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Abstract 
The tumor suppressor p53 is a transcription factor frequently inactivated in 
human tumors, therefore restoring its function has been considered an 
attractive approach to restrain cancer. Classically, p53-dependent growth 
arrest, senescence and apoptosis of tumor cells have been attributed to 
transcriptional activity of nuclear p53. Notably, wild-type p53 gain-of-
function enhances cancer resistance in the mouse but this approach also 
accelerates aging in some models, possibly due to altered p53 activity. 
Therefore, the emerging evidence recognizing mitochondrial transcription-
independent activities of p53 has raised high expectations. Here, we review 
new developments in transcription-dependent and transcription-independent 
p53 functions, as well as recent advances in targeting p53 for cancer 
treatment and the pitfalls of moving from the laboratory to the clinical 
setting.  

 

1. Introduction 
p53 has been the center of intensive research ever since it was described that 
most human cancers exhibit inactivating mutations or altered regulation of 
this protein [1, 2]. p53 mediates the cellular response to a variety of stresses 
by activating different downstream effectors depending on the type of cell 
and the nature of the cellular stress. It is widely accepted that p53 exerts its 
tumor suppression activity by regulating the transcription of several genes 
involved in cell cycle and apoptosis regulation, among other processes [3]. 
However, even after more than two decades of research, important questions 
about transcription-dependent p53 activities remain unanswered. Moreover, 
novel transcription-independent mechanisms of p53 action have been 
identified that link p53 to the intrinsic mitochondrial apoptotic pathway (eg. 
via its interaction with anti- and proapoptotic members of the BCL family of 
mitochondrial permeability regulators). In the next sections, we review the 
well-established mechanisms of p53 function as a transcription factor and its 
regulation and discuss in detail the results from different animal studies. 
These studies have conclusively demonstrated the key role of p53 in tumor 
suppression, but have also suggested a potential role of p53 in regulating 
longevity and thus have shed doubt on the appropriateness of trying to 
achieve tumor resistance by increasing p53 activity. Additionally, we 
describe some pharmacological strategies aimed at restoring p53 
transcriptional function in tumors and discuss novel transcription-
independent mechanisms of p53 proapoptotic activity which might in the 
future lay the foundations of new therapeutic approaches.  

2. p53, the guardian of the genome 
The transcription factor p53 plays a key role in preventing DNA damage, for 
which it has earned the nickname ‘guardian of the genome’. Fig. 1A depicts 
the main domains of p53 that have been implicated in the regulation of its 
function. p53 is expressed ubiquitously as an inactive protein that has a very 
short half-life (20-30 min) and is present at low levels in unstressed cells. 
However, multiple conditions can lead to a rapid increase of p53's cellular 
levels and to its activation. These include direct DNA damage, damage to 
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components involved in the proper handling of the genetic material (such as 
the mitotic spindle), hypoxia, oncogenic signalling, ribonucleotide depletion 
and exposure to nitric oxide, among others [4]. Once activated, p53 regulates 
positively or negatively the transcription of more than 150 genes involved in 
a variety of cellular processes (Fig. 1B, Table 1 online Supplement). 

The response to p53 activation is variable and highly dependent on both 
the type of cell and the nature of the damaging agent/cellular stress. Active 
p53 can induce both reversible growth arrest in G1 or G2 phases of the cell 
cycle, and cellular senescence. This cytostatic action of p53 is important to 
deter the expansion of tumor-prone cells and to repair DNA damage. In cells 
beyond repair, p53 can induce apoptosis by stimulating the extrinsic death 
receptor pathway or, more importantly, the intrinsic mitochondrial pathway.  

It is widely accepted that activation of p53 is mainly brought about by 
protein stabilization and conversion from a latent to an active form. Both 
processes are regulated by posttranslational changes, including 
phosphorylation, acetylation, ubiquitination and protein-protein interactions 
[5, 6]. A key regulator of p53 function is the murine double minute 2 
(MDM2) oncoprotein, which inhibits p53 at least through two mechanisms: 
a) MDM2 binds to the transcriptional activation domain of p53, thus 
blocking its interaction with the basic transcription machinery [7]; and b) 
MDM2 promotes the degradation and nuclear export of p53 by acting as a 
p53-specific E3 ubiquitin ligase [8-11]. Importantly, MDM2 is a 
transcriptional target of p53, so that a negative feed-back loop is generated 
whereby increased p53 activity leads to expression of its main negative 
regulator [12, 13] (Fig. 1B). This regulatory pathway seems to be important 
in vivo, since p53 inactivation abrogates the early embryonic lethality caused 
in mouse by Mdm2 deficiency [14, 15]. The ability of MDM2 to inhibit p53 
is modulated by covalent modifications of both proteins and by other 
regulatory proteins. For instance, p53 activation by oncogenic signaling 
depends mainly on the induction of p19Arf (ARF) (Fig. 1B), the product of an 
alternative transcript of the INK4A tumor suppressor gene which also 
encodes for p16Ink4. Using genetically-altered mice, Efeyn et al have very 
recently shown that p53 tumor suppression activity is abolished in the 
absence of ARF, thus suggesting that oncogenic signalling is the main event 
leading to p53-dependent tumor protection [16]. ARF binds to and blocks the 
E3 ubiquitin ligase activity of MDM2, thereby preventing MDM2-mediated 
p53 proteolysis [8, 17-19]. Recently, several other p53 E3 ligases were 
identified, namely PIRH2, COP1, ARF-BP1/Mule and cullin 8 [20-22], 
whose in vivo importance for p53 regulation remains to be elucidated  

