch of the only period-3 cardioid of the antenna, of its period doubling
cascade and of its chaotic bands. The chaotic bands B0, B1, B2, . . . have their origins
in the genes G0, G1, G2, . . . since the harmonics H(i)(G0), H(i)(G1), H(i)(G2), . . .,
where 2 ≤ i ≤ ∞, calculate the last appearance hyperbolic components of the
chaotic bands B0, B1, B2, . . .

of the Mandelbrot set. However we shall use now formulas (1) and (2) in order
to calculate the harmonics of hyperbolic components placed out of the real
axis; i. e., placed in any region of the Mandelbrot set.

As can be seen experimentally, the external arguments calculated are the
last appearance hyperbolic components of the chaotic bands of the gene. In-
deed, let (.ā1, .ā2) be the external arguments of a given gene. By using the
computer program of W. Jung [18], one can see the hyperbolic components
corresponding to the successive harmonics of the external arguments of the
gene: H(i)(.ā1, .ā2), 2 ≤ i ≤ ∞. As we shall see, these harmonics are the last
appearance hyperbolic components of the chaotic band corresponding to the
gene.

3 Hyperbolic components out of the real axis

Let us see the period-3 primary hyperbolic component 1
3

(it is pri-
mary because it is directly attached to the main cardioid [15]). Its
external arguments are G0 = (.001, .010). If the harmonics are calcu-
lated, one has H(1)(G0) = (.001010, .010001), which is the first disc

of the period doubling cascade, and H(2)(G0) = (.001010
2
, .010001

2
),

H(3)(G0) = (.001010
3
, .010001

3
), H(4)(G0) = (.001010

4
, .010001

4
), . . . ,

which are the last appearance cardioids (whose periods are 3 3, 3 4, 3 5, )
of the period-3 · 20 chaotic band B0(

1
3
). Likewise, by considering again the
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first disc of the period doubling cascade as a gene G1 = (.001010, .010001),
if its harmonics are calculated according to Eq. (1) one obtains
H(1)(G1) = (.001010010001, .010001001010), which is the second disc of the

period doubling cascade, and H(2)(G1) = (.001010010001
2
, .010001001010

2
),

H(3)(G1) = (.001010010001
3
, .010001001010

3
), H(4)(G1) =

(.001010010001
4
, .010001001010

4
), . . ., which are the last appearance

cardioids of the period-3 · 21 chaotic band B1(
1
3
). And so on the successive

chaotic bands can be calculated.

In Fig. 3 one can see a sketch of the hyperbolic components calculated that
can be located by using the before cited tools [18]. The shrub(1

3
) [15], which is

the shrub of the primary hyperbolic component 1
3

that we are dealing with, is
characterized by a decoration with 3 branches around each node. As explained
in [15], if a number is associated with each branch, one can calculate the period
of the hyperbolic component representative (which are the last appearance
hyperbolic components) of any branch of the shrub. The branch 0, also called
main branch, or shrub0(

1
3
), has been studied in [16]. As can be seen in Fig. 3,

the chaotic bands are placed just in this main branch of the shrub, occupying
it completely. The limits are the main node, which is the Misiurewicz point
m0 = H(∞)(.001, .010) = (.001010, .010001), and the Myrberg-Feigenbaum
point MF (1

3
).

But in the same way that one has dealt with a primary hyperbolic
component, one could have dealt with a secondary hyperbolic compo-
nent [15]. For example, let us see the period-12 secondary hyperbolic
component 1

3
· 1

4
(it is secondary because it is directly attached to a

primary hyperbolic component, the 1
3

[15]). Its external arguments are:
G0 = (.001001001010, .001001010001). If the harmonics are calculated,
H(1)(G0) = (.001001001010001001010001, .001001010001001001001010)
is the first disc of he period doubling cascade, and H(2)(G0) =

