
Preprint typeset in JHEP style - HYPER VERSION IFIC/08−14

FTUV/08−0311

Form-factors and current correlators: chiral

couplings Lr
10(µ) and Cr

87(µ) at NLO in 1/NC

Antonio Pich,a Ignasi Rosellab and Juan José Sanz-Cilleroc
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bDepartamento de Ciencias F́ısicas, Matemáticas y de la Computación,
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1. Introduction

Effective field theory [1] is nowadays the standard technique to investigate the low-

energy dynamics of QCD. In particular, the chiral symmetry constraints encoded in

Chiral Perturbation Theory (χPT) provide a very powerful tool to access the non-

perturbative regime through a perturbative expansion in powers of light quark masses

and momenta [2, 3, 4]. The precision required in present phenomenological applica-

tions makes necessary to include corrections of O(p6). While many two-loop χPT

calculations have been already carried out [5, 6], the large number of unknown low-

energy couplings (LECs) appearing at this order puts a clear limit to the achievable
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accuracy [6]. A dynamical determination of these χPT couplings is compulsory to

achieve further progress in our understanding of strong interactions at low energies.

A useful connection between χPT and the underlying QCD dynamics can be

established in the limit of an infinite number of quark colours [7, 8]. Assuming con-

finement, the strong dynamics at NC → ∞ is given by tree diagrams with infinite

sums of hadron exchanges, which correspond to the tree approximation of some local

effective Lagrangian [9]. Resonance Chiral Theory (RχT) provides a correct frame-

work to incorporate these massive mesonic states within an effective Lagrangian

formalism [10, 11, 12]. Integrating out the heavy fields one recovers at low energies

the χPT Lagrangian with explicit values of the chiral LECs in terms of resonance

parameters. Since the short-distance properties of QCD impose stringent constraints

on the RχT couplings, it is then possible to extract information on the low-energy

χPT parameters.

Clearly, we cannot determine at present the infinite number of meson couplings

which characterize the large–NC Lagrangian. This would be equivalent to achieve an

explicit dynamical solution of the QCD spectrum in the NC → ∞ limit. However,

one can obtain useful approximations in terms of a finite number of meson fields.

Truncating the infinite tower of meson resonances to the lowest states with 0−+,

0++, 1−− and 1++ quantum numbers (Single-Resonance Approximation), one gets

a very successful prediction of the O(p4NC) χPT couplings in terms of only three

parameters: MV , MS and the pion decay constant F [7]. Some O(p6) LECs have been

already predicted in this way, by studying an appropriate set of three-point functions

[13, 14]. More recently, the program to determine all O(p6) LECs at leading order

in 1/NC has been put on very solid grounds, with a complete classification of the

needed terms in the RχT Lagrangian [12].

Since chiral loop corrections are of next-to-leading order (NLO) in the 1/NC

expansion, the large–NC determination of the LECs is unable to control their

renormalization-scale dependence. This introduces unavoidable theoretical uncer-

tainties, which are very important for couplings related with the scalar sector. First

analyses of resonance loop contributions to the running of Lr
10(µ) and Lr

9(µ) were

attempted in Ref. [15] and Ref. [16] respectively. In spite of all the complexity as-

sociated with the still not so well understood renormalization of RχT [16, 17, 18],

these pionnering calculations have shown the potential predictability at the NLO in

1/NC .

Using analyticity and unitarity we can avoid all technicalities associated with the

renormalization procedure, reducing the calculation of simple Green functions to tree-

level diagrams plus dispersion relations. This allows to understand the underlying

physics in a much more transparent way. In particular, the subtle cancellations among

many unknown renormalized couplings found in Ref. [16] and the relative simplicity

of the final result can be better understood in terms of the imposed short-distance

constraints. Following these ideas, in Ref. [19] we determined the couplings Lr
8(µ)
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and Cr
38(µ) at NLO in 1/NC , through an analysis of the difference between the scalar

and pseudoscalar current correlators. As a next step, we present in this article the

more involved study of the two-point function of a left-handed and a right-handed

vector currents, which allows us to perform a NLO determination of the couplings

Lr
10(µ) and Cr

87(µ).

To fix the notation, we introduce the RχT Lagrangian in the next section. The

current-current correlators are defined in section 3, where we discuss the relation

between their absorptive parts and meson form factors. Our study of the vector

and axial-vector correlators is presented in section 4, while section 5 contains the

determination of Lr
10(µ) and Cr

87(µ). A summary of our results is finally given in

section 6. In order to achieve our goal, we have performed an exhaustive analysis of

scalar, pseudoscalar, vector and axial-vector form factors with two external meson

legs as final states. The results of this lengthy calculation are given in appendix A.

Further technical details on the computation of current-current correlators and their

dispersive representation are contained in appendices B and C.

2. The RχT Lagrangian

Let us adopt the Single Resonance Approximation (SRA), where just the lightest res-

onances with non-exotic quantum numbers are considered. On account of large-NC ,

the mesons are put together into U(3) multiplets. Hence, our degrees of freedom are

the pseudo-Goldstone bosons (the lightest pseudoscalar mesons) along with massive

multiplets of the type V (1−−), A(1++), S(0++) and P (0−+). With them, we con-

struct the most general effective action that preserves chiral symmetry. Since we are

interested on the structure of the interaction at short distances, we will work in the

chiral limit. With this simplification we do not loose any information on the LECs

we want to determine, because they are independent of the light quark masses.

The effective Resonance Chiral Theory must satisfy the high-energy behaviour

dictated by QCD. To comply with this requirement we will only consider operators

constructed with chiral tensors of O(p2); interactions with higher-order chiral tensors

would violate the QCD asymptotic behaviour, unless their couplings are severely fine

tuned to ensure the needed cancellations at large momenta. Moreover, we will restrict

our analysis to operators with a maximum of three resonance fields, because these

are the only ones contributing to the observables we are interested in (tree-level

two-body form factors and one-loop correlators).

The different terms in the Lagrangian can be classified by their number of reso-

nance fields:

LRχT = Lχ +
∑

R1

LR1 +
∑

R1,R2

LR1R2 +
∑

R1,R2,R3

LR1R2R3 + ... , (2.1)

– 3 –



where the dots denote the irrelevant operators with four or more resonance fields,

and the indices Ri run over all different resonance multiplets, V , A, S and P . The

O(p2) χPT Lagrangian [3],

Lχ = F 2

4 〈 uµu
µ + χ+ 〉 , (2.2)

contains the terms with no resonance fields. The second term in (2.1) corresponds to

the operators with one massive resonance [10],

LV =
FV

2
√

2
〈 Vµνf

µν
+ 〉 +

i GV

2
√

2
〈 Vµν [u

µ, uν] 〉 , (2.3)

LA =
FA

2
√

2
〈Aµνf

µν
− 〉 , (2.4)

LS = cd〈Suµu
µ 〉 + cm〈Sχ+ 〉 , (2.5)

LP = i dm〈Pχ− 〉 . (2.6)

The Lagrangian LR1R2 contains the kinetic resonance terms and the remaining op-

erators with two resonance fields [10, 12, 16],

L kin
RR =

1

2
〈∇µR∇µR − M2

RR2 〉 , (R = S, P ) (2.7)

L kin
RR = −1

2
〈∇λRλµ∇νR

νµ − 1

2
M2

RRµνR
µν 〉 , (R = V, A) (2.8)

LRR = λRR
1 〈RR uµuµ 〉 + λRR

2 〈RuµRuµ 〉 + λRR
3 〈RR χ+ 〉 , (R = S, P ) (2.9)

LSP = λSP
1 〈 uα{∇αS, P} 〉 + iλSP

2 〈 {S, P}χ− 〉 , (2.10)

LSV = iλSV
1 〈 {S, Vµν}uµuν 〉 + iλSV

2 〈SuµV
µνuν 〉 + λSV

3 〈 {S, Vµν}fµν
+ 〉 , (2.11)

LSA = λSA
1 〈 {∇µS, Aµν}uν 〉 + λSA

2 〈 {S, Aµν}fµν
− 〉 , (2.12)

LPV = iλPV
1 〈 [∇µP, Vµν ]u

ν 〉 + iλPV
2 〈 [P, Vµν]f

µν
− 〉 , (2.13)

LPA = iλPA
1 〈 [P, Aµν]f

µν
+ 〉 + λPA

2 〈 [P, Aµν]u
µuν 〉 , (2.14)

LV A = λV A
1 〈 [V µν , Aµν ]χ− 〉 + iλV A

2 〈 [V µν , Aνα]hα
µ 〉 + iλV A

3 〈 [∇µVµν , A
να]uα 〉

+iλV A
4 〈 [∇αVµν , A

αν ]uµ 〉 + iλV A
5 〈 [∇αVµν , A

µν ]uα 〉

+ iλV A
6 〈 [Vµν , A

µ
α]fαν

− 〉, (2.15)

LRR = λRR
1 〈RµνR

µνuαuα 〉 + λRR
2 〈Rµνu

αRµνuα 〉 + λRR
3 〈RµαRναuµuν 〉

+ λRR
4 〈RµαRναuνu

µ 〉 + λRR
5 〈Rµα

(
uαRµβuβ + uβRµβuα

)
〉
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+ λRR
6 〈RµνR

µνχ+ 〉 + iλRR
7 〈RµαRα

νf
µν
+ 〉 . (R = V, A) (2.16)

Finally, the last piece of Eq. (2.1) includes the operators with three resonance fields.

We only list those operators needed for the calculation of the form factors we are

interested in (terms with only resonance fields and covariant derivatives ∇µ):

∆LSRR = λSRR
0 〈SRR 〉 + λSRR

1 〈S ∇µR∇µR 〉 , (R = S, P ) (2.17)

∆LSRR = λSRR
0 〈SRµνR

µν 〉 + λSRR
1 〈S ∇µR

µα ∇νRνα 〉 + λSRR
2 〈S ∇νRµα ∇µRνα 〉

+ λSRR
3 〈S ∇αRµν ∇αRµν 〉 + λSRR

4 〈S{Rµν ,∇2Rµν 〉

+ λSRR
5 〈S{Rµα,∇µ∇νR

να} 〉 , (R = V, A) (2.18)

∆LSPA = λSPA〈Aµν{∇µS,∇νP} 〉 , (2.19)

∆LPV A = iλPV A
0 〈P [Vµν , A

µν ] 〉 + iλPV A
1 〈P [∇µV

µα,∇νAνα] 〉

+ iλPV A
2 〈P [∇νV µα,∇µAνα] 〉 + iλPV A

3 〈P [∇αV µν ,∇αAµν ] 〉

+ iλPV A
4 〈P [V µν ,∇2Aµν ] 〉 + iλPV A

5 〈P [V µα,∇µ∇νAνα] 〉

+ iλPV A
6 〈P [∇ν∇µV

µα, Aνα] 〉 , (2.20)

∆LV RR = i λV RR〈 V µν∇µR∇νR 〉 , (R = S, P ) (2.21)

∆LV V V = i λV V V
0 〈 V µνVµαV α

ν 〉 + i λV V V
1 〈 V µν [∇µVαβ ,∇νV

αβ] 〉

+i λV V V
2 〈 V µν [∇βVµα,∇βV

α
ν ] 〉 + i λV V V

3 〈 V µν [∇µVβα,∇αV β
ν ] 〉

+i λV V V
4 〈 V µν [∇µVνα,∇βV

αβ ] 〉 + i λV V V
5 〈 V µν [∇αVµν ,∇βVαβ ] 〉

+i λV V V
6 〈 V µν [∇αVµα,∇βVνβ] 〉 + i λV V V

7 〈 V µν [∇αVµβ ,∇βVνα] 〉 , (2.22)

∆LV AA = i λV AA
0 〈 V µνAµαA α

ν 〉 + i λV AA
1 〈 V µν [∇µAαβ,∇νA

αβ ] 〉

+i λV AA
2 〈 V µν [∇βAµα,∇βAα

ν ] 〉 + i λV AA
3 〈∇βV µν [Aµα,∇βAα

ν ] 〉

+i λV AA
4 〈 V µν [∇µAβα,∇αAβ

ν ] 〉 + i λV AA
5 〈∇µV

µν [Aβα,∇αAβ
ν ] 〉

+i λV AA
6 〈∇αV µν [∇µAβα, Aβ

ν ] 〉 + i λV AA
7 〈 V µν [∇µAνα,∇βA

αβ ] 〉

+i λV AA
8 〈∇µV

µν [Aνα,∇βAαβ ] 〉 + i λV AA
9 〈∇βV

µν [∇µAνα, Aαβ] 〉

+i λV AA
10 〈 V µν [∇αAµν ,∇βAαβ ] 〉 + i λV AA

11 〈 V µν [∇αAµα,∇βAνβ] 〉

– 5 –



+i λV AA
12 〈∇αV µν [Aµα,∇βAνβ] 〉 + i λV AA

13 〈 V µν [∇αAµβ ,∇βAνα] 〉

+i λV AA
14 〈∇αV µν [Aµβ ,∇βAνα] 〉 . (2.23)

All coupling constants are real, MR are the resonance masses, the brackets 〈...〉 denote

a trace of the corresponding flavour matrices, and the standard notation defined in

Refs. [10, 12] is adopted.