3. p53-deficient mice reveal the tumor suppressor function of p53 
Mutations in p53 are a hallmark of at least half of all human cancers. p53 
was discovered in 1979 as a 53 kDa host protein associated with the 
oncogenic SV40 large T-antigen in transformed cells [23-25]. The generation 
and characterization of p53-null mice (p53-/-) conclusively demonstrated that 
p53 is a tumor suppressor, as these animals developed malignant tumors 
within 4-6 months after birth, mainly T-cell lymphomas (about 75%) [26-
28], and some soft tissue sarcomas. Surprisingly, considering the key role 
that p53 plays in multiple cellular processes, p53-/- mice are viable and 
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developmentally normal (the only exception is a low but increased frequency 
of exencephaly in female fetuses).  

Heterozygous p53+/- mice are also highly susceptible to the development 
of spontaneous tumors, although they display a longer latency to tumor 
development and develop a different spectrum of tumors compared with p53-

/- mice [26-29]. Approximately half of the tumors in p53+/- mice displayed 
loss of heterozygosity (LOH) at the p53 locus, suggesting that complete loss 
of p53 is important for tumor development but not strictly required [30]. 
These results suggest that reduced p53 gene dosage may be sufficient to 
promote tumorigenesis, a notion consistent with the finding that p53+/- cells 
have p53-related phenotypes intermediate between wild-type and p53-/- cells 
[31]. p53+/- mice display other special features that make them extremely 
valuable for cancer research. For example, since p53+/- mice are susceptible 
to carcinogen-induced tumors in a wide array of tissues, they represent an 
interesting model for carcinogenicity assays. Moreover, p53+/- mice provide 
an excellent model to study the human Li-Fraumeni familial cancer 
syndrome, since the inheritance of only one mutant p53 allele renders these 
patients highly susceptible to the development of multiple tumor types early 
in life [32]. 

New insight into the mechanisms by which p53 suppresses tumor 
development has arisen from the crossing of p53 deficient mice with other 
tumor-susceptible genetically altered murine strains, namely transgenic mice 
overexpressing oncogenes and knock-out mice defective for other tumor 
suppressors (Table 2, online Supplement). In short, these studies highlight 
that both the proapoptotic and antiproliferative activities of p53 can 
contribute to its tumor suppressor function, but their relative importance 
seems to be dependent on the specific model system. Thus, available murine 
models offer valuable tools to further dissect molecular aspects of p53-
dependent tumor suppression and to evaluate new therapies. 

4. Is accelerated aging a price to be paid for having too much p53?  
Several murine models have shown that increasing p53 copy number or 
activity can reduce cancer susceptibility. However, in agreement with other 
evidence suggesting a relationship between the activity of certain 
oncosuppressors and aging [33], p53 gain-of-function can also provoke 
accelerated aging in some experimental settings. Tyner et al. obtained mice 
containing a mutant p53 allele (m allele) generated through an aberrant gene-
targeting event [34]. The m allele lacks exons 1-6, but contains exons 7-11 
under the transcriptional control of the promoter from an upstream gene. At 
least in vitro, the p53 m mutant seems to interact with endogenous wild-type 
p53 resulting in a moderate increase in its transcriptional activity. Moreover, 
heterozygous p53+/m cells exhibit increased response to ionizing radiation, 
and p53+/m mice (m mice) are resistant to spontaneous tumor development. 
The authors hypothesized that the interaction between m mutant and wild-
type p53 proteins could convert some of the latent wild-type p53 into a more 
active conformation. Surprisingly, m mice also display accelerated aging and 
die prematurely. The authors suggested that impaired ability of stem cells to 
produce progenitors and mature into differentiated cells due to p53-mediated 
growth inhibition is the underlying cause of premature aging in m mice. It is 
noteworthy however that, in addition to p53 truncation, the m mice have a 
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deletion of 24 upstream genes, which may contribute to their accelerated 
aging [35].  