(.001001001010001001010001
2
, .001001010001001001001010

2
), H(3)(G0) =

(.001001001010001001010001
3
, .001001010001001001001010

3
), H(4)(G0) =

(.001001001010001001010001
4
, .001001010001001001001010

4
), . . . are the

last appearance cardioids (whose periods are 12 · 3, 12 · 4, 12 · 5, . . .)
of the period-12 · 20 chaotic band B0(

1
3
· 1

4
). Likewise, by considering

again the first disc of the period doubling cascade as a gene G1 =
(.001001001010001001010001, .001001010001001001001010), if the harmonics
are calculated according to Eq. (1) one obtains H(1)(G1), which is the second
disc of the period doubling cascade (the binary expansion is not given because
is too large), and H(2)(G1), H(3)(G1), H(4)(G1), . . . (the binary expansions
are not given either because are even larger) which are the last appearance
cardioids (whose periods are 12 · 2 · 3, 12 · 2 · 4, 12 · 2 · 5, . . .) of the period-
12 · 21 chaotic band B1(

1
3
· 1

4
). And so on the successive chaotic bands can be

calculated.
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Fig. 3. Sketch of the primary hyperbolic component G0 = 1
3 , of its period doubling

cascade, and of shrub(1
3). Detail of shrub0(1

3), completely occupied by the infinity
of chaotic bands B0(1

3), B1(1
3), B2(1

3), . . .. These chaotic bands have their origins
in G0(1

3), G1(1
3), G2(1

3), . . . since the harmonics of the genes calculate the last
appearance hyperbolic components of the corresponding chaotic bands.

Fig. 4 shows a sketch of the hyperbolic components calculated. The shrub(1
3
·1
4
),

which is the shrub of the secondary hyperbolic component we are deal-
ing with, has two parts: the shrub0(

1
3
· 1

4
) and the shrubr(

1
3
· 1

4
). The

shrubr(
1
3
· 1

4
) has two subshrubs, the first one characterized by a decora-

tion that has 4 branches around each node, and the second one charac-
terized by a decoration that has 3 branches around each node [15]. Again,
as Fig. 4 shows, the chaotic bands B0(

1
3
· 1

4
), B1(

1
3
· 1

4
), B2(

1
3
· 1

4
), . . .

are placed on the shrub0(
1
3
· 1

4
), by occupying it completely. The limits

of shrub0(
1
3
· 1

4
) are the main node, that is the Misiurewicz point m0 =
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Fig. 4. Sketch of the primary hyperbolic component G0 = 1
3 · 14 , of its period doubling

cascade, and of shrub(1
3 · 1

4). The infinity of chaotic bands B0(1
3 · 1

4), B1(1
3 · 1

4),
B2(1

3 · 1
4), . . . occupy completely the shrub0(1

3 · 1
4). G0(1

3 · 1
4) is the gene of B0(1

3 · 1
4),

G1(1
3 · 1

4) is the gene of B1(1
3 · 1

4), and so on, since the harmonics of the first ones
calculate the last appearance hyperbolic components of the last ones.

H(∞)(1
3
· 1
4
) = (.001001001010001001010001, .001001010001001001001010) and

the Myrberg-Feigenbaum point MF (1
3
· 1

4
).

We could consider now the cases of a tertiary, quaternary, hyperbolic com-
ponent, but it is not worth the trouble because the exposition is very tedious
and repetitive, and in addition, we obtain always the same. Thus, for the case
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of an N-ary hyperbolic component q1

p1
· · · qN

pN
, the shrub( q1

p1
· · · qN

pN
) splits as al-

ways in two parts [15]: The shrubr(
q1

p1
· · · qN

pN
) (made up of N subshrubs) and

the shrub0(
q1

p1
· · · qN

pN
), which is the branch 0 or the main branch of the shrub.

Again, the chaotic bands B0(
q1

p1
· · · qN

pN
), B1(

q1

p1
· · · qN

pN
), B2(

q1

p1
· · · qN

pN
), occupy

completely the shrub0(
q1

p1
· · · qN

pN
), whose limits are the main node m0(

q1

p1
· · · qN

pN
)

and MF ( q1

p1
· · · qN

pN
).