As our Lagrangian LRχT satisfies the NC counting rules for an effective the-

ory with U(3) multiplets, only operators that have one trace in the flavour space

are considered [20]. The different fields, masses and momenta are of O(1) in the

1/NC expansion. Taking into account the interaction terms, one can check that

F, FV , GV , FA, cd, cm and dm are of O(
√

NC); λR1R2
i of order O(N0

C) and λR1R2R3
i of

order O(1/
√

NC). The mass dimension of these parameters is [F ] = [FV ] = [GV ] =

[FA] = [cd] = [cm] = [dm] = [λR1R2R3
0 ] = E, [λR1R2

i ] = E0 and [λR1R2R3
i6=0 ] = E−1.

Note that the U(3) equations of motion have been used in order to reduce the

number of operators. For instance, terms like 〈P ∇µu
µ〉 are not present in Eq. (2.6),

since using the equations of motion they can be transformed into operators that,

either have been already considered, or contain a higher number of resonance fields.

The RχT Lagrangian (2.1) contains a large number of unknown coupling con-

stants. However, as we will see in the next sections, the short-distance QCD con-

straints allow to determine many of them.

3. Form factors and correlators at NLO in 1/NC

Let us consider the two-point correlation function of two currents in the chiral limit:

Πµν
XX(q) ≡ i

∫
d4x eiqx 〈0|T

(
Jµ

X(x)Jν
X(0)†

)
|0〉 =

(
−gµνq2 + qµqν

)
ΠXX(q2) ,

ΠY Y (q) ≡ i

∫
d4x eiqx 〈0|T

(
JY (x)JY (0)†

)
|0〉 , (3.1)

where Jµ
X(x) can denote the vector or axial-vector currents and JY (x) the scalar or

pseudo-scalar densities,

Jµ
V = d̄γµu , JS = d̄u ,

Jµ
A = d̄γµγ5u , JP = i d̄γ5u .

(3.2)

The associated spectral functions are a sum of positive contributions correspond-

ing to the different intermediate states. At large q2, the vector and axial-vector spec-

tral functions tend to a constant whereas the scalar and pseudo-scalar ones grow

like q2 [21, 22, 23, 24]. Therefore, since there is an infinite number of possible states,

the absorptive contribution in the spin–1 correlators coming from each intermediate
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state should vanish in the q2 → ∞ limit if we assume a similar short-distance be-

haviour for all of them. The high-energy behaviour of the spin–0 spectral functions

is not so clear as, a priori, a constant behaviour for each intermediate cut does not

seem to be excluded. However, the fact that ΠSS(t) − ΠPP (t) vanishes as 1/t2 in

the chiral limit [23, 24], the Brodsky-Lepage rules for the form factors [25] and the

1/t behaviour of each one-particle intermediate cut (tree-level exchanges) seems to

point out that every absorptive contribution to ImΠY Y (t) must also vanish at large

momentum transfer.

At leading order in 1/NC the two-point correlation functions reduce to tree-level

exchanges of meson states with the appropriate quantum numbers. At the next-

to-leading order, they get contributions from two-particle exchanges and, therefore,

one needs to consider quantum loops involving virtual resonance propagators. The

ultraviolet behaviour of these quantum loops was analyzed for the pion vector form-

factor and ΠSS−PP (t) in Refs. [16, 18, 19]. We will present here a more general

analysis, although focusing in particular in the ΠV V −AA(t) correlator.

The optical theorem relates the two-particle spectral cuts with the corresponding

two-body form factors. A tree-level calculation of the form factors determines the

spectral function at the next-to-leading order in 1/NC. The complete correlator can

then be reconstructed through a dispersive calculation, up to possible subtraction

constants [19].

We have calculated all two-body form factors associated with the scalar, pseu-

doscalar, vector and axial-vector currents, generated by the RχT Lagrangian dis-

cussed in the previous section, and have analysed their explicit relations with the

spectral functions, studying their ultraviolet behaviour. In the simplest cases with

just one form-factor Fm1,m2(t), the relation takes the form

Im Π(t)|m1,m2
= ξ(t) |Fm1,m2(t)|2 , (3.3)

with ξ(t) a known kinematic factor that depends on the considered channel. Imposing

that the spectral function must vanish as 1/t at t → ∞ yields that Fm1,m2(t) has

to behave in a given way depending on ξ(t). Thus, some constraints on the effective

parameters are found. In appendix A, we give the whole list of form factors in the

even-intrinsic-parity sector of RχT in the SRA, the exact relations between them

and the spectral functions, the constraints derived from the high-energy analysis, and

the structure of the form factors after imposing the proper short-distance behaviour.

Some of them can be found in former literature [7, 16].

One of our aims is to clarify the status of form factors involving resonances as

asymptotic states, how they must behave at short distances and which constraints can

be extracted. Although their status as external Fock states can be questionable, the

presence of resonance states at intermediate loops is unavoidable if the hadrons are to

be described through a quantum field theory. As an implication of this, well behaved

amplitudes with resonances as external states should be studied when considering
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Figure 1: Tree-level contributions to the vector form factor of the pion. A single line

stands for a pseudo-Goldstone boson while a double line indicates a vector resonance.

calculations at the one loop level. We have also analysed form factors involving

one photon and one meson in the final state, but no new constraints emerge from

their short-distance analysis. Thus, we find that the two-meson form factor analysis

provides the most stringent set of constraints.

As an example, we show here the case of the pion form factor, defined through

the two-pseudo-Goldstone matrix element of the vector current:

〈 π0(p1)π
−(p2)|d̄γµu|0 〉 =

√
2F v

ππ(q2) (p2 − p1)
µ . (3.4)

The diagrams contributing at leading order in 1/NC are shown in Figure 1. They

generate the result

F v
ππ(t) = 1 +

FV GV

F 2

t

M2
V − t

. (3.5)

By means of the optical theorem, the corresponding imaginary part of the vector

correlator is found to be

ImΠV V (t)|ππ =
θ(t)

24π
|F v

ππ(t)|2 . (3.6)

Since ImΠV V (t)|ππ should vanish in the limit t → ∞, the form factor is also con-

strained to be zero at infinite momentum transfer. Therefore, the vector couplings

should satisfy

FV GV = F 2 , (3.7)

which implies

F v
ππ(t) =

M2
V

M2
V − t

, (3.8)

as we would have obtained imposing the Brodsky-Lepage behaviour in Eq. (3.5).
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4. The correlator V − A in RχT

Let us consider the two-point correlation functions of two vector or axial-vector

currents, in the chiral limit. Of particular interest is their difference Π(t) ≡ ΠV V (t)−
ΠAA(t), which is identically zero in QCD perturbation theory. When t → ∞, this

correlator vanishes as 1/t3 [21, 22, 23].

In the large–NC limit, Π(t) has the general form

Π(t) =
∑

i

[
2 F 2

Vi

M2
Vi
− t

− 2 F 2
Ai

M2
Ai

− t

]
+

2F 2

t
, (4.1)

which involves an infinite number of vector and axial-vector resonance exchanges.

This expression can be easily obtained within RχT, with FVi
and FAi

being the

relevant meson couplings.

At the NLO in 1/NC, Π(t) has a contribution from one-particle exchanges plus

one-loop corrections Π(t)|ρ which generate absorptive contributions from two-particle

intermediate states. At this order, the corresponding spectral functions of the vector

and axial-vector correlators take the form:

1

π
ImΠV (t) = 2F r 2

V δ(t − M r 2
V ) +

nf

2

ρV (t)

24π2 ,

1

π
ImΠA(t) = 2F 2 δ(t) + 2F r 2

A δ(t − M r 2
A ) +

nf

2

ρA(t)

24π2 , (4.2)

with

ρV (t) = θ(t) |F v
ππ(t)|2 + θ(t − M2

A)

(
1 − M2

A

t

){(
M2

A

t
+ 4 +

t

M2
A

)
|F v

Aπ|2

+

(
1 − M2

A

t

)2 (
t

M2
A

+
t2

2M4
A

)
|G v

Aπ|2 + 2

(
1 − M2

A

t

)(
1 +

2t

M2
A

)

×Re{F v
AπG v

Aπ
∗}

}
+ θ(t − M2

P )

(
1 − M2

P

t

)3
t2

2
|F v

Pπ|2 + · · · (4.3)

ρA(t) = θ(t − M2
V )

(
1 − M2

V

t

) {(
M2

V

t
+ 4 +

t

M2
V

)
|F a

V π|2 +

(
1 − M2

V

t

)2

×
(

t

M2
V

+
t2

2M4
V

)
|G a

V π|2 + 2

(
1 − M2

V

t

) (
1 +

2t

M2
V

)
Re{F a

V πG a
V π

∗}
}

+ θ(t − M2
S)

(
1 − M2

S

t

)3

|F a
Sπ(t)|2 + · · · (4.4)

The dots stand for contributions with higher thresholds. Here we just show the

lowest-mass two-particle exchanges: two Goldstone bosons or one Goldstone and

one resonance. In the energy region we are interested in, exchanges of two heavy

resonances are kinematically suppressed (appendix C) [18]. Our normalization takes

into account the different flavour-exchange possibilities.
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Using dispersion relations (appendix C), it is possible to prove that at NLO in

1/NC the correlator Π(t) has the structure

Π(t) =
2 F 2

t
+

∑

i

[
2 F r 2

Vi

M r 2
Vi

− t
−

2 F r 2
Ai

M r 2
Ai

− t

]
+

∑

m1,m2

Π(t)|m1,m2 , (4.5)

where Π(t)|m1,m2 denote the contributions associated with the two-meson absorptive

cuts m1, m2. Their imaginary parts are related to the corresponding two-meson form-

factors through the optical theorem (the precise relations are given in appendix A).

Since Π(t)|m1,m2 should vanish at infinite momentum transfer, the full Π(t)|m1,m2

contribution can be reconstructed from its absorptive part through an unsubtracted

dispersion relation. The fact that the form-factors are well behaved at infinite mo-

mentum guarantees that the dispersive integrals are convergent. Notice that analytic

polynomial contributions cannot be present in (4.5) because they would violate the

short-distance QCD constraints.

4.1 Single resonance approximation

Let us adopt the SRA as our starting point. At leading order in 1/NC , Π(t) takes

then the simpler form:

Π(t) =
2 F 2

V

M2
V − t

− 2 F 2
A

M2
A − t

+
2F 2

t
. (4.6)

The high-energy behaviour required by the OPE, Π(t) ∼ 1/t3, implies the first and

second Weinberg sum rules (WSRs) [21, 22, 23]:

F 2
V − F 2

A = F 2 , F 2
V M2

V − F 2
A M2

A = 0 . (4.7)

These relations determine the vector and axial-vector couplings in terms of the res-

onance masses:

F 2
V = F 2 M2

A

M2
A − M2

V

, F 2
A = F 2 M2

V

M2
A − M2

V

, (4.8)

with MA > MV . Using the constraint (3.7), obtained from the pion form factor, one

gets the additional relation

G2
V = F 2 M2

A − M2
V

M2
A

. (4.9)

The short-distance behaviour of the ΠSS−PP correlator [26] and the pion scalar

form-factor [27] generate similar expressions for the scalar couplings [7, 19]

c2
m =

F 2

8

M2
P

M2
P − M2

S

, d2
m =

F 2

8

M2
S

M2
P − M2

S

,

c2
d =

F 2

2

M2
P − M2

S

M2
P

, MP > MS . (4.10)
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Thus, at LO in 1/NC, the couplings FV , FA, GV , cm, cd and dm are fixed in terms of

F , MV , MA, MS and MP , the chiral limit values of the pion decay constant and the

resonance masses.

We can study in a similar way the form factors needed to compute the two-

particle-exchange contributions Π(t)|m1,m2 . For the lightest channels, the separate

short-distance analysis of each form-factor allows their determination in terms of

the resonance masses and the couplings FV , GV , FA and cd. Using the large–NC

relations in Eqs. (4.8), (4.9) and (4.10), the results can be further simplified, leaving

the form-factors expressed in terms of just the resonance masses [18, 19]:

F v
ππ(t) =

M2
V

M2
V − t

,

F v
Aπ(t) = −

√
M2

A

M2
V

− 1
M2

V

M2
V − t

, Gv
Aπ(t) = 0 , (4.11)

F v
Pπ(t) = 0 ,

Fa
V π(t) = −

√
1 − M2

V

M2
A

M2
A(2M2

V − t)

t(M2
A − t)

, Ga
V π(t) = −

√
1 − M2

V

M2
A

2M2
AM2

V

t(M2
A − t)

,

Fa
Sπ(t) =

√
1 − M2

S

M2
P

√
2M2

A

M2
A − t

. (4.12)

The explicit results in terms of RχT couplings can be found in appendix A and

in Ref. [18]. These form-factors have been determined by imposing a good high-

energy behaviour on the corresponding spectral functions, i.e. by demanding that

the contributions from each absorptive channel to ρV (t) and ρA(t) should vanish at

infinite momentum transfer. In this first analysis, performed within the SRA, we have

just focused our attention on each separate channel and we have not used information

from other absorptive two-meson cuts to further simplify the form-factors. 1

As it was found in the case of the scalar and ΠSS−PP correlators [18, 19], it

is quite remarkable that these short-distance constraints completely determine the

form-factors in terms of the resonance masses. The form factors F v
Pπ(t) and Gv

Aπ(t)

turn out to be identically zero, within the SRA.

Once the form factors have been determined, the corresponding contributions to

the two-point correlation function can be obtained in a rather straightforward way.