Maier et al. generated transgenic mice that ectopically express p44 
(Tgp44), a naturally-occurring shorter p53 isoform lacking the main 
transactivation domain [36] (TDI, Fig. 1A). Strikingly, premature aging is a 
characteristic of Tgp44 mice, which exhibit an imbalance between p44 and 
full-length p53 levels that leads to increased (rather than decreased, as might 
be expected) RNA levels of several p53 transcriptional target genes, such as 
p21, Mdm2, and Ugfbp3. Therefore, it has been suggested that an overall 
enhancement of p53 transcriptional activity is the main cause of accelerated 
aging in Tgp44 mice. However, Gadd45 is not overexpressed in these mice, 
suggesting that p44 overexpression does not cause a general increase in p53 
transcriptional activity. Tgp44 mice also display increased cellular 
senescence and insulin-like growth factor (IGF) signaling, an observation of 
special interest since loss-of-function mutations in genes encoding 
components of the insulin/IGF signaling pathway significantly augment life-
span in Caenorhabditis elegans and Drosophila melanogaster [37]. On the 
other hand, it has not been ruled out that p44 acts as a dominant negative 
inhibitor of the p53-related p63 protein. If this were the case, the Tgp44 
phenotype might actually be p63 dependent, since p63-/- mice also exhibit 
premature aging [38]. 

In contrast to m and Tgp44 mice, ‘Super-p53’ transgenic mice carrying 
one or two wild-type p53 transgenes in addition to the two endogenous 
alleles age normally, presumably because the p53 transgene is regulated in a 
physiological manner so that it remains in a latent form in the absence of 
cellular stress [39]. Remarkably, ‘Super-p53’ mice exhibit increased p53 
activity following carcinogen treatment, have enhanced apoptotic response to 
DNA damaging irradiation, and are resistant to carcinogen-induced tumors. 
Recently, it was shown that telomere ablation in ‘Super-p53’/telomerase-null 
mice decreases chromosomal damage compared with ‘Wild-type-
`p53’/telomerase-null counterparts; however, the presence of extra p53 
activity in telomerase-null mice does not affect the rate of age-induced 
telomere shortening [40].  

The Mdm2puro/Δ7-12 mouse model also provides evidence that constitutive 
high p53 activity can lead to tumor suppression without accelerating aging or 
reducing life span [41, 42]. These mice have one hypomorphic and one null 
allele of Mdm2 and express approximately 30% of the wild-type level of 
Mdm2 protein coincident with constitutively increased p53 function and 
elevated levels of p53 transcriptional targets in all tissues analyzed. 
Mdm2puro/Δ7-12 mice are small, lymphopenic and radiosensitive, alterations 
that are completely rescued by deleting p53.  

Based on the aforementioned findings, it can be argued that accelerated 
aging in the Tgp44 [36] and m mice [34] might not be due to constitutive 
hyperactive p53, but to an imbalance in p53 activity derived from the 
overexpression of truncated forms of p53 lacking more or less of its N-
terminus. Indeed, N-terminally truncated forms of p53 can modify the 
affinity of the full-length protein for specific promoters in a dominant-
negative fashion [43]. Given that increased p53 activity can also enhance 
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tumor resistance without accelerating aging [39, 41], it is of utmost 
importance to precisely establish under which conditions p53 gain-of-
function triggers premature aging (and other potential unwanted effects), and 
whether this phenotype depends on abnormal p53-dependent transcriptional 
and/or transcription-independent activation. 

 

5. Pharmacological restoration of p53 transcriptional activity as 
anticancer therapy 
Given that approximately 50% of all human tumors harbor dysfunctional 
forms of p53, much effort has been devoted to developing small molecules 
capable of reinstating wild-type p53 transcriptional activity in p53 mutated 
tumor cells. PRIMA-1 can induce apoptosis in human tumor cells harboring 
mutant p53 through restitution of p53 transcriptional activity via restoration 
of sequence-specific DNA binding and the active p53 conformation [44]. 
Human xenograft studies in nude mice revealed an antitumor effect of 
PRIMA-1 with no apparent toxicity [44]. Another exciting drug is the 
styrylquinazoline CP-31398, which causes the accumulation of 
conformationally active p53 and  induces apoptosis and/or growth arrest in 
cells with mutant p53, and slows down tumor xenograft growth in nude mice 
[45, 46]. These effects of CP-31398 are likely to result from the restoration 
of a wild-type-associated epitope on the DNA-binding domain of mutant 
p53, and from stabilization of p53 via inhibition of its ubiquitination and 
degradation. Combination of CP-31398 and TRAIL or chemotherapeutic 
agents enhanced cancer cell death, possibly through upregulation of p53-
regulated genes such as KILLER/DR5. However, CP-31398 also has p53-
independent effects since it alters the expression of non-p53 target genes in 
addition to p53-responsive genes [46].  