There is a significant difference between the cases seen in section 2, whose
hyperbolic components are on the real axis, and those seen in the section 3,
that are not on the real axis. Indeed, in the real axis cases, the set of the
infinite number of chaotic bands B0, B1, B2, . . . fills up all the chaotic region
of the cardioid treated, which extends from its Myrberg-Feigenbaum point to
the tip. On the contrary, in the cases out of the real axis, the set of the infinite
number of chaotic bands B0, B1, B2, . . . fills up all the branch 0 of the shrub,
or shrub0, which extends from the Myrberg-Feigenbaum point to the main
node. However, the shrub0 is not all the chaotic region since their is also other
part, the shrubr.

Hence, we can ask ourselves: is this difference due to being or not being on the
real axis? The answer is no. The true reason is the following: on the real axis the
set of the infinite number of chaotic bands B0, B1, B2, . . . fills up all the chaotic
region because in such cases hyperbolic components are cardioids. Cardioids
are born in a tangent bifurcation, which is the origin of the periodic region,
that in turn extends through its period doubling cascade up to the Myrberg-
Feigenbaum point. Given that when we start from a cardioid we cover all the
periodic region, the set of infinite number of chaotic bands B0, B1, B2, . . . also
fills up the all the chaotic region. On the contrary, in the two cases seen out
of the real axis, the hyperbolic components are not cardioids but discs, one
of them is a primary hyperbolic component and the other one is a secondary
hyperbolic component. Hence, when one covers its period doubling cascade up
to the Myrberg-Feigenbaum point all the periodic region from the origin is not
filled up. In the primary hyperbolic component case there is one hyperbolic
component (the cardioid) to fill up the periodic region, and in the secondary
hyperbolic component case there are two hyperbolic components (the primary
hyperbolic component and the cardioid). Therefore, in the primary hyperbolic
component case there is a shrubr with only one subshrub, and in the secondary
hyperbolic component case there is a shrubr with two subshrubs.

In Fig. 5 one can see an example that shows what we have just said. Fig.
5(a) shows the shrub(1

3
) [15]. Fig. 5(b) shows the chaotic bands of the rep-

resentative of the shrub(1
3
) branch 1, which is the period-4 cardioid that

is in the rectangle shown in Fig. 5(a). The external arguments of the car-
dioid are: G0 = (.0011, .0100). If the harmonics are calculated according
to Eq.(1), H(1)(G0) = (.00110100, .01000011) is the first disc of the pe-
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Fig. 5. (a) Sketch of shrub(1
3) showing the number of the branches and the periods of

the hyperbolic components representatives. (b) Sketch of the branch 1 representative
of shrub(1

3), of period 4, which was inside a rectangle in (a). The infinity of the
chaotic bands B0, B1, B2, . . . occupy all the chaotic region, from the tip to the MF
point. B0 has its origin in the period-4 cardioid G0, B1 in the period-8 first disc of
the period doubling cascade G1, and so on.

riod doubling cascade, and H(2)(G0) = (.00110100
2
, .01000011

2
), H(3)(G0) =

(.00110100
3
, .01000011

3
), H(4)(G0) = (.00110100

4
, .01000011

4
), . . . are the

last appearance cardioids (with periods 4 · 3, 4 · 4, 4 · 5, . . .) of the period-4 · 20

chaotic band B0. One acts in the same way in order to calculate the other
chaotic bands. Now the first disc of the period doubling cascade, with period
4 2, is considered the gene G1 = (.00110100, .01000011) of the period-4 · 21

chaotic band B1 ; and the nth disc of the period doubling cascade, with period
4 · 2n, is considered the gene of the period-4 · 2n chaotic band Bn. This repre-
sentative of the branch 1 we are dealing with, whose period is 4, is not on the
real axis, and however the set of its infinite number of chaotic bands fills up all
the chaotic region (there is no shrub remainder) because this representative is
a cardioid.
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4 Conclusions

We studied the chaotic bands of any hyperbolic component of the Mandelbrot
set.