1In Ref. [28], it has been argued that large discrepancies may occur between the values of the

masses and couplings of the full large–NC theory and those from descriptions with a finite number

of resonances. Even in this case, it is found that one can obtain safe determinations of the LECs as

far as one is able to construct a good interpolator that reproduces the right asymptotic behaviour

at low and high energies. Further issues related to the truncation of the spectrum to a finite number

of resonances are discussed in Refs. [29, 30].
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The first two-meson contribution to Π(t) is given by the ππ–cut:

Π(t)|ππ =
nf

2

1

24 π2

(
M2

V

M2
V − t

)2 [
−1 +

t

M2
V

− ln
−t

M2
V

]
. (4.13)

The double pole at t = M2
V is generated by the large–NC expression for the pion

form factor in Eq. (4.11).

Away from the resonance peak, where the perturbative 1/NC expansion is valid,

the vector meson width generates the double pole structure. This can be easily real-

ized by rewriting the sum of tree-level and the Π(t)|ππ contribution in the form

Π(t) =
2F r 2

V

M r 2
V − t

{
1 − 1

π

Γ
V →ππ

MV
− 1

π

MV Γ
V →ππ

M2
V − t

ln
−t

M2
V

+ ...

}
, (4.14)

where the dots stand for higher channels and the V –meson decay width into two

Goldstones is given in the chiral limit by Γ
V →ππ

=
nf

2

G2
V

M3
V

48πF 4 [31]. Likewise, this ex-

pression shows in a manifest way how the formal 1/NC suppression works in terms

of the physical hadronic parameters.

The next (ordered by threshold) absorptive cuts correspond to V π, Sπ, Aπ and

Pπ. Due to the complexity of the results their precise expressions are relegated to

appendix B. It is possible to show that states with higher energy thresholds turn out

to be more and more suppressed (see appendix C.2). Thus, only the contributions

from cuts with at most one resonance field have been taken into account: ππ, Pπ and

Aπ for the vector correlator and V π and Sπ for the axial-vector one. All the results

for particular channels from appendix A, obtained in the two-flavour case, have been

multiplied by a factor nf/2 in order to give the general result for nf light flavours

shown in appendix B.

At large values of t, the one-loop contribution has the behaviour

Π(t)|ρ =
2F 2

t

(
δ(1)

NLO
+ δ̃(1)

NLO
ln

−t

M2
V

)
+

2F 2M2
V

t2

(
δ(2)

NLO
+ δ̃(2)

NLO
ln

−t

M2
V

)
+ O

(
1

t3

)
.

(4.15)

Since the logarithmic terms ln(−t)/t and ln(−t)/t2 should vanish, one obtains the

constraints:

δ̃(1)
NLO

= δ̃(2)
NLO

= 0 . (4.16)

Taking into account the tree-level contributions and imposing the right short-distance

behaviour, Π(t) ∼ 1/t3, one gets the additional relations:

F 2 (1 + δ(1)
NLO

) − F r 2
V + F r 2

A = 0 ,

F 2 M2
V δ(2)

NLO
− F r 2

V M r 2
V + F r 2

A M r 2
A = 0 , (4.17)

which determine the effective couplings F r
V and F r

A up to NLO in 1/NC:

F r 2
V = F 2 M r 2

A

M r 2
A − M r 2

V

(
1 + δ(1)

NLO
− M2

V

M2
A

δ(2)
NLO

)
,
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F r 2
A = F 2 M r 2

V

M r 2
A − M r 2

V

(
1 + δ(1)

NLO
− δ(2)

NLO

)
. (4.18)

Within the SRA, the conditions (4.16) have the unique solution, MA = MV ,

MP =
√

2MS . Note that the whole Aπ and V π contributions to Π(t) are then iden-

tically zero, while Π(t)|Sπ cancels the leading high-energy behaviour of Π(t)|ππ. The

δ(m)
NLO

corrections are given by

δ(1)
NLO

=
nf

2

M2
V

48π2F 2

{
1 − M2

S

M2
V

[
3

(
1 − M2

S

M2
V

)2

ln

(
1 − M2

V

M2
S

)
+

3M2
S

M2
V

− 9

2
+

M2
V

M2
S

]}
,

δ(2)
NLO

=
nf

2

M2
V

48π2F 2

{
1 − M4

S

M4
V

[(
2M2

S

M2
V

− 3 +
M4

V

M4
S

)
ln

(
1 − M2

V

M2
S

)
− M4

V

M4
S

ln
M2

V

M2
S

+ 2 − 2M2
V

M2
S

+
M4

V

M4
S

]}
. (4.19)

4.2 Numerical impact of heavier vector and axial multiplets

The Resonance Chiral Theory is an effective approximation to QCD that models

large-NC by truncating the tower of resonances to a finite number. However, an

infinite number of resonances is needed to recover the correct QCD behaviour [7,

9, 29]. Therefore, it should not be surprising to find conflicts between the short-

distance constraints as one analyzes a wider and wider set of QCD matrix elements.

This inconsistence between constraints has popped up in previous analysis of three-

point Green-functions [14, 30] and it also arises when comparing the short-distance

constraints from vector, axial-vector, scalar and pseudo-scalar form-factors within

the SRA (appendix A) [18].

These incompatibilities can always be solved by including additional resonance

multiplets. We follow the Minimal Hadronic Approximation [8], and only include a

minimal set of resonance multiplets such that all relevant short-distance constraints

are satisfied for the problem at hand.

Our explicit form factor expressions in Eqs. (4.11) and (4.12) have been obtained

analysing each form factor separately. However the assumed set of short-distance

constraints is not fully consistent. The results compiled in appendix A show the

existence of two inconsistent conditions: the restrictions for λV A
i in Table A.1 from

the vector form factor to an axial resonance field and a pion, and those in Table A.2

from the axial form factor to a vector resonance field and a pion are incompatible.

The simpler solution is the inclusion of a second multiplet of vector (V ′) and axial-

vector (A′) resonances. One gets in this way a consistent set of constraints for the

couplings of the lowest mass multiplets S, P , V and A; any possible problem is then

relegated to the heavier states, that produce mild effects on the region of validity

of our effective description (of course, if one was interested in physical form factors
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involving V ′ or A′ as external states, the addition of even heavier multiplets would

push the problem to the next level in the resonance towers).

In practice, one adds to the RχT Lagrangian the necessary pieces involving the

new multiplets V ′ and A′. The reanalysis of the Aπ vector form-factor and the V π

axial form factor of appendix A yields, respectively, the constraints

FV (2λV A
2 − 2λV A

3 + λV A
4 + 2λV A

5 ) + F ′
V (2λV ′A

2 − 2λV ′A
3 + λV ′A

4 + 2λV ′A
5 ) = FA ,

FV (−2λV A
2 + λV A

3 ) + F ′
V (−2λV ′A

2 + λV ′A
3 ) = 0 , (4.20)

FA(2λV A
2 − λV A

4 − 2λV A
5 ) + F ′

A(2λV A′

2 − λV A′

4 − 2λV A′

5 ) = −FV + 2GV ,

FA(−2λV A
2 + λV A

3 ) + F ′
A(−2λV A′

2 + λV A′

3 ) = −GV , (4.21)

so the incompatibility is not present any longer.

Once these second multiplets are considered, the large–NC constraints for

FV , FA, GV are obviously modified (the couplings of any effective Lagrangian contain

the information on the heavier states not included in the effective theory). Eqs. (4.8)

and (4.9) take now the form:

F 2
V = F 2 M2

A

M2
A − M2

V

(
1 + ǫ1 −

M2
V

M2
A

ǫ2

)
,

F 2
A = F 2 M2

V

M2
A − M2

V

(1 + ǫ1 − ǫ2) ,

G2
V = F 2 M2

A − M2
V

M2
A

(1 − ǫ3)
2

1 + ǫ1 −
M2

V

M2
A

ǫ2

, (4.22)

with the corrections ǫi given by

ǫ1 =
F 2

A′

F 2 − F 2
V ′

F 2 , ǫ2 =
F 2

A′M2
A′ − F 2

V ′M2
V ′

F 2M2
V

, ǫ3 =
FV ′GV ′

F 2 . (4.23)

The corrections ǫi seem to produce a tiny effect. The value of ǫ3 ≈ 0.007 was extracted

from the analysis of the ALEPH data on the pion vector form factor [31]. On the other

hand, the assumed convergence of the Weinberg sum-rules and its phenomenological

success [7] seems to point out that |ǫ1|, |ǫ2| ≪ 1. For this reason, in our numerical

calculations we will only take the ǫi corrections into account when they appear at

LO in 1/NC . They will be neglected whenever they enter into contributions which

are NLO in 1/NC , as they are a correction to a correction. Notice that we have

introduced both a vector and an axial-vector multiplet in order to keep the assumed

convergence of the V −A Weinberg sum-rules. Considering the V ′ contribution alone
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would lead very likely to large corrections ǫ1, ǫ2 ∼ 1 and a lost of the convergence in

the sum-rule.

The calculation of the seven form factors we are interested in is straightforward.

The only novelty is the introduction of V ′ and A′. Due to their heavier thresholds,

we neglect any two-particle channels including these higher multiplets (appendix C).

Only the single-resonance exchange contribution has been considered for the new V ′

and A′ states. Since we have now a much larger set of couplings, the Brodsky-Lepage

form factor constraints [25] and the OPE asymptotic behaviour of the two-point

Green-functions are no longer enough to fully determine the form-factors. One needs

to fix some combinations of the λV (′)A(′)

i couplings by other means. Fortunately, we

can use the known constraints coming from the <V AP > Green-function analysis

of Ref. [14]. The information from the 〈 V AP 〉 correlator was combined in Ref. [14]

with the two Weinberg sum rules and a vanishing high-energy behaviour for Fa
πγ and

F v
ππ. 2 Considering that Ref. [14] only used the lowest-lying resonance multiplets,

their constraints are right up to O(ǫ) corrections, which we assume to be tiny:

2λV A
2 − λV A

4 − 2λV A
5 = −FV

FA
+

2GV

FA
+ O(ǫ) ,

−2λV A
2 + λV A

3 = −GV

FA
+ O(ǫ) . (4.24)

Note that it is not a surprise that these constraints are equivalent to the ones coming

from the axial form factor to a vector resonance and a pion (Table A.2), because this

form factor is related to the axial form factor to a photon and a pion, considered in

Ref. [14]. Taking into consideration that the couplings λV A
i appear in Π(t) only at

NLO in 1/NC, we will neglect these O(ǫ) terms.

Using Eqs. (4.22), the 〈 V AP 〉 constraint and imposing the right short-distance

behaviour, one determines the new form factors:

F v
ππ(t) =

M2
V

M2
V − t

+ O(ǫ) ,

F v
Aπ(t) =

(
M2

A

M2
V

− 1

)− 1
2

[
M2

V ′ − M2
A

M2
V ′ − t

− M2
A

M2
V

(M2
A − t)(M2

V ′ − M2
V )

(M2
V − t)(M2

V ′ − t)

]
+ O(ǫ) ,

G v
Aπ(t) = −

√
M2

A

M2
V

− 1
2M2

A (M2
V ′ − M2

V )

(M2
V − t)(M2

V ′ − t)
+ O(ǫ) ,

F v
Pπ(t) =

√
M2

P

M2
S

− 1
2 (M2

V ′ − M2
V )

(M2
V − t)(M2

V ′ − t)
+ O(ǫ) , (4.25)

F a
V π(t) = −

√

1 − M2
V

M2
A

M2
A (2M2

V − t)

t (M2
A − t)

+ O(ǫ) ,

2The spirit of Ref. [14] is to consider form factors with stable states (pseudo-Goldstone modes

and on-shell photons).
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G a
V π(t) = −

√

1 − M2
V

M2
A

2 M2
V M2

A

t (M2
A − t)

+ O(ǫ) ,

F a
Sπ(t) =

√

1 − M2
S

M2
P

√
2M2

A′

M2
A′ − t

+ O(ǫ) . (4.26)

In order to get more compact expressions, this time we have used the information of

some form-factors to simplify others. Due to the consideration of a higher number of

resonance multiplets the inconsistences between channels have disappeared, in agree-

ment with the assumed convergence to the full set of large–NC relations as more and

more states are progressively included in the theory. The F v
Pπ form factor has been

simplified using the short-distance Fp
V π constraint λPV

1 =
√

2GV /4dm (appendix A).

In Fa
Sπ we have used the relation extracted from F s

Aπ, λSA
1 = 0. Finally, the con-

straints in Eq. (4.24) have been employed to simplify the vector–Aπ and axial–V π

form factors. Since the O(ǫ) corrections are neglected in the NLO terms, Π(t)|ρ is

known in terms of just the resonance masses and F . Notice that, up to O(ǫ) cor-

rections, the ππ and V π form factors remain the same as in the SRA and the only

change in the axial Sπ form factor is the replacement MA → MA′ .

It would be possible to add as well an extra multiplet of scalar and pseudo-scalar

resonances, S ′ and P ′. However, these mesons can only appear in the V −A correlator

within loops, never at tree-level. Hence, their contributions will be suppressed due

to their high threshold.