In tumors in which p53 is not mutated, the endogenous wild-type p53 
protein can be activated without applying genotoxic stress by freeing it from 
its inhibitor MDM2 [47]. Chalcones [48] and chlorofusin [49] are unlikely to 
find clinical application for the treatment of such tumors because of their 
high IC50 for inhibition of the MDM2-p53 interaction, complex chemical 
structure and potential off-target effects. In contrast, the recently described 
nutlins and RITA (Reactivation of p53 and Induction of Tumour cell 
Apoptosis), which can induce p53-dependent growth arrest and apoptosis of 
tumor cells, appear very attractive [47]. Nutlins are cell-permeable cis-
imidazoline derivatives which displace p53 from the hydrophobic pocket of 
the p53-binding region of MDM2 (but interestingly not of the MDM2 
homolog MDMX/4) and thereby disrupt the MDM2-p53 complexes in vitro 
and in vivo with IC50 values in the low nanomolar range [50]. Notably, RITA 
can induce expression of p53 target genes and massive apoptosis in tumor 
cell lines expressing wild-type p53 but not in untransformed cells [51]. 
Nonetheless, controversy exists regarding its mechanism of p53 activation, 
since Issaeva et al reported that RITA disrupts MDM2-p53 complexes in 
vitro and in vivo by binding to wild-type p53 [51], but Krajewski et al have 
reported that this drug does not block the p53-MDM2 interaction [52].  

Pharmacological inhibitors of the E3 ubiquitin ligase activity of MDM2 
may also find application for treating tumor cells with wild-type p53. Three 
inhibitors of MDM2-mediated p53 ubiquitination with an IC50 in the low 
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micromolar range and apparently no effect on other ubiquitin ligases or on 
MDM2-autoubiquitination have been described [53]. HLI98 compounds 
were selected for their capacity to hinder MDM2 E3 activity via inhibition of 
autoubiquitination [54]. These drugs lead to the stabilization of both MDM2 
and p53, thus inducing p53-dependent transcriptional activity and apoptosis. 
How HLI98 activates p53 in spite of inducing high levels of MDM2 is not 
well understood.  

Although much work is still needed to develop drugs that efficiently 
and safely restore wild-type p53 activity, the therapeutic potential of such 
approach has been highlighted by recent studies demonstrating that p53 
restitution can induce regression of different established tumors in mice 
lacking p53 function [55-57]. These studies also provide proof-of-concept 
that at least some tumors harbor the signals needed for p53 stabilization and 
activation, and thus are vulnerable to therapies aimed at restoring or 
promoting p53 function. 

 

6. Mechanisms of transcription-independent proapoptotic activity of p53 
and its therapeutic potential 
Besides its classical transcription-dependent activities, evidence is mounting 
that transcription-independent activities of p53 are also important for its 
proapoptotic function (Fig. 2). Although the first descriptive reports on this 
topic date back to 1994 [58, 59], only in the last few years has it become the 
center of intensive research when a mechanistic basis of action was 
elucidated. Several related synergistic mechanisms were identified: they link 
p53 protein to the intrinsic mitochondrial death pathway by direct interaction 
with anti and proapoptotic members of the BCL family of mitochondrial 
permeability regulators (Box 1). It was demonstrated that a fraction of 
induced p53 rapidly translocates to the mitochondrial outer membrane 
(MOM) early during p53-dependent apoptosis, but not during p53-
independent apoptosis [60, 61]. This is a universal p53 response since it 
occurs in primary, immortal and transformed cultured cells and in normal 
tissues upon the entire gamut of p53-inducing stresses such as DNA damage, 
hypoxia and oncogene deregulation [60-62]. Other laboratories confirmed 
these findings, supporting the existence of a direct p53-mediated 
mitochondrial death program [63-67]. Very recently, MDM2-dependent 
monoubiquitylation was shown to promote p53 mitochondrial translocation 
[68]. 

A direct apoptogenic role of mitochondrial p53 was first suggested by 
demonstrating that expression of a mitochondrially-targeted p53 fusion 
protein - devoid of any residual transciptional activity - efficiently triggered 
apoptosis in p53-/- cells [60]. Subsequently, mitochondrial p53 was shown to 
engage in complexes with the antiapoptotic MOM-resident proteins BCL-XL 
and BCL-2 [69]. This interaction antagonizes the membrane-stabilizing 
activity of BCL-2 and BCL-XL. The p53-BCL-XL/2 interaction likely 
releases proapoptotic proteins such as tBID or BAX/BAK from preformed 
inhibitory complexes with BCL-XL and BCL-2 (Fig. 2A). Purified 
recombinant p53 added to healthy liver mitochondria causes MOM 
permeabilization (MOMP) and oligomerization of BAK and BAX, and 
induces rapid and complete release of potent apoptotic activators like 
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cytochrome c, SMAC and AIF [65, 69]. Structural analysis confirmed the 
prediction that the DNA-binding region of p53 and the BH4 domain of BCL-
XL are interacting domains in the p53-BCL-XL complex [69, 70]. 
Conversely, p53's ability to interact with BCL-XL/2 and to induce 
cytochrome c release is impaired or lost in tumor derived transactivation-
deficient missense mutants [69, 71], thus suggesting that at least some tumor-
associated mutations, including hotspot mutations, may represent “double 
hits”, inactivating both nuclear and mitochondrial p53-dependent functions.  