We used the external arguments as the identifiers of the hyperbolic compo-
nents. These external arguments have been given in the binary expansion form
in order to make exposition easier.

We used the harmonics to calculate for the first time the external arguments
of the last appearance hyperbolic components of the chaotic bands. Thus, the
successive chaotic bands can be calculated from the gene of each band.

The starting hyperbolic component, the gene G0, is the generator of the
chaotic band B0, and the successive discs of its period doubling cascade,
G1,G2,G3, . . ., are the generators of the chaotic bands B1, B2, B3, . . ..

As we clearly show here, when we start from a cardioid, the infinite number
of chaotic bands of a hyperbolic component hc, B0, B1, B2, B3, . . . , fills up
all the chaotic region of hc, the shrub(hc). This is not so when the starting
hyperbolic component is a disc, in whose case the infinite number of chaotic
bands fills up only the shrub0(hc).
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[10] G. Pastor, M. Romera, G. Álvarez and F. Montoya, Physica A 292 (2001) 207.
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Figure captions

Fig. 1: Sketch of the period-20 main cardioid G0; of the period doubling cas-
cade G1, G2, G3, . . ., , of periods 21, 22,23, . . .; and the chaotic bands B0,
B1, B2, B3, . . .. These chaotic bands have their origins in the genes G0, G1,
G2, G3, . . . since the harmonics H(i)(G0), H(i)(G1), H(i)(G2), H(i)(G3), . . . ,
where 2 ≤ i ≤ ∞, calculate the last appearance hyperbolic components of the
chaotic bands B0, B1, B2, B3, . . . .

Fig. 2: Sketch of the only period-3 cardioid of the antenna, of its period dou-
bling cascade and of its chaotic bands. The chaotic bands B0, B1, B2, . . .
have their origins in the genes G0, G1, G2, . . . since the harmonics H(i)(G0),
H(i)(G1), H(i)(G2), . . ., where 2 ≤ i ≤ ∞, calculate the last appearance hy-
perbolic components of the chaotic bands B0, B1, B2, . . ..

Fig. 3: Sketch of the primary hyperbolic component G0 = 1
3
, of its period

doubling cascade, and of shrub(1
3
). Detail of shrub0(

1
3
), completely occupied

by the infinity of chaotic bands B0(
1
3
), B1(

1
3
), B2(

1
3
), . . .. These chaotic bands

have their origins in G0(
1
3
), G1(

1
3
), G2(

1
3
), . . . since the harmonics of the genes

calculate the last appearance hyperbolic components of the corresponding
chaotic bands.

Fig. 4: Sketch of the primary hyperbolic component G0 = 1
3
· 1

4
, of its period

doubling cascade, and of shrub(1
3
· 1

4
). The infinity of chaotic bands B0(

1
3
· 1

4
),

B1(
1
3
· 1
4
), B2(

1
3
· 1
4
), . . . occupy completely the shrub0(

1
3
· 1
4
). G0(

1
3
· 1
4
) is the gene

of B0(
1
3
· 1

4
), G1(

1
3
· 1

4
) is the gene of B1(

1
3
· 1

4
), and so on, since the harmonics

of the first ones calculate the last appearance hyperbolic components of the
last ones.

Fig. 5: (a) Sketch of shrub(1
3
) showing the number of the branches and the

periods of the hyperbolic components representatives. (b) Sketch of the branch
1 representative of shrub(1

3
), of period 4, which was inside a rectangle in (a).

The infinity of the chaotic bands B0, B1, B2, . . . occupy all the chaotic region,
from the tip to the MF point. B0 has its origin in the period-4 cardioid G0,
B1 in the period-8 first disc of the period doubling cascade G1, and so on.
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