When the V ′ and A′ resonances are included in the analysis the resulting ex-

pression for Π(t) becomes much more complex, though the formal structure remains

exactly the same. The conditions δ̃(1)
NLO

= δ̃(2)
NLO

= 0 allow to determine MA′ and MV ′:

M2
V ′ = M2

A ,

M4
A′ =

1

2

M4
V

1 − M2
S

M2
P

[
1 +

M4
A

M4
V

(
1 − M2

V

M2
A

) (
7 − 2M2

A

M2
V

)
+ 2

(
M2

P

M2
S

− 1

) (
1 − M2

V ′

M2
V

)2

+

(
1 − M2

V

M2
A

) (
2M6

V ′

M6
V

− 5M2
AM4

V ′

M6
V

+
6M2

AM2
V ′

M4
V

+
2M2

A

M2
V

)]
.(4.27)

The new NLO corrections δ(m)
NLO

are given by

δ(m)
NLO

=
nf

2

M2
V

48π2F 2

{
1 +

(
1 − M2

V

M2
A

)
M2

V

M2
V ′ − M2

V

ξ
(m)
Aπ + 2

(
M2

P

M2
S

− 1

)
M2

V

M2
V ′ − M2

V

ξ
(m)
Pπ

−
(

1 − M2
V

M2
A

)
ξ

(m)
V π − 2M2m

S

M2m
V

(
1 − M2

S

M2
P

)
ξ

(m)
Sπ

}
, (4.28)

which are known functions of the resonance masses. The different contributions to

Π(t) and the coefficient functions ξ
(m)
m1m2 are relegated to appendix B.
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Note that in this case the determination of F r
V and F r

A changes slightly. One can

easily reanalyse Eqs. (4.18) to find that now

F r 2
V = F 2 M r 2

A

M r 2
A − M r 2

V

[
1 + ǫ1 + δ(1)

NLO
− M2

V

M2
A

(
ǫ2 + δ(2)

NLO

)]
,

F r 2
A = F 2 M r 2

V

M r 2
A − M r 2

V

[
1 + ǫ1 + δ(1)

NLO
− ǫ2 − δ(2)

NLO

]
, (4.29)

where we have approximated F r
V ′ ≃ FV ′ , F r

A′ ≃ FA′, since the effect of the second

multiplet is expected to be numerically small and the difference between the LO

and the NLO couplings would represent a subleading correction to an already tiny

contribution.

5. The chiral couplings Lr
10(µ) and Cr

87(µ)

The low-momentum expansion of Π(t) is determined by χPT [3, 5, 32]:

Π(t) =
2F 2

t
− 8Lr

10(µ) − Γ10

4π2

(
5

3
− ln

−t

µ2

)

+
t

F 2

[
16 Cr

87(µ) − Γ
(L)
87

2π2

(
5

3
− ln

−t

µ2

)
+ O

(
N0

C

)
]

+ O
(
t2

)
, (5.1)

with Γ10 = −1/4 [3] and Γ
(L)
87 = −L9/2 [5]. The couplings F 2, L10 and C87/F

2 are of

O(NC), while Γ10 and Γ
(L)
87 /F 2 are of O(N0

C) and represent a NLO effect.

On the other hand, the low-energy expansion of (4.1) determines the chiral LECs

at large NC [10, 12, 14]:

L10 = − F 2
V

4M2
V

+
F 2

A

4M2
A

= − F 2

4

(
1

M2
V

+
1

M2
A

)
.

C87 =
F 2F 2

V

8M4
V

− F 2F 2
A

8M4
A

=
F 4

8

(
1

M4
V

+
1

M2
V M2

A

+
1

M4
A

)
, (5.2)

where we have used the relations in Eq. (4.8) in order to simplify the final results.

Using MV ≃ 0.77 GeV [33] and MA ≃ 1 GeV [34], one gets the large–NC estimates

L10 ≈ −5.3 · 10−3 and C87 ≈ 4.3 · 10−5.

At µ0 = 770 MeV, the phenomenological determination Lr
10(µ0) = (−5.5± 0.7) ·

10−3 [7, 35] agrees very well with the large–NC estimate. A slightly smaller absolute

value, Lr
10(µ0) = (−5.13 ± 0.19) · 10−3, was obtained from a fit to the ALEPH τ

decay data [36]. The large–NC result for C87 is also in good agreement with the value

C87 = (4.5 ± 0.4) · 10−5, obtained recently from a series of Pade approximants to

large–NC QCD [37], using as input the measured resonance spectrum.

Large–NC estimates like those in Eqs. (5.2) are naively expected to approximate

well the couplings at scales of the order of the relevant dynamics involved (µ ∼ MR).
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However they always carry an implicit error because of the uncertainty on µ. This

theoretical uncertainty is rather important in couplings generated through scalar

meson exchange, such as Lr
8(µ) [3, 19]. In the present case, it also has a moderate

importance. The size of the NLO corrections in 1/NC to Lr
10(µ) and Cr

87(µ) can be

estimated by regarding their variations with µ. These are respectively given by

∂ Lr
10

∂ lnµ2
= − Γ10

32π2
= 0.8 · 10−3 ,

∂ Cr
87

∂ ln µ2
=

Γ
(L)
87

32π2
= −1.1 · 10−5 . (5.3)

At large NC , a correlator that accepts an unsubtracted dispersion relation is

determined by the position of the poles and the value of their residues, as shown in

Eq. (4.1), which gives the general structure for Π(t). In our realization of the RχT

Lagrangian, this corresponds to a complete resonance saturation of the corresponding

low-energy χPT couplings. Operators of O(pn>2) that only include Goldstone fields

are absent in RχT; they are generated (through resonance exchange) in the low-

energy effective theory, χPT, where the resonances have been integrated out. Thus,

in Eqs. (5.2) we do not have any direct L̃10 or C̃87 contributions, where the tildes

denote (non-existing) RχT operators.

So far, we have been working within a U(3)L ⊗ U(3)R framework, but we are

actually interested on the couplings of the standard SU(3)L ⊗ SU(3)R chiral the-

ory. Thus, a matching between the two versions of χPT must be performed [20].

Nonetheless, on the contrary to what happens with other matrix elements (e.g. the

S − P correlator [19]), the spin–1 two-point functions do not gain contributions

from the U(3)–singlet chiral Goldstone; the η1 does neither enter at tree-level nor

in the one-loop correlators. Therefore, the corresponding LECs are identical in both

theories at leading and next-to-leading order in 1/NC: Lr
10(µ)U(3) = Lr

10(µ)SU(3),

Cr
87(µ)U(3) = Cr

87(µ)SU(3).

5.1 Lr
10(µ) at NLO

As a first determination of the chiral coupling L10 at NLO, we give the expression

obtained within the SRA approximation:

Lr
10(µ)|SRA = −F 2

4

(
1

M r 2
V

+
1

M r 2
A

){
1 + δ(1)

NLO
−

M r 2
V δ(2)

NLO

M r 2
V + M r 2

A

}
− 1

128π2

[
ln

M2
V

µ2
+

1

6

+
4M4

S

M4
V

− 7M2
S

M2
V

+

(
−1 +

6M2
S

M2
V

− 9M4
S

M4
V

+
4M6

S

M6
V

)
ln

(
1 − M2

V

M2
S

)]
, (5.4)

where we have used the relations in Eqs. (4.18) to eliminate the explicit dependence

on the effective couplings F r
V and Gr

V , and the constraints of Eqs. (4.16) to fix MA

and MP at large NC : MA = MV and MP =
√

2MS .

The needed input parameters are defined in the chiral limit. We take the

ranges [3, 7, 33] M r
V = MV = (770 ± 5) MeV, MS = (1090 ± 110) MeV and
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F = (89 ± 2) MeV. Considering the importance of the axial-vector resonance field

for the determination of this observable, the mass provided by Ref. [33] is not sat-

isfactory enough due to the large width of this meson. We prefer to fix the value

of MA in an indirect way, by studying the decays of narrower resonances like the

ρ(770). From the observed rates Γ(ρ0 → e+e−) = (7.02 ± 0.13) keV [33] and

Γ(ρ → 2π) = (149.4 ± 1.0) MeV [33] one is able to estimate the values of the

vector couplings, FV = (155.7 ± 1.5) MeV and GV = (66.7 ± 0.9) MeV. These can

both be used to recover the a1 mass at large NC : one gets MA = (938 ± 13) MeV

from the WSR result in Eq. (4.8), while Eq. (4.9) gives the slightly larger range

MA = (1160 ± 40) MeV. Another large–NC determination of MA was obtained in

Ref. [34] from the study of the π → eνeγ decay, which yields MA = (998± 49) MeV.

The renormalized mass M r
A can be recovered from its large–NC value MA thanks

to the experimental value of F r
V and the WSR result in Eq. (4.29). In spite of the

dispersion of values for MA, the corresponding renormalized masses turn out to be

always within the conservative range M r
A = (1000 ± 50) MeV, which we will take as

our numerical input.

This gives for the SRA the numerical prediction

Lr
10(µ0)|SRA = (−5.2 ± 0.4) · 10−3 , (5.5)

being µ0 the usual renormalization scale, µ0 = 770 MeV. Notice that in this expres-

sion we only consider the errors derived from the experimental inputs. It does not

include the systematic uncertainties due to neglecting higher resonance effects and

the inconsistencies between form-factor constraints.

To asses the numerical impact of higher-mass resonances, we consider the results

obtained adding a second multiplet of vector and axial-vector states. The resulting

value for the chiral coupling Lr
10(µ) takes the form

Lr
10(µ) = −F 2

4

(
1

M r 2
V

+
1

M r 2
A

) {
1 + ǫ1 + δ(1)

NLO
− M r 2

V

M r 2
V + M r 2

A

(
ǫ2 + δ(2)

NLO

)}

+
F 2

4M2
V ′

{(
1 +

M2
V ′

M2
A′

)
ǫ1 −

M2
V

M2
A′

ǫ2

}

− 1

256π2

{
M2

V

M2
V ′ − M2

V

(
1 − M2

V

M2
A

)
χ

(1)
Aπ +

4M2
V

M2
V ′ − M2

V

(
1 − M2

P

M2
S

)
χ

(1)
Pπ

+2

(
1 − M2

V

M2
A

)
χ

(1)
V π + 4

(
1 − M2

S

M2
P

)
χ

(1)
Sπ + 2 ln

M2
V

µ2
− 16

3

}
. (5.6)

In the first line we have indicated the contribution coming from the tree-level ex-

change of the first multiplets V and A, and Eqs. (4.29) have been used to fix the

NLO couplings F r
V and F r

A. The tree-level exchange of the second multiplets V ′ and

A′ generates the contributions shown in the second line, where FV ′ and FA′ are ex-

pressed in terms of ǫ1 and ǫ2 [see Eqs. (4.23)]. The one-loop contribution, given in
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the third and fourth lines, is expressed in terms of known functions of the resonance

masses, χ
(1)
m1m2 , which are given in appendix B [see Eqs. (B.15), (B.17), (B.19) and

(B.21)].

To obtain a numerical estimate, we need the masses of the lowest states, the

pion decay constant and the tiny corrections ǫn, which are related to FV ′ and FA′.

We take the following input parameters [3, 7, 33] M r
V = MV = (770 ± 5) MeV,

M r
A = MA = (1000 ± 50) MeV, MS = (1090 ± 110) MeV, MP = (1300 ± 100) MeV

and F = (89 ± 2) MeV. The constraints δ̃(1)
NLO

= δ̃(2)
NLO

= 0 determine the V ′ and A′

masses [see Eqs. (4.27)]. Assuming the convergence of the Weinberg sum rules we

consider for the higher multiplet corrections the range ǫi = 0.0 ± 0.1. At the usual

χPT renormalization scale µ0 = 770 MeV, one gets then

Lr
10(µ0) = (−3.6 ± 0.9 ± 0.3) · 10−3 , (5.7)

where the second error comes from the ǫi and the first one from the remaining inputs.

The assumed convergence of the Weinberg sum rules carries an implicit cancel-

lation between the tree-level contributions of the vector and axial-vector multiplets.

It is remarkable that this also leads to subtle cancelations between the V π and Aπ

contributions.

5.2 Cr
87(µ) at NLO

The determination found within the SRA approximation reads

Cr
87(µ)|SRA =

F 4

8

(
1

M r 4
V

+
1

M r 2
V M r 2

A

+
1

M r 4
A

){
1 + δ(1)

NLO
− M r 2

V (M r 2
V + M r 2

A ) δ(2)
NLO

M r 4
V + M r 4

A + M r 2
V M r 2

A

}

+
F 2

256π2M2
V

[(
−2 +

9M2
S

M2
V

− 12M4
S

M4
V

+
5M6

S

M6
V

)
ln

(
1 − M2

V

M2
S

)

+
1

3
+ 2 ln

M2
V

µ2
+

5M4
S

M4
V

− 19M2
S

2M2
V

− M2
V

4M2
S

]
. (5.8)

We have used again the relations in Eqs. (4.18) to fix F r
V and F r

A and the constraints

coming from Eqs. (4.16). Taking the same parameters than in the previous section

for the SRA approximation, one finds, at µ0 = 770 MeV,

Cr
87(µ0)|SRA = (3.9 ± 0.6) · 10−5 . (5.9)

Once the second multiplets V ′ and A′ are included, the determination of the

O(p6) chiral coupling takes the form:

Cr
87(µ) =

F 4

8

(
1

M r 4
V

+
1

M r 2
V M r 2

A

+
1

M r 4
A

) {
1 +δ(1)

NLO
+ǫ1−

M r 2
V (M r 2

V +M r 2
A )

M r 4
V +M r 4

A +M r 2
V M r 2

A

×
(
δ(2)

NLO
+ ǫ2

) }
− F 4

8M2
V ′M2

A′

{(
1 +

M2
A′

M2
V ′

+
M2

V ′

M2
A′

)
ǫ1−

(
M2

V

M2
V ′

+
M2

V

M2
A′

)
ǫ2

}
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+
F 2

512π2M2
V

{
M2

V

M2
V ′ − M2

V

(
1 − M2

V

M2
A

)
χ

(2)
Aπ +

4M2
V

M2
V ′ − M2

V

(
1 − M2

P

M2
S

)
χ

(2)
Pπ

+ 2

(
1 − M2

V

M2
A

)
M2

V

M2
A

χ
(2)
V π + 4

(
1 − M2

S

M2
P

)
M2

V

M2
A′

χ
(2)
Sπ + 4 ln

M2
V

µ2
− 26

3

}
. (5.10)

In the first and second lines we show the contributions coming from tree-level ex-

changes, where again Eqs. (4.29) have been used to remove F r
V and F r

A. Again, FV ′

and FA′ are expressed in terms of ǫ1 and ǫ2. The third and fourth lines contain the

one-loop contribution, expressed through the known functions χ
(2)
m1m1 which appear

in appendix B [see Eqs. (B.16), (B.18), (B.20) and (B.22)].