A direct interaction between mitochondrial p53 and proapoptotic BAK 
was also reported [65]. Specifically, p53 competes for BAK interaction with 
MCL-1, thereby disrupting the antiapoptotic BAK/MCL-1 complex resulting 
in BAK oligomerization and MOMP (Fig. 2B). Thus, mitochondrial p53 can 
both neutralize antiapoptotic members as well as activate proapoptotic 
members of the BCL-2 family. The in vivo functional relevance of 
mitochondrial p53 might be highlighted by a recent report describing a small 
molecule named pifithrin-μ (PFTμ), which is reported to selectively inhibit 
p53 mitochondrial translocation by reducing its affinity to BCL-XL and 
BCL-2 without interfering with the p53 transcription function. PFTμ strongly 
reduces γ-radiation-induced thymocyte cell death and rescues irradiated mice 
from lethal bone marrow failure [72]. If confirmed, PFTμ might represent a 
promising therapeutic strategy for the treatment of many side effects of 
radiation and chemotherapy which are mediated by p53-dependent apoptosis 
in normal sensitive tissues such as bone marrow, lymphoid organs and gut. 
Moreover, such a strategy might not reduce p53-dependent tumor 
suppression since the exuberant ‘pathologic’ effect of p53 in normal tissues 
does not appear to be absolutely essential for the tumor suppressor effect of 
p53 [73]. 

Cytosolic p53 can also promote MOMP and apoptosis by directly 
inducing oligomerization and activation of proapoptotic BAX, which 
localizes in the cytoplasm of healthy cells [74, 75]. When endogenous p53 
immunopurified from DNA-damaged cells was coincubated with 
recombinant BAX and isolated mitochondria or synthetic liposomes, BAX 
oligomerization occurred with similar kinetics and concentrations as those 
produced by the proapoptotic protein tBID, which also induces BAX 
oligomerization and MOMP. A model was suggested that PUMA, a 
transcriptional target of p53, couples nuclear and cytosolic p53 functions 
[76]. In the absence of cellular stress, the low level of nuclear p53 is 
insufficient to activate PUMA transcription and the small amount of 
cytosolic p53 is kept inactive via interaction with cytosolic BCL-XL. Death 
signals, such as UV-induced DNA damage or oncogenic activation, rapidly 
increase nuclear p53 level, thus triggering transactivation of PUMA, which 
then binds BCL-XL, hence releasing p53 and activating BAX (Fig. 2C). It 
was also shown that BAD is transactivated by p53 and forms BAD/p53 
complexes at the mitochondria to induce apoptosis [77]. 

In vivo, mitochondrially-targeted p53 can induce apoptosis and suppress 
the growth of Burkitt-type primary B-lymphomas that are either p53-null, 
p53-mutant or ARF-null [78, 79]. Moreover, it was suggested that some of 
the most promising drugs that target p53, such as Nutlin-3a and PRIMA-1 
(see above), exert their proapoptotic effect at least partially in a transcription-
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independent manner [75, 80]. Thus, future studies should continue to explore 
the efficacy and safety of therapeutic strategies based on transcription-
independent activities of p53. 

 

7. Future directions 
The availability of small compounds that activate p53 function (e.g., Nutlins, 
RITA, PRIMA-1, and CP-31398) opens new avenues to fight cancer. 
However, critical issues need to be addressed before these drugs find clinical 
application (Box 2). First, while p53 reactivation promotes tumor regression 
in the mouse [55-57], it might favor the growth of p53-resistant tumors 
carrying inactivating mutations in components of the p53 pathway, as shown 
in the Eμ-myc mouse lymphoma model [55]. Second, indiscriminate p53 
activation in normal cells can lead to fatal pathologies that include ablation 
of radiosensitive tissues, as was shown in Mdm2-null mice [81]. Third, p53 
gain-of function in some murine models causes premature aging, possibly 
due to abnormal p53 activation [34, 36]. Thus, additional studies are needed 
to optimize p53 activation strategies to achieve tumor suppression while 
minimizing noxious side effects. Other important issues are to improve 
selectivity and to establish optimal dose and time of treatment. Restricting 
delivery of therapeutic agents to solid tumors, as opposed to systemic 
administration, should be considered. It is also critical to investigate the 
potential synergistic efficacy of combining p53-activating drugs with 
standard therapies. Since p53 is ubiquitinated by ubiquitin ligases other than 
MDM2, effective p53 activation might require the development of additional 
ubiquitin ligase inhibitors. Finally, additional work is required to unravel the 
molecular mechanisms underlying transcription-independent functions of 
mitochondrial/cytosolic p53 and their (patho)physiologic relevance in vivo, 
since targeting p53 to mitochondria appears effective for treating murine B-
lymphomas [78, 79]. 