Using the same parameters as for the Lr
10(µ) case, one gets the numerical estimate

Cr
87(µ0) = (2.2 ± 1.0 ± 0.4) · 10−5 . (5.11)

As in Eq. (5.7), the second error comes only from those in ǫ1 and ǫ2.

6. Conclusions

The large–NC limit provides a very successful theoretical framework to understand

the role of resonance saturation in low-energy phenomenology [7]. However, this limit

is unable to pin down the scale dependence of the χPT couplings. Although this is

a NLO effect in the 1/NC expansion, its numerical impact is very sizable.

In this paper we have presented a general method to determine the chiral cou-

plings at NLO in 1/NC , keeping full control of their renormalization-scale depen-

dence. Through a one-loop calculation of appropriately chosen Green functions,

within RχT, one can get the needed NLO resonance contributions at low energies.

Using analyticity and unitarity, we avoid all technicalities associated with the renor-

malization procedure, reducing the calculation to much simpler dispersion relations.

The QCD constraints at short distances provide a powerful tool to fix the corre-

sponding subtraction constants.

From the theoretical analysis of the 〈V V − AA〉 correlator, we have obtained

a NLO prediction of the O(p4) coupling Lr
10(µ), which exactly reproduces its right

renormalization-scale dependence. Moreover, we have also determined the O(p6) cou-

pling Cr
87(µ) at the NLO, controlling its µ dependence up to small NNLO effects.

We have used the RχT Lagrangian, within the SRA, to compute the one- and

two-particle exchange contributions to the absorptive part of the correlator. It is re-

markable that, imposing a good short-distance behaviour for the corresponding vec-

tor and axial-vector spectral functions, one fully determines the relevant contributing

form factors. Using a dispersion relation, we have reconstructed the correlator, up

to a term which has the same structure as the tree-level one-particle contributions.

However, the stringent short-distance QCD constraints on Π(t) have allowed us to

fix it in terms of resonance masses. The low momentum expansion of the correlator
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Figure 2: a) Comparison of the NLO prediction for Lr
10(µ) as a function of µ (gray band)

versus our large–NC estimate (dashed); b) NLO prediction for Cr
87(µ) (solid gray band)

compared to our LO estimate (dashed) and the large–NC result from Ref. [37] (dotted).

Π(t) reproduces the right χPT expression, with explicit values for the LECs Lr
10(µ)

and Cr
87(µ) which only depend on the resonance masses and the pion decay constant.

The resulting analytical expressions for these LECS are given in Eqs. (5.4) and (5.8).

Using the presently known information on the resonance mass parameters, we obtain

at µ = µ0 = 770 MeV the numerical predictions in Eqs. (5.5) and (5.9), respectively,

where the main uncertainty originates in the input value of MA.

To asses the impact of higher-mass states, we introduce a second multiplet of

vector and axial-vector states. While this improves the theoretical description, solv-

ing some conflicts between short-distance constraints obtained from different form

factors, it increases the number of parameters making the numerical results more

uncertain. Nevertheless, it is still possible to obtain the explicit analytical predic-

tions in Eqs. (5.6) and (5.10), in terms of two small parameters ǫ1 and ǫ2, which are

expected to be in the range ǫi = 0.0 ± 0.1. The corresponding numerical results at

µ = µ0, given in Eqs. (5.7) and (5.11), have in both cases a smaller absolute value

than the ones obtained within the SRA.

We can combine the two numerical estimates of the LECs into our final results

at µ = µ0:

Lr
10(µ0) = (−4.4 ± 0.9) · 10−3 ,

Cr
87(µ0) = (3.1 ± 1.1) · 10−5 . (6.1)

The central values lie in between the two determinations, but we have kept the larger

error bars of Eqs. (5.7) and (5.11) (adding in quadrature the two uncertainties). Fig-

ure 2 shows the corresponding predictions as functions of the renormalization scale µ.

Also shown are the large–NC results and the recent Pade estimate of Ref. [37], which

cannot incorporate the dependence on the scale µ. The figure shows that the leading-
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order approximations agree with our NLO results for values of the renormalization

scale around µ ∼ 0.5 GeV.

The ideas discussed in this article can be applied to generic Green functions,

which opens a way to investigate other chiral LECs at NLO in the large–NC expan-

sion. In particular, it looks feasible to analyze the couplings L5 and L9 with similar

techniques. Further work in this direction is in progress.
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A. Two-meson form factors and their short-distance con-

straints

In this appendix all two-body form factors that can be found in the even-intrinsic-

parity sector of the RχT in the SRA are analysed, following the ideas of section 3.

Furthermore the needed form factors for the V −A correlator with higher multiplets

V ′ and A′ are studied.

The following items are presented for each form factor:

1. The form factor(s) is (are) defined through the corresponding matrix element.

2. The expression of the form factor(s) is (are) shown.

3. Using the optical theorem, the spectral function is given in terms of the form

factors.

4. The constraints found by imposing a good high-energy behaviour of the spectral

function.

5. Once the constraints are imposed, the well behaved form factor(s) is (are)

presented again and quoted with a tilde.

Notice that when R0
I=0 or η is written, we refer to the singlet in the U(2) case. The

following usual notation is employed throughout the section :

λ (a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc , σM =
√

1 − 4M2/t . (A.1)

Table A.1: Vector form factors: amplitudes, definitions,

spectral functions and constraints.

1 Vµ
1 = 〈 π0(p1)π

−(p2)|d̄γµu|0 〉 =
√

2F v
ππ(t) (p2 − p1)

µ

F v
ππ 1 + FV GV

F 2
t

M2
V − t

ImΠππ
θ(t)
24π |F v

ππ(t)|2

FV GV = F 2 −→ F̃ v
ππ =

M2
V

M2
V − t

2 Vµ
2 = 〈A0

I=1(pA, ε)π−(pπ)|d̄γµu|0 〉

Vµ
2

i
√

2
MA

{
(qε∗ pµ

A − qpA ε∗µ)F v
Aπ(t) + (qε∗ pµ

π − qpπε
∗µ)G v

Aπ(t)
}
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F v
Aπ

FA
F + FV

F
M2

A − t
M2

V − t

[
− 2λV A

2 + 2λV A
3 − λV A

4 − 2λV A
5

]

G v
Aπ

2FV
F

M2
A

M2
V − t

[
− 2λV A

2 + λV A
3

]

ImΠAπ θ (t − M2
A)

1 − M2
A/t

48π

{(
M2

A
t + 4 + t

M2
A

)
|F v

Aπ|2 +

(
1 − M2

A
t

)2

×
(

t
M2

A

+ t2

2M4
A

)
|G v

Aπ|2 + 2

(
1 − M2

A
t

) (
1 + 2t

M2
A

)
Re{F v

AπG v
Aπ

∗}
}

2λV A
2 − 2λV A

3 + λV A
4 + 2λV A

5 = FA
FV

− 2λV A
2 + λV A

3 = 0

F̃ v
Aπ = FA

F
M2

V − M2
A

M2
V − t

G̃ v
Aπ = 0

3 Vµ
3 = 〈P−(pP )π0(pπ)|d̄γµu|0 〉 =

√
2 (qpπ pµ

P − qpP pµ
π) F v

Pπ(t)

F v
Pπ

2λPV
1 FV

F
1

M2
V − t

ImΠPπ θ (q2 − M2
P )

(
1 − M2

P /t
)3

96π t2|F v
Pπ|2

λPV
1 = 0 −→ F̃ v

Pπ = 0

4 Vµ
4 = 〈 V 0

I=1(p1, ε1)V
−(p2, ε2)|d̄γµu|0 〉

Vµ
4

√
2
(
ε∗1ε

∗
2 (p2 − p1)

µ − (qε∗1 ε∗2
µ − qε∗2 ε∗1

µ)
)
F v

V V (t) +
√

2(qε∗1 ε∗2
µ

−qε∗2 ε∗1
µ)G v

V V (t) +
√

2
(p2 − p1)

µ

M2
V

(qε∗1 qε∗2 − p1p2 ε∗1ε
∗
2)H v

V V (t)

F v
V V −1 + 2λV V

7 + FV√
2(M2

V − t)

[
6λV V V

0 + (4M2
V + 2t)λV V V

2 + (4M2
V

− 2t)
(
−2λV V V

1 + λV V V
3 + λV V V

4 − 2λV V V
5

)
+ 4tλV V V

6 + 8M2
V λV V V

7

]

G v
V V

4 FV M2
V√

2(M2
V − t)

[
− 2λV V V

1 + λV V V
3 + λV V V

4 − 2λV V V
5 − λV V V

6 + λV V V
7

]

H v
V V −2λV V

7 + FV√
2(M2

V − t)

[
− 6λV V V

0 + (4M2
V + 2t)(2λV V V

1 − λV V V
2

− λV V V
3 − λV V V

4 + 2λV V V
5 − 2λV V V

7 )
]

ImΠV V θ (t − 4M2
V )

σ3
MV

24π

{(
3 +

q2

M2
V

)
|F v

V V |2 +

(
t

M2
V

+ t2

4M4
V

)
|G v

V V |2

+

(
3 − 2t

M2
V

+ t2

2M4
V

)
|H v

V V |2 − 3t
M2

V

Re{F v
V V G v

V V
∗}

+

(
6 − 2t

M2
V

)
Re{F v

V V H v
V V

∗} − t
M2

V

Re{G v
V V H v

V V
∗}

}
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2λV V V
1 +λV V V

2 −λV V V
3 −λV V V

4 +2λV V V
5 +2λV V V

6 = − 1√
2FV

+

√
2

FV
λV V

7

− 2λV V V
1 +λV V V

3 +λV V V
4 − 2λV V V

5 −λV V V
6 +λV V V

7 = 0

2λV V V
1 −λV V V

2 −λV V V
3 −λV V V

4 +2λV V V
5 −2λV V V

7 = −
√

2
FV

λV V
7

− 3
2M2

V

λV V V
0 +2λV V V

1 −λV V V
2 −λV V V

3 −λV V V
4 +2λV V V

5 −2λV V V
7 =

λV V
7√
2FV

F̃ v
V V = − M2

V

M2
V − t

G̃ v
V V = H̃ v

V V = 0

5 Vµ
5 = 〈A0

I=1(p1, ε1)A
−(p2, ε2)|d̄γµu|0〉

Vµ
5 Vµ

4 (MV → MA, F v
V V → F v

AA, Gv
V V → Gv

AA, Hv
V V → Hv

AA)

F v
AA − 1 + 2λAA

7 + FV√
2(M2

V − t)

[
2λV AA

0 + 2t(λV AA
3 + λV AA

8 )

+ (2M2
A − t)

(
2λV AA

2 + λV AA
7 − λV AA

9 − 2λV AA
10 + λV AA

12

+2λV AA
13 − λV AA

14

)
+ (−t − 2M2

A)λV AA
6

]

G v
AA

√
2FV M2

A

M2
V − t

[
− λV AA

6 + λV AA
7 − λV AA

9 − 2(λV AA
10 + λV AA

11 ) + λV AA
12 − λV AA

14

]

H v
AA − 2λAA

7 + FV√
2(M2

V − t)

[
− 2λV AA

0 + 4tλV AA
1 + (−4M2

A + 2t)λV AA
2

−2t(λV AA
3 + λV AA

4 − λV AA
5 ) + (2M2

A + 2t)λV AA
6

+2M2
A(−λV AA

7 + λV AA
9 + 2λV AA

10 − λV AA
12 − 2λV AA

13 + λV AA
14 )

]

ImΠAA ImΠV V (MV → MA, F v
V V → F v

AA, Gv
V V → Gv

AA, Hv
V V → Hv

AA)

− 2λV AA
2 + 2λV AA

3 − λV AA
6 − λV AA

7 + 2λV AA
8 +

+ λV AA
9 + 2λV AA

10 − λV AA
12 − 2λV AA

13 + λV AA
14 = −

√
2

FV
+ 2

√
2

FV
λAA

7

− λV AA
6 + λV AA

7 − λV AA
9 − 2λV AA

10 − 2λV AA
11 + λV AA

12 − λV AA
14 = 0

2λV AA
1 + λV AA

2 − λV AA
3 − λV AA

4 + λV AA
5 + λV AA

6 = −
√

2
FV

λAA
7

− 1
M2

A

λV AA
0 − 2λV AA

2 + λV AA
6 − λV AA

7 + λV AA
9 +

+ 2λV AA
10 − λV AA

12 − 2λV AA
13 + λV AA

14 =

√
2M2

V λAA
7

FV M2
A

F̃ v
AA = − M2

V

M2
V − t

G̃ v
AA = H̃ v

AA = 0
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6, 7 Vµ
6,7 = 〈R0

I=1(p1)R
−(p2)|d̄γµu|0 〉 =

√
2F v

RR(t) (p2 − p1)
µ (R = S, P )

F v
RR 1 + FV√

2
λV RR t

M2
V − t

ImΠRR θ(t − 4M2
R)

σ3
MR

24π |F v
RR(t)|2

λV RR =

√
2

FV
−→ F̃ v

RR =
M2

V

M2
V − t

8 Vµ
8 = 〈S0

I=0(pS)V −(pV , ε)|d̄γµu|0 〉

Vµ
8

√
2

MV

{
(qε∗ pµ

V − qpV ε∗µ)F v
SV (t) + (qε∗ pµ

S − qpSε∗µ)G v
SV (t)

}

F v
SV 4λSV

3 +

√
2FV

M2
V − t

[
− 2λSV V

0 − M2
V λSV V

1 − t + M2
V − M2

S
2

× (λSV V
2 + 2λSV V

3 ) + (M2
V + t)(2λSV V

4 + λSV V
5 )

]

G v
SV −

√
2FV M2

V

M2
V − t

λSV V
1

ImΠSV θ(t − (MS + MV )2)
λ1/2(t, M2

S, M2
V )

48πt

{
1

M2
V t

[
(M2

V − M2
S)2

−2t(M2
S − 2M2

V ) + t2
]
|F v

SV |2 + 1
2M4

V t

[
2M2

V (M2
V − M2

S)2

+ t(−3M4
V + 6M2

SM2
V + M4

S) − 2M2
St2 + t3

]
|G v

SV |2

+ 1
M2

V t

[
− 2(M2

V − M2
S)2 − 2t(M2

V + M2
S) + 4t2

]
Re{F v

SV G v
SV

∗}
}

λSV V
2 + 2λSV V

3 − 4λSV V
4 − 2λSV V

5 = −4
√

2
FV

λSV
3 λSV V

1 = 0

F̃ v
SV =

√
2FV

M2
V − t

[
8M2

V√
2FV

λSV
3 − 2λSV V

0 +
M2

S
2

(
λSV V

2 + 2λSV V
3

)]
G̃ v

SV = 0

9 Vµ
9 = 〈P 0

I=1(pP )A−(pA, ε)|d̄γµu|0 〉

Vµ
9

i
√

2
MA

{
(qε∗ pµ

A − qpA ε∗µ)F v
PA(t) + (qε∗ pµ

P − qpP ε∗µ)G v
PA(t)

}

F v
PA 4λPA

1 +

√
2FV

M2
V − t

[
2λPV A

0 + M2
AλPV A

1 +
t + M2

A − M2
P

2 (λPV A
2 + 2λPV A

3 )

− M2
A(2λPV A

4 + λPV A
5 ) − tλPV A

6

]

G v
PA

√
2FV M2

A

M2
V − t

λPV A
1

ImΠPA ImΠSV (MV → MA, MS → MP , F v
SV → F v

PA, Gv
SV → Gv

PA)
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λPV A
2 + 2λPV A

3 − 2λPV A
6 = 4

√
2

FV
λPA

1 λPV A
1 = 0

F̃ v
PA =

√
2FV

M2
V − t

[
4M2

V√
2FV

λPA
1 + 2λPV A

0 +
M2

A − M2
P

2

(
λPV A

2 + 2λPV A
3

)
G̃ v

PA = 0

− M2
A

(
2λPV A

4 + λPV A
5

) ]

10 Vµ
10 = 〈 γ(pγ, εγ)V

−(pV , εV )|d̄γµu|0 〉

Vµ
10

√
2 e FV
MV

[{
M2

V qε∗V (qpγ ε∗γ
µ − qε∗γ pµ

γ) + (qpV pµ
γ − qpγ pµ

V )(qpγ ε∗V ε∗γ

−qε∗γ qε∗V )
}

1
tF

v
V γ(t) +

{
M2

V qε∗V ε∗γ
µ − ε∗γε

∗
V (qpV pµ

γ − qpγ pµ
V )

+qε∗V qε∗γ(pγ − pV )µ
}
G v

V γ(t) +
{

qε∗γ ε∗V
µ− qε∗V ε∗γ

µ

+ε∗V ε∗γ (pµ
γ − pµ

V ) + 2
M2

V − t

(
qε∗γ qpV ε∗V

µ− qε∗V qε∗γ pµ
V

)}]

F v
V γ

2
√

2FV t
(M2

V − t)M2
V

[2λV V V
1 − λV V V

3 − λV V V
4 + 2λV V V

5 + λV V V
6 − λV V V

7 ]

G v
V γ

√
2FV

(M2
V − t)M2

V

[3λV V V
0 + 2qpV

(
λV V V

2 + λV V V
6 + λV V V

7

)
]

+
2λV V

7

M2
V

+ 1
M2

V − t
[2λV V

7 − 1]

ImΠV γ ∝
[(

t2

8 − 3M2
V t

8 +
M4

V
4

)
|F v

V γ|2 +

(
t2

2 − M2
V t
2 − M4

V
2

)
|G v

V γ |2

+
(
−t2

2 + 2M2
V t − 3M4

V

)
Re{F v

V γG v
V γ

∗} +

(
t
2 − 3M2

V
2

)
Re{F v

V γ}

+ (−3t + 6M2
V )Re{G v

V γ} +

(
t

2M2
V

+ 1

)
+ O

(
1
t

) ]

− 2λV V V
1 + λV V V

3 + λV V V
4 − 2λV V V

5 − λV V V
6 + λV V V

7 = 1
2
√

2FV

λV V V
2 + λV V V

6 + λV V V
7 =

√
2

FV
λV V

7 − 1
2
√

2FV

λV V
7 = −FV λV V V

0√
2M2

V

F̃ v
V γ = − t

(M2
V − t)M2

V

G̃ v
V γ = − 3M2

V + t
2(M2

V − t)M2
V

11 Vµ
11 = 〈 γ(pγ, ε)S

−(pS)|d̄γµu|0 〉 =

√
2 e FV
3

(
qε∗ pµ

γ − qpγ ε∗µ
)
F v

Sγ(t)

F v
Sγ 4λSV

3

(
1

M2
V − t

+ 1
M2

V

)
+

√
2FV

M2
V (M2

V − t)

[
− 2λSV V

0

− t − M2
S

2 (λSV V
2 + 2λSV V

3 ) + t(2λSV V
4 + λSV V

5 )
]
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ImΠSγ θ(t − M2
S) F 2

V e2 (1 − M2
S/t)3

432π t |F v
Sγ|2

λSV V
2 + 2λSV V

3 − 4λSV V
4 − 2λSV V

5 = −4
√

2
FV

λSV
3

F̃ v
Sγ =

√
2FV

(M2
V − t)M2

V

[
8 M2

V√
2FV

λSV
3 − 2λSV V

0 +
M2

S
2

(
λSV V

2 + 2λSV V
3

)]

Table A.2: Axial form factors: amplitudes, definitions,

spectral functions and constraints.

1 Aµ
1 = 〈 V 0

I=1(pV , ε)π−(pπ)|d̄γµγ5u|0 〉

Aµ
1

i
√

2
MV

{
(qε∗ pµ

V − qpV ε∗µ)F a
V π(t) + (qε∗ pµ

π − qpπε
∗µ)G a

V π(t)
}

F a
V π −FV

F + 2GV
F − 2GV

F
M2

V
t + FA

F
t

M2
A − t

[
(−2M2

V
t + 2)λV A

2

+(
M2

V
t − 1)λV A

4 + (
2M2

V
t − 2)λV A

5

]

G a
V π −2GV

F
M2

V

q2 + 2FA
F

M2
V

M2
A − q2

[
− 2λV A

2 + λV A
3

]

ImΠV π ImΠAπ (MA → MV ,F v
Aπ → Fa

Aπ,Gv
Aπ → Ga

V π)

2λV A
2 − λV A

4 − 2λV A
5 = −FV

FA
+ 2GV

FA
− 2λV A

2 + λV A
3 = −GV

FA

F̃ a
V π =

(
FV
F − 2GV

F

)
M2

V − M2
A

M2
A − t

− 2GV
F

M2
V

t

G̃ a
V π = −2GV

F
M2

V M2
A

(M2
A − t)t

2 Aµ
2 = 〈S0

I=0(pS)π−(pπ)|d̄γµγ5u|0 〉 = −2 iF a
Sπ(t)

(
gµν − qµqν

t

)
pπν

F a
Sπ

2cd
F −

√
2FA
F

t
M2

A − q2λSA
1

ImΠSπ θ(t − M2
S)

(1 − M2
S/t)3

48π |F a
Sπ(t)|2

λSA
1 = −

√
2cd

FA
−→ F̃ a

Sπ = 2cd
F

M2
A

M2
A − t

3 Aµ
3 = 〈 V 0

I=1(pV , εV )A−(pA, εA)|d̄γµγ5u|0 〉

Aµ
3

√
2

MV MA

1
2t

{
2 (qpApµ

V − qpV pµ
A)

[
pApV ε∗Aε∗V − qε∗Aqε∗V

]
F a

V A(t)

+2M2
V

[
(qpApµ

V − qpV pµ
A) ε∗Aε∗V − (pµ

V + pµ
A) qε∗Aqε∗V + tqε∗V ε∗A

µ
]
G a

V A(t)
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+2M2
A

[
(qpApµ

V − qpV pµ
A) ε∗Aε∗V + (pµ

V + pµ
A) qε∗Aqε∗V − tqε∗Aε∗V

µ
]
H a

V A(t)

+
[
(M2

V + M2
A) (qpApµ

V − qpV pµ
A) ε∗Aε∗V + (M2

V + M2
A) (pµ

A − pµ
V ) qε∗Aqε∗V

+ (M2
V − M2

A) (M2
A qε∗Aε∗V

µ + M2
V qε∗V ε∗A

µ)
]
I a

V A(t)
}

F a
V A 2λV A

4 + 4λV A
5 + 4λV A

6 −
√

2FA

M2
A − t

[
(M2

A − M2
V )(−2λV AA

1 + λV AA
4 − λV AA

5 )

−2λV AA
0 − 4qpAλV AA

2 − 2M2
V λV AA

3 + (t + M2
A/2 + 3M2

V /2)λV AA
6

−(M2
A + M2

V )λV AA
8 + (t + M2

A/2 − M2
V /2)

(
−λV AA

7 + λV AA
9 + 2λV AA

10

−λV AA
12 − 2λV AA

13 + λV AA
14

) ]

G a
V A −2λV A

2 + 2λV A
3 + 2λV A

6 −
√

2FA

M2
A − t

[
− λV AA

0 − 2qpAλV AA
2 + (M2

A − M2
V )/4×

(
−λV AA

7 +λV AA
9 +2λV AA

10 −λV AA
12 −2λV AA

13 +λV AA
14

)
− M2

V λV AA
3

+(M2
A/4 + 3M2

V /4)λV AA
6 + (−t − M2

A/2 − M2
V /2)λV AA

8

+(t+ M2
A/2− M2

V /2)
(
−2λV AA

1 + λV AA
4 − λV AA

5

)]

H a
V A 2λV A

2 + 2λV A
6 −

√
2FA

M2
A − t

[
− λV AA

0 − 2qpAλV AA
2 − M2

V λV AA
3

+(M2
A − M2

V )/2
(
−2λV AA

1 + λV AA
4 − λV AA

5

)
+ (−2t + 3M2

V + M2
A)λV AA

6 /4

−2tλV AA
11 + (2q2+ M2

V− M2
A)/4

(
λV AA

7 − λV AA
9 − 2λV AA

10 + λV AA
12 − λV AA

14

)

−(M2
V + M2

A)λV AA
8 /2 − (t + M2

A/2 − M2
V /2)λV AA

13

]

I a
V A − FA t√

2(M2
A − t)

[
+ 4λV AA

1 − 2λV AA
4 + 2λV AA

5 + λV AA
6 − λV AA

7 + 2λV AA
8

+λV AA
9 + 2λV AA

10 − λV AA
12 − 2λV AA

13 + λV AA
14

]

ImΠV A ∝
[
(t2/8 + O(t)) |F a

V A|2 + O(t) |G a
V A|2 + O(t) |H a

V A|2

+ ((M4
A + 4M2

V M2
A + M4

V )/8 + O(q−2)) |I a
V A|2 + O(t) Re{F a

V AG a
V A

∗}
+O(t) Re{F a

V AH a
V A

∗} + (t(M2
A + M2

V )/4 + O(t0)) Re{F a
V AI a

V A
∗}

+O(t0) Re{G a
V AH a

V A
∗} + O(t0) Re{G a

V AI a
V A

∗} + O(t0) Re{H a
V AI a

V A
∗}

]