8. Concluding remarks 
p53 inactivation is a hallmark of most human cancers. Genetic manipulation 
in the mouse has (1) unequivocally demonstrated the tumor suppressor 
activity of p53, (2) provided proof-of-principle that p53 gain-of-function can 
restrain cancer, and (3) demonstrated tumor regression upon p53 reactivation 
in vivo. In recent years, several promising p53-activating drugs were 
developed and tested in vitro and in vivo. While it is possible to deter cancer 
by activating p53, the possibility of noxious side effects has raised some 
concerns, thus highlighting the need of further developments in this field. In 
particular, the recent demonstrations that mitochondrial and cytosolic p53 
can exert transcription-independent activities and that mitochondrial p53 can 
suppress murine lymphomas are of great interest. Although further studies 
are necessary to asses the effectiveness and safety of transcription-
independent p53-based strategies in different cancer models, this approach 
might avoid some of the unwanted side effects associated with 'conventional' 
p53 gain-of-function methods. Moreover, mitochondrial p53 exploits the 
shortest possible circuit to cell death and thus might be unaffected by 
abnormal genomic silencing. This frequently occurs in tumors and may 
minimize the therapeutic efficacy of strategies aimed at increasing p53 
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transcriptional activity. As our knowledge on classical and novel functions of 
p53 grows, the challenge will be to translate all this information into safe 
anticancer therapies for humans.  
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 Fig. 1: Transcription-dependent pathways of p53-mediated growth 
arrest and apoptosis. (A) Structural and functional domains of p53. The 
transactivation domain includes a main TDI and a secondary TDII. (B) p53 
transcriptional activity can be induced by different forms of cellular stress. 
For example, DNA damage stabilizes and activates p53 mainly through 
covalent modifications of p53 itself or of its main inhibitor MDM2. On the 
other hand, p53 activation by oncogenic signalling is executed mainly via 
p19Arf-dependent inhibition of MDM2. Notably, MDM2 is a transcriptional 
target of p53, thus establishing an autoregulatory loop. Once activated, p53 
can modulate the transcription of genes involved in the control of cell cycle 
progression and apoptosis, thus playing a key role in tumor suppression.  
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Figure 2 
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Fig. 2: Mitochondrial and cytosolic transcription-independent 
proapoptotic activities of p53. (A) Activated p53 can translocate to the 
mitochondrial outer membrane and promote apoptosis by interacting with 
BCL-XL, hence releasing proapoptotic factors, such as tBID and BAX [69]. 
(B) Mitochondrial p53 can also release BAK from inhibitory BAK-MCL-1 
complexes, thus allowing BAK-dependent apoptotic cell death [65]. (C) The 
p53 target PUMA can release p53 from inhibitory p53-BCL-XL complexes. 
Cytosolic p53 can then promote mitochondrial translocation of BAX and 
apoptosis [74-76]. The cytosol is shown in blue, the mitochondrial inner 
membrane (MIM) in pink and the mitochondrial outer membrane (MOM) in 
orange. MOMP: MOM permeabilization. 
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Box 1. The BCL family of proteins 
The BCL family of apoptosis regulators comprises three main subfamilies: 

1) Proteins that sequester proapoptotic family members thus inhibiting the 
mitochondrial apoptotic pathway (e. g., BCL-2, BCL-XL, and MCL1). 

2) Proteins that directly induce mitochondrial outer membrane 
permeabilization (MOMP) and apoptosis (e. g., BAX and BAK). 

3) BH3-only proteins, which includes the so-called ‘activators’ (e.g., BIM 
and BID) that directly bind and activate BAX and BAK, and ‘enablers’ (e.g., 
BAD and BIK), which bind the antiapoptotic family members to release the 
‘activators’. 

This classification is also closely related to the structure and the sequence 
similarity among these proteins. BCL proteins possess up to four conserved 
BCL-2 homology (BH) domains dubbed BH1, BH2, BH3, and BH4. Most of 
the anti-apoptotic members of the family, such as BCL-2 and BCL-XL, display 
sequence conservation in all four domains. In contrast, the pro-apoptotic 
molecules which directly induce MOMP (e.g., BAX and BAK) frequently only 
exhibit high conservation of BH1, BH2 and BH3. Finally, BH3-only proteins 
display sequence similarity only in the BH3 domain, which seems to be a 
critical cell death domain of the proapoptotic BCL family members. 
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Box 2. Outstanding questions 
 
Several unresolved issues need to be addressed before p53-targeted therapies 
find clinical application. 