− 2λV AA
2 + λV AA

6 − λV AA
7 + λV AA

9 + 2λV AA
10 − λV AA

12 − 2λV AA
13 + λV AA

14

= 1√
2FA

{
− 2λV A

4 − 4λV A
5 − 4λV A

6

}

M2
V

{
4λV AA

1 + 4λV AA
2 − 4λV AA

3 − 2λV AA
4 + 2λV AA

5 + 3λV AA
6 + λV AA

7 − 2λV AA
8 − λV AA

9

− 2λV AA
10 + λV AA

12 + 2λV AA
13 − λV AA

14

}
+ M2

A

{
− 4λV AA

1 − 4λV AA
2 + 2λV AA

4

− 2λV AA
5 + λV AA

6 − λV AA
7 − 2λV AA

8 + λV AA
9 + 2λV AA

10 − λV AA
12 − 2λV AA

13 + λV AA
14

}
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− 4λV AA
0 =

2
√

2M2
A

FA

{
λV A

4 + 2λV A
5 + 2λV A

6

}

− 2λV AA
1 − λV AA

2 + λV AA
4 − λV AA

5 − λV AA
8 =

√
2

FA

{
λV A

2 − λV A
3 − λV A

6

}

− 2λV AA
2 − λV AA

6 + λV AA
7 − λV AA

9 − 2λV AA
10

− 4λV AA
11 + λV AA

12 − 2λV AA
13 − λV AA

14 = −2
√

2/FA

{
λV A

2 + λV A
6

}

4λV AA
1 − 2λV AA

4 + 2λV AA
5 + λV AA

6 − λV AA
7 + 2λV AA

8 + λV AA
9 + 2λV AA

10

− λV AA
12 − 2λV AA

13 + λV AA
14 = 0

G̃ a
V A = −

√
2FA

M2
A − t

{√
2M2

A
FA

(
λV A

2 − λV A
3 − λV A

6

)
− λV AA

0 + (M2
A − M2

V )/4×

×
(
−4λV AA

1 + 2λV AA
4 − 2λV AA

5 − λV AA
7 + λV AA

9 + 2λV AA
10 − λV AA

12 − 2λV AA
13 + λV AA

14

)

− M2
AλV AA

2 − M2
V λV AA

3 + (M2
A/4 + 3M2

V /4)λV AA
6 − (M2

A/2 + M2
V /2)λV AA

8

}

H̃ a
V A = G̃ a

V A +
2M2

A

M2
A − t

[
2λV A

2 − λV A
3

]
F̃ a

V A = Ĩ a
V A = 0

4 Aµ
4 = 〈P 0

I=1(pP )V −(pV , ε)|d̄γµγ5u|0 〉

Aµ
4

√
2 i

MV

{
(qε∗ pµ

V − qpV ε∗µ)F a
PV (t) + (qε∗ pµ

P − qpPε∗µ)G a
PV (t)

}

F a
PV 2λPV

1

(
M2

V
t − 1

)
− 4λPV

2 +

√
2FA

M2
A − t

[
2λPV A

0 + M2
V λPV A

1

+
t + M2

V − M2
P

2 (λPV A
2 + 2λPV A

3 ) − t(2λPV A
4 + λPV A

5 ) − M2
V λPV A

6

]

G a
PV

2M2
V

t λPV
1 +

√
2FA

M2
A − t

(
M2

V λPV A
1

)

ImΠPV ImΠSV (MS → MP , F v
SV → Fa

PV , Gv
SV → Ga

PV )

λPV A
2 + 2λPV A

3 − 4λPV A
4 − 2λPV A

5 = −2
√

2
FA

(
λPV

1 + 2λPV
2

)
λPV A

1 =

√
2λPV

1
FA

F̃ a
PV =

√
2FA

M2
A − t

[√
2

FA

(
M2

AM2
V

t − M2
A

)
λPV

1 − 2
√

2M2
A

FA
λPV

2 + 2λPV A
0 +

M2
V − M2

P
2

(
λPV A

2 + 2λPV A
3

)
− M2

V λPV A
6

]

G̃ a
PV =

2M2
V M2

A

(M2
A − t)t

λPV
1

5 Aµ
5 = 〈S0

I=0(pS)A−(pA, ε)|d̄γµγ5u|0 〉
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Aµ
5

√
2

MA

{
(qε∗ pµ

A − qpA ε∗µ)F a
SA(t) + (qε∗ pµ

S − qpSε∗µ)G a
SA(t)

}

F a
SA 2λSA

1

(
M2

A
t − 1

)
− 4λSA

2 +

√
2FA

M2
A − t

[
2λSAA

0 + M2
AλSAA

1

+
t + M2

A − M2
S

2 (λSAA
2 + 2λSAA

3 ) − (M2
A + t)(2λSAA

4 + λSAA
5 )

]

G a
SA

2M2
A

t λSA
1 +

√
2FA

M2
A − t

(
M2

AλSAA
1

)

ImΠSA ImΠSV (MV → MA, F v
SV → Fa

SA, Gv
SV → Ga

SA)

λSAA
2 + 2λSAA

3 − 4λSAA
4 − 2λSAA

5 = −2
√

2
FA

(
λSA

1 + 2λSA
2

)
λSAA

1 =

√
2λSA

1
FA

F̃ a
SA =

√
2FA

M2
A − t

[
−
√

2
FA

(
−M4

A
t + 3M2

A

)
λSA

1 G̃ a
SA =

2M4
A

(M2
A − t)t

λSA
1

− 4
√

2M2
A

FA
λSA

2 + 2λSAA
0 + M2

AλSAA
1 − M2

S
2

(
λSAA

2 + 2λSAA
3

) ]

6 Aµ
6 = 〈S0

I=0(pS)P−(pP )|d̄γµγ5u|0 〉 = −2 iF a
SP (t)

(
gµν − qµqν

t

)
pP ν

F a
SP

√
2λSP

1 − t
M2

A − t
FAλSPA

ImΠSP θ(t − (MS + MP )2)
λ3/2(t, M2

S, M2
P )

48πt3
|F a

SP (q2)|2

λSPA = −
√

2λSP
1

FA
−→ F̃ a

SP (t) =

√
2M2

A

M2
A − t

λSP
1

7 Aµ
7 = 〈 γ(pγ, ε)π

−(pπ)|d̄γµγ5u|0 〉

Aµ
7 i

√
2eF

(
ε∗µ − 2qε∗

qµ

t

)
+ i

√
2e

F (qε∗ pµ
γ − qpγ ε∗µ)F a

πγ(t)

F a
πγ

F 2
A

M2
A − t

+
2FV GV − F 2

V

M2
V

+FAFV

M2
V

t
M2

A − t

(
2λV A

2 − λV A
4 − 2λV A

5

)

ImΠπγ
e2

F 2
t

48π |F a
πγ|2 − e2

12πRe{F a
πγ} + e2 F 2

12πt

2λV A
2 − λV A

4 − 2λV A
5 = −FV

FA
+ 2GV

FA

F̃ a
πγ(t) = 1

M2
A − t

[
F 2

A +
M2

A

M2
V

(2FV GV − F 2
V )

]

8 Aµ
8 = 〈 γ(pγ, εγ)A

−(pA, εA)|d̄γµγ5u|0 〉

Aµ
8

e√
2MAt

{
2/M2

V

(
qpApµ

γ − qpγp
µ
A

)[
pApγε

∗
Aε∗γ − qε∗Aqε∗γ

]
F a

Aγ(t)

+2M2
A/M2

V

[(
qpApµ

γ − qpγp
µ
A

)
ε∗Aε∗γ +

(
pµ

γ + pµ
A

)
qε∗Aqε∗γ − tqε∗Aε∗γ

µ
]
G a

Aγ(t)
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+2M2
AFA

[
ε∗Aε∗γ

(
pµ

γ + pµ
A

)
+ 2

M2
A − t

((
pµ

γ + pµ
A

)
qε∗Aqε∗γ − tqε∗γε

∗
A

µ
)]}

F a
Aγ 2FV

(
λV A

4 + 2λV A
5 + 2λV A

6

)
+ 4FA

M2
A − t

{
M2

V λAA
7 − FV√

2

[
− λV AA

0

+qpA

(
−2λV AA

2 + λV AA
6 − λV AA

7 + λV AA
9 + 2λV AA

10 − λV AA
12 − 2λV AA

13 + λV AA
14

)]}

G a
Aγ 2FV

(
λV A

2 + λV A
6

)
+ FA

M2
A − t

{
− M2

V + 2M2
V λAA

7 +
√

2FV

[
λV AA

0 +2tλV AA
11

+qpA

(
2λV AA

2 + 2λV AA
13

)
+qpγ

(
λV AA

6 −λV AA
7 +λV AA

9 +2λV AA
10 −λV AA

12 +λV AA
14

)]}

ImΠAγ ∝
[
O(t2) |F a

Aγ|2 + O(t) |G a
Aγ|2 + O(t) Re{F a

AγG a
Aγ

∗} + O(t−2)
]

− 2λV AA
2 + λV AA

6 − λV AA
7 + λV AA

9 + 2λV AA
10 − λV AA

12 − 2λV AA
13 + λV AA

14

= 1√
2FA

{
− 2λV A

4 − 4λV A
5 − 4λV A

6

}

− 2λV AA
2 + λV AA

6 − λV AA
7 + λV AA

9 + 2λV AA
10 − λV AA

12 − 2λV AA
13 + λV AA

14 − 2
M2

A

λV AA
0

=

√
2

FA

{
λV A

4 + 2λV A
5 + 2λV A

6

}
+

2
√

2M2
V

FV M2
A

λAA
7

2λV AA
2 + λV AA

6 − λV AA
7 + λV AA

9 + 2λV AA
10

+ 4λV AA
11 − λV AA

12 + 2λV AA
13 + λV AA

14 = 2
√

2
FA

{
λV A

2 + λV A
6

}

F̃ a
Aγ = 0 G̃ a

Aγ = FA

M2
A − t

{
− M2

V +
M2

AFV

FA

(
2λV A

2 − λV A
4 − 2λV A

5

) }

9 Aµ
9 = 〈 γ(pγ, ε)P

−(pP )|d̄γµγ5u|0 〉 = i
√

2 e(qε∗ pµ
γ − qpγ ε∗µ)F a

Pγ(t)

F a
Pγ −4FAλPA

1

M2
A − t

+
2FV λPV

1

M2
V

+
4FV λPV

2

M2
V

+

√
2FAFV

(M2
A − t)M2

V

×

×
[
− 2λPV A

0 − t − M2
P

2 (λPV A
2 + 2λPV A

3 ) + t(2λPV A
4 + λPV A

5 )
]

ImΠPγ θ(t − M2
P ) e2

(
1 − M2

P /t
)3

48π t |F a
Pγ|2

λPV A
2 + 2λPV A

3 − 4λPV A
4 − 2λPV A

5 = −2
√

2
FA

(
λPV

1 + 2λPV
2

)

F̃ a
Pγ = −

√
2FAFV

(M2
A − t)M2

V

{
−

√
2M2

A
FA

(
λPV

1 + 2λPV
2

)
+

2
√

2M2
V

FV
λPA

1

+ 2λPV A
0 − M2

P
2

(
λPV A

2 + 2λPV A
3

)}

– 33 –



Table A.3: Scalar form factors: amplitudes, definitions,

spectral functions and constraints.

1 Sµ
1 = 〈 η(pη)π

−(pπ)|d̄u|0 〉 = F s
πη(t)

F s
πη

√
2B0

(
1 + 4 cmcd

F 2
t

M2
S − t

)

ImΠπη θ(t) 1
16π |F

s
πη(t)|2

4 cd cm = F 2 −→ F̃ s
πη(t) =

√
2B0

M2
S

M2
S − t

2 Sµ
2 = 〈A0

I=0(pA, ε)π−(pS)|d̄u|0 〉 = i
MA

qε∗F s
Aπ(t)

F s
Aπ −8 B0 cm λSA

1
F

M2
A

M2
S − t

ImΠAπ θ(t − M2
A)

(
t − M2

A

)3

64πM4
At

|F s
Aπ|2

λSA
1 = 0 −→ F̃ s

Aπ = 0

3 Sµ
3 = 〈P 0

I=0(pP )π−(pπ)|d̄u|0 〉 = F s
Pπ(t)

F s
Pπ −4B0 dm

F + 4B0 cm
F

t − M2
P

M2
S − t

λSP
1

ImΠPπ θ(t − M2
P )

1 − M2
P /t

16π |F s
Pπ(t)|2

λSP
1 = −dm

cm
−→ F̃ s

Pπ(t) = 4B0dm
F

M2
P − M2

S

M2
S − t

4, 5 Sµ
4,5 = 〈R0

I=0(p1, ε1)R
−(p2, ε2)|d̄u|0 〉 (R = V, A)

Sµ
4,5

1
M2

R

(qε∗1 qε∗2 − p1p2 ε∗1ε
∗
2)F s

RR(t) + ε∗1 ε∗2 G s
RR(t)

F s
RR −8

√
2B0

[
λRR

6 + cm

M2
S − t

(λSRR
0 − p1p2

2 λSRR
2 − p1p2λ

SRR
3

− 2M2
RλSRR

4 − M2
RλSRR

5 )
]

G s
RR −8

√
2B0

cmλSRR
1

2
M2

R

M2
S − t

ImΠRR θ(t − 4M2
R)

σ2
MR

16π

{(
3 − 2t

M2
R

+ t2

2M4
R

)
|F s

RR|2

+

(
3 − t

M2
R

+ t2

4M4
R

)
|G s

RR|2 +

(
6 − 3t

M2
R

)
Re{F s

RRG s
RR

∗}
}

λSRR
2 + 2λSRR

3 = −4λRR
6

cm
λSRR

1 = 0
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λSRR
0

M2
R

+
λSRR

2
2 + λSRR

3 − 2λSRR
4 − λSRR

5 = −λRR
6
cm

M2
S

M2
R

F̃ s
RR = G̃ s

RR(t) = 0

6 Sµ
6 = 〈S0

I=0(p1)S
−(p2)|d̄u|0 〉 = F s

SS(t)

F s
SS −4

√
2B0

[
λSS

3 +
3 cm λSSS

0

M2
S − t

+
cmλSSS

1
2

t + 2M2
S

M2
S − t

]

ImΠSS θ(t − 4M2
S)