• Premature aging. It is necessary to precisely establish under which 
conditions p53 gain-of-function triggers premature aging, as has been shown in 
some but not all murine models, and whether this phenotype depends upon 
abnormal p53-dependent activation. Moreover, animal studies should address 
whether accelerated aging is a consequence of prolonged treatment with p53 
activating drugs (e.g., Nutlins, RITA, PRIMA-1, and CP-31398). 

• Unwanted side effects in normal tissues. Mouse studies have shown that 
p53 activation in normal tissues can lead to fatal pathologies, thus narrowing 
the therapeutic window of p53 activators. Future studies should improve 
selectivity and establish optimal dose and time of treatment to achieve tumor 
suppression while minimizing noxious side effects. 

• Combination therapies. It is important to address the potential synergistic 
efficacy of novel p53-activating strategies in combination with standard 
therapies. 

• Appearance of p53-resistant tumors. Prolonged treatment with p53-
activating drugs might favor the development of tumors carrying inactivating 
mutations in components of the p53 pathway. In the Eμ-myc mouse lymphoma 
model, reactivation of p53 function potently selects for emergence of p53-
resistant tumors through inactivation of p19Arf or p53 itself. 

• Therapeutic potential of transcription-independent p53 activities. 
Targeting p53 to the mitochondria has already shown therapeutic efficacy for 
the treatment of murine B-lymphomas in vivo. Whether this approach is 
effective and safe in other cancer settings remains to be investigated. 
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Table S1. Examples of human genes exhibiting p53-dependent transcriptional 
regulation 

 
Cellular process Gene GenBank ID Refs 

APAF1 317 [1–3] 
BAX 581 [4] 
BID 637 [5] 
FAS 355 [6] 

DRAM 55332 [7] 
FDXR 

(Ferredoxin 
reductase) 

2232 [8] 

IGFBP3 3486 [9] 
KILLER/DR5 8795 [10] 

NOXA 5366 [11] 
p53AIP1 63970 [12] 

p53DINP1 94241 [13] 
WIG1/PAG608 64393 [14] 

PERP 64065 [15] 
PIDD 55367 [16] 
PIG3 9540 [17–19] 

PIG8/EI24 9538 [17,20,21] 
PTEN 5728 [22] 
PUMA 27113 [23,24] 
TIGAR 57103 [25] 

Apoptosis, autophagy 
and survival 

WIP1 8493 [26] 
BTG2 7832 [27] 

CDKN1A 
(p21Cip1) 1026 [28] 

14-3-3-σ 7532 [29] 
GADD45 1647 [30] 

Cell-cycle regulation and 
DNA repair 

p53R2 50484 [31,32] 
KAI1 3732 [33] 

MMP2 4313 [34] 
MASPIN 5268 [35] 
P4HA2 8974 [36] 

Angiogenesis and 
metastasis 

TSP1 7057 [37] 
TIGAR 57103 [25] Energy metabolism SCO2 9997 [38] 
MDM2 4193 [39,40] 
COP1 64326 [41] 
PIRH2 25898 [42] 
TP73 7161 [43,44] Autoregulation of p53 

CCNG1 
(Cyclin G1) 900 [45–47] 
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TABLE S2. Murine models to study the interaction between p53 and additional oncoregulatory genes  

A. p53 deficiency imposed in oncogene-overexpressing mice.  
B. p53 deficiency imposed in mice lacking additional tumour suppressor genes.  

 

A. P53 DEFICIENCY IN ONCOGENE-
OVEREXPRESSING MICE   

Compound mutant Effects on tumor developmenta  
MMTV–Wnt1p53−/− 
Overexpression of Wnt1 restricted 
to mammary glands and salivary 
glands in a p53-nullizygous 
background 

Cooperativity: reduced latency of mammary tumors. 
Increased genomic instability and enhanced 
proliferation. Low levels of apoptosis unaffected by 
p53 status  

[1,2] 

MMTV–Ha-rasp53−/− 
Overexpression of Ha-Ras 
restricted to mammary glands and 
salivary glands in a p53-
nullizygous background 

Tumor-type specific cooperativity: higher frequency 
of salivary tumors, but other tumors unaffected. 
Defective cell-cycle arrest. Low levels of apoptosis 
unaffected by p53 status 

[3] 

Cd2–c-myc p53−/− 
Overexpression of c-Myc 
restricted to T cells in a p53-
nullizygous background 

Cooperativity: increased frequency and reduced 
latency of T-cell lymphomas [4] 

Eµ–c-myc p53+/− 
Overexpression of c-Myc restricted 
to T cells in a p53-deficient 
heterozygous background 

Cooperativity: accelerated development of B-cell 
lymphomas. Enhanced proliferation. Apoptosis 
unaffected by p53 status 

[5] 

Eµ–c-myc p53+/− 
Overexpression of c-Myc restricted 
to T cells in a p53-deficient 
heterozygous background 

Cooperativity: accelerated development of B-cell 
lymphomas. Decreased apoptosis and increased 
genomic instability upon LOHb. Proliferation 
unaffected by p53 status 

[6] 

MMTV–c-myc p53+/− 
Overexpression of c-Myc restricted 
to mammary glands and salivary 
glands in a p53-deficient 
heterozygous background 

Tumor-type specific cooperativity: shorter latency of 
T-cell lymphomas, but unaltered latency of mammary 
carcinomas. 

[7] 

Cd2–Scl/Tal1p53+/− 
Overexpressión of Scl restricted 
to T cells in a p53-deficient 
heterozygous background 

Cooperativity: accelerated development of T-cell 
lymphomas [8] 

CD2–Scl/Tal1p53−/− 
Overexpressión of Scl restricted to 
T cells in a p53-nullizygous 
background 

Absence of cooperativity. Pattern of organ 
involvement shifted from central to peripheral 
lymphoid organs 

[8] 

Lck–Scl/Tal1 p53+/− 
Overexpression of Scl restricted to 
lymphoid tissues in a p53-deficient 
heterozygous background 

Cooperativity: accelerated development of T-cell 
lymphomas  [9] 

Bcl-2–Ig p53−/− 
Overexpression of  Bcl-2 restricted 
to T-cells in a p53-nullizygous 
background 

Absence of cooperativity [10] 
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B. P53 DEFICIENCY IN MICE 

LACKING ADDITIONAL TUMOR 
SUPPRESSORS 

  

Compound mutant Effects on tumor developmenta  
Rb+/−p53+/− 
Rb heterozygosity in a p53-
deficient heterozygous background 

Cooperativity: development of pancreatic tumors, 
thyroid carcinomas and pinealoblastomas (not 
observed in single mutants) 

[11] 

Ap+/−p53−/− 
APC heterozygosity in a p53-
deficient heterozygous background 

Tumor-type specific cooperativity: development of 
pancreatic tumors (not observed in single mutants), 
but unaffected intestinal tumor development 
(characteristic of APC deficiency) 

[12] 

Nf1+/− p53+/− cis 
Nf1 heterozygosity in a p53-
deficient heterozygous 
background (wild-type alleles of 
Nf1 and p53 on the same 
chromosome 11) 

Cooperativity: increased incidence of soft-tissues 
sarcomas; development of malignant peripheral nerve 
sheath tumors (not detected in single mutants). 
Reduced survival related to single mutants or trans 
double mutants. LOHb for both genes in tumors 

[13–15] 
 

Nf1+/− p53+/− trans 
Nf1 heterozygosity in a p53-
deficient heterozygous background 
(wild-type alleles of Nf1 and p53 
on opposite chromosomes 11) 

Absence of cooperativity, possibly related to LOHb for 
either Nf1 or p53 in tumors, but not simultaneously for 
both  

[13–15] 
 

Nf2+/− p53+/− cis 
Nf2 heterozygosity in a p53-
deficient heterozygous 
background (wild-type alleles of 
Nf1 and p53 on the same 
chromosome 11) 

Cooperativity: higher incidence of osteosarcomas, 
predominantly nasal osteosarcomas (rarely seen in 
Nf2+/− mice). Reduced survival related to single 
mutants or trans double mutants. LOHb for both loci in 
tumors 

[16] 

Nf2+/− p53+/− trans  
Nf2 heterozygosity in a p53-
deficient heterozygous background 
(wild-type alleles of Nf1 and p53 
on opposite chromosomes 11) 

Cooperativity: higher incidence of osteosarcomas. 
LOHb for both loci in tumors  [16] 

Brca1+/− p53−/− 
BRCA1 heterozygosity in a p53-
nullizygous background 

Cooperativity: increased incidence of mammary 
tumors  [17] 

Brca1 Ko/Co MMTV–Cre p53+/− 
Brca1 nullizygosity restricted to 
mammary glands in a p53-deficient 
heterozygous background 

Cooperativity: accelerated formation of mammary 
tumors  [18] 

Brca1∆11/∆11 p53 +/− 
Brca1 nullizygosity in a p53-
deficient heterozygous background 

Cooperativity: accelerated formation of mammary 
tumors with p53 LOHb. Rescue of the embryonic 
lethality of BRCA1∆11/∆11 mice. Premature cell 
senescence and accelerated aging 

[19,20] 

Brca2 F11/11  
K14-Cre/Trp53 F2-10/F2-10 
Brca2 and p53 inactivation 
restricted to skin and mammary 
glands 

Cooperativity: higher incidence of mammary and skin 
tumors  [21] 

a Cooperativity refers to increased incidence or accelerated development of tumors in compound mutant 
compared to single mutant mice.  
b Loss of heterozygosity 
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