σMS

16π |F s
SS(t)|2

λSSS
1 =

2 λSS
3

cm
−→ F̃ s

SS = −4
√

2B0

M2
S − t

[
3M2

SλSS
3 + 3cmλSSS

0

]

7 Sµ
7 = 〈P 0

I=0(p1)P
−(p2)|d̄u|0 〉 = F s

PP (t)

F s
PP −4

√
2B0

[
λPP

3 +
cm λSPP

0

M2
S − t

+
cmλSPP

1
2

−t + 2M2
P

M2
S − t

]

ImΠPP θ(t − 4M2
P )

σMP

16π |F s
PP (t)|2

λSPP
1 = −2 λPP

3
cm

−→ F̃ s
PP = −4

√
2B0

M2
S − t

[
(M2

S − 2M2
P )λPP

3 + cmλSPP
0

]

8 Sµ
8 = 〈S0

I=1(pS)V −(pV , ε)|d̄u|0 〉 = 1
MV

qε∗F s
SV (t)

F s
SV −4

√
2B0 cm λV SS M2

V

M2
S − t

ImΠSV θ(t − (MS + MV )2)
λ3/2

(
t, M2

S, M2
V

)

64πM4
V t

|F s
SV |2

λV SS = 0 −→ F̃ s
SV (t) = 0

9 Sµ
9 = 〈P 0

I=0(pP )A−(pA, ε)|d̄u|0 〉 = i
MA

qε∗F s
PA(t)

F s
PA 4

√
2 B0 cm λSPA M2

A

M2
S − t

ImΠPA θ(t − (MP + MA)2)
λ3/2

(
t, M2

P , M2
A

)

64πM4
At

|F s
PA|2

λSPA = 0 −→ F̃ s
PA(t) = 0

10 Sµ
10 = 〈 γ(pγ, εγ)V

−(pV , εV )|d̄u|0 〉

Sµ
10

e
3MV

(qε∗V qε∗γ − pV pγ ε∗V ε∗γ)F s
V γ(t)
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F s
V γ

16B0 cm

M2
S − t

λSV
3 − 8

√
2B0 FV

M2
V

λV V
6 − 4

√
2B0 cm FV

M2
V (M2

S − t)
×

×
[
2λSV V

0 − pV pγ(λ
SV V
2 + 2λSV V

3 ) − M2
V (2λSV V

4 + λSV V
5 ))

]

ImΠV γ θ(t − M2
V )

(1 − M2
V /t)3

288π M2
V

e2 t2|F s
V γ |2

λSV V
2 + 2λSV V

3 = −4λV V
6

cm

4λSV V
0

M2
V

+ λSV V
2 + 2λSV V

3 − 4λSV V
4 − 2λSV V

5 = −4 λV V
6

cm

M2
S

M2
V

+
4
√

2λSV
3

FV

F̃ s
V γ = 0

11 Sµ
11 = 〈 γ (pγ, ε)S

−(pS)|d̄u|0 〉 = e qε∗F s
Sγ(t)

F s
Sγ

8 B0 cm

M2
S − t

ImΠSγ 0

Table A.4: Pseudoscalar form factors: amplitudes, defini-

tions, spectral functions and constraints.

1 Pµ
1 = 〈 π0(pπ)V −(pV , ε)|id̄γ5u|0 〉 = 1

MV
qε∗F p

V π(t)

F p
V π −2 B0

F

(√
2GV

M2
V

t + 4dm λPV
1

M2
V

M2
P − t

)

ImΠV π θ(t − M2
V )

(
t − M2

V

)3

64πM4
V t

|F p
V π|2

−
√

2GV + 4dm λPV
1 = 0 −→ F̃ p

V π(t) = −2
√

2B0 GV
F

M2
V M2

P

(M2
P − t)t

2 Pµ
2 = 〈S0

I=0(pS)π−(pπ)|id̄γ5u|0 〉 = F p
Sπ(t)

F p
Sπ

4B0 cm
F

− 2B0 cd
F

t − M2
S

t + 4B0 dm
F

M2
S − t

M2
P − t

λSP
1

ImΠSπ θ(t − M2
S)

1 − M2
S/t

16π |F p
Sπ(t)|2

λSP
1 = −2cm + cd

2dm
−→ F̃ p

Sπ = 4B0cm
F

M2
P − M2

S

M2
P − t

+ 2B0cd
F

M2
P

M2
P − t

(
M2

S
t − 1

)

3 Pµ
3 = 〈 V 0

I=1(pV , εV )A−(pA, εA)|id̄γ5u|0 〉
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Pµ
3

i
MV MA

(qε∗V qε∗A − pV pA ε∗V ε∗A)F p
V A(t) + i ε∗V ε∗A G p

V A(t)

F p
V A −4

√
2B0

[
− 2λV A

1 + 1
4 t( − 2(t + M2

V + M2
A)λV A

2 + 2M2
V λV A

3

− (t + M2
V − M2

A)(λV A
4 + 2λV A

5 )) + dm

M2
P − t

(2λPV A
0

−pV pA(λPV A
2 + 2λPV A

3 ) − M2
A(2λPV A

4 + λPV A
5 ) − M2

V λPV A
6 )

]

G p
V A −4

√
2B0MAMV

[
1
2t(2λ

V A
2 + λV A

3 ) + dm

M2
P − t

λPV A
1

]

ImΠV A θ(t − (MV + MA)2)
λ1/2(t, M2

V , M2
A)

16πt

{
− 6pApV

MAMV
Re{F s

RRG s
RR

∗}

+
4M2

AM2
V − t2 + (t − M2

V )2 + (t − M2
A)2

2M2
AM2

V

|F s
RR|2

+
10M2

AM2
V − t2 + (t − M2

V )2 + (t − M2
A)2

4M2
AM2

V

|G s
RR|2

}

λPV A
2 + 2λPV A

3 = 1
2dm

(
8λV A

1 + 2λV A
2 + λV A

4 + 2λV A
5

)

4λPV A
0 + (M2

V + M2
A)(λPV A

2 + 2λPV A
3 ) − M2

A(4λPV A
4 + 2λPV A

5 ) − 2M2
V λPV A

6 =

1
dm

(
4M2

P λV A
1 +(M2

P −M2
V −M2

A)λV A
2 +M2

V λV A
3 +1

2(M
2
P −M2

V +M2
A)(λV A

4 + 2λV A
5 )

)

2λPV A
1 = 1

dm

(
2λV A

2 + λV A
3

)

F̃ p
V A =

√
2B0 M2

P

(M2
P − t)t

[
2(M2

V +M2
A)λV A

2 −2M2
V λV A

3 +(M2
V −M2

A)(λV A
4 +2λV A

5 )
]

G̃ p
V A = −2

√
2B0

MAMV M2
P

(M2
P − t)t

(
2λV A

2 + λV A
3

)

4 Pµ
4 = 〈P 0

I=1(pP )V −(pV , ε)|id̄γ5u|0 〉 = 1
MV

qε∗F p
PV (t)

F p
PV 2

√
2B0

(
−M2

V
t λPV

1 − 2 dm M2
V

M2
P − t

λV PP

)

ImΠPV θ(t − (MP + MV )2)
λ3/2

(
t, M2

P , M2
V

)

64πM4
V t

|F p
PV |2

λV PP = 1
2dm

λPV
1 −→ F̃ p

V π = −2
√

2B0
M2

V M2
P

(M2
P − t)t

λPV
1

5 Pµ
5 = 〈S0

I=0(pS)A−(pA, ε)|id̄γ5u|0 〉 = i
MA

qε∗F p
SA(t)

F p
SA 2

√
2 B0

(
M2

A
t λSA

1 − 2 dm M2
A

M2
P − t

λSPA

)
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ImΠSA θ(t − (MS + MA)2)
λ3/2

(
t, M2

S, M2
A

)

64πM4
At

|F p
SA|2

λSPA = − 1
2dm

λSA
1 −→ F̃ p

SA = 2
√

2B0
M2

AM2
P

(M2
P − t)t

λSA
1

6 Pµ
6 = 〈S0

I=0(pS)P−(pP )|id̄γ5u|0 〉 = F p
SP (t)

F p
SP −4

√
2B0

[
λSP

2 − t + M2
S − M2

P
4 t λSP

1

+ dm

2 (M2
P − t)

(
2λSPP

0 + (t + M2
P − M2

S)λSPP
1

) ]

ImΠSP θ(t − (MS + MP )2)
λ1/2(t, M2

S, M2
P )

16πt |F p
SP (t)|2

λSPP
1 = − 1

2dm
λSP

1 + 2
dm

λSP
2

F̃ p
SP = − 4

√
2B0

M2
P − t

[(
−M2

SM2
P

4t +
M4

P
4t − 3M2

P
4 +

M2
S

2

)
λSP

1 +

+ (2M2
P − M2

S)λSP
2 + dmλSPP

0

]

7 Pµ
7 = 〈 γ (pγ , ε)π

−(pπ)|id̄γ5u|0 〉 = e qε∗F p
πγ(t)

F p
πγ

2
√

2B0 F
t

ImΠπγ 0

8 Pµ
8 = 〈 γ(pγ, εγ)A

−(pA, εA)|id̄γ5u|0 〉

Pµ
8

i e
MA

(qε∗γ qε∗A − pγpA ε∗γε
∗
A)F p

Aγ(t)

F p
Aγ

√
2FA B0

t −16B0 dm

M2
P − t

λPA
1 −4

√
2B0 FV

M2
V

{
− 2λV A

1 + 1
4 t

[
− 2(t + M2

A)λV A
2

−(t − M2
A)(λV A

4 + 2λV A
5 )

]
+ dm

M2
P − t

[
2λPV A

0 − pγpA(λPV A
2 + 2λPV A

3 )

−M2
A(2λPV A

4 + λPV A
5 )

]}

ImΠAγ θ(t − M2
A)

(1 − M2
A/t)3

32π M2
A

e2 t2|F p
Aγ|2

λPV A
2 + 2λPV A

3 = 1
2dm

(
8λV A

1 + 2λV A
2 + λV A

4 + 2λV A
5

)

4λPV A
0 + M2

A(λPV A
2 + 2λPV A

3 − 4λPV A
4 − 2λPV A

5 ) = 1
dm

(
4M2

P λV A
1 + (M2

P − M2
A)λV A

2

+ 1
2(M2

P + M2
A)(λV A

4 + 2λV A
5 )

)
− M2

V

2
√

2FV dm

(√
2FA + 16dmλPA

1

)
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F̃ p
Aγ =

√
2B0 M2

P

(M2
P − t)t

[
FA − FV

M2
V

(
−2M2

AλV A
2 + M2

A(λV A
4 + 2λV A

5 )
) ]

9 P9 = 〈 γ (pγ , ε
∗)P−(pP )|id̄γ5u|0 〉 = e qεF p

Pγ(t)

F p
Pγ

8 B0 dm

M2
P − t

ImΠPγ 0

Table A.5: Form Factors with extra multiplets V ′ and A′.

Vector form factor to ππ

F v
ππ 1 + FV GV

F 2
t

M2
V − t

+ FV ′GV ′

F 2
t

M2
V ′ − t

FV GV + FV ′ GV ′ = F 2

F̃ v
ππ

M2
V

M2
V − t

+ O(ǫ)

Vector form factor 3 to Pπ

F v
Pπ

2λPV
1 FV

F
1

M2
V − t

+
2λPV ′

1 FV ′

F
1

M2
V ′ − t

FV λPV
1 + FV ′ λPV ′

1 = 0

F̃ v
Pπ

F√
2 dm

M2
V ′ − M2

V

(M2
V − t)(M2

V ′ − t)
+ O(ǫ)

Vector form factor 4 to Aπ

F v
Aπ

FA
F + FV

F
M2

A − t
M2

V − t

[
− 2λV A

2 + 2λV A
3 − λV A

4 − 2λV A
5

]

+ FV ′

F
M2

A − t
M2

V ′ − t

[
− 2λV ′A

2 + 2λV ′A
3 − λV ′A

4 − 2λV ′A
5

]

G v
Aπ

2FV
F

M2
A

M2
V − t

[
− 2λV A

2 + λV A
3

]
+ 2FV ′

F
M2

A

M2
V ′ − t

[
− 2λV ′A

2 + λV ′A
3

]

FA+FV

(
−2λV A

2 + 2λV A
3 − λV A

4 − 2λV A
5

)
+FV ′

(
−2λV ′A

2 + 2λV ′A
3 − λV ′A

4 − 2λV ′A
5

)
= 0

FV

(
−2λV A

2 + λV A
3

)
+ FV ′

(
−2λV ′A

2 + λV ′A
3

)
= 0

3We use here the constraint coming from the pseudoscalar form factor to V π (Table A.4).
4 The constraints of Eqs. (4.24) have been employed.
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F̃ v
Aπ

FA
F

M2
V ′ − M2

A

M2
V ′ − t

− F 2
V

FFA

(M2
A − t)(M2

V ′ − M2
V )

(M2
V − t)(M2

V ′ − t)
+ O(ǫ)

G̃ v
Aπ − 2FM2

A
FA

M2
V ′ − M2

V

(M2
V − t)(M2

V ′ − t)
+ O(ǫ)

Axial form factor 5 to Sπ

F a
Sπ

2cd
F −

√
2FA
F

t
M2

A − q2 λSA
1 −

√
2FA′

F
q2

M2
A′ − q2λSA′

1

FAλSA
1 + FA′λSA′

1 = −
√

2cd

F̃ a
Sπ

2cd
F

M2
A′

M2
A′ − t

Axial form factor 4 to V π

F a
V π − FV

F +2GV
F −2GV

F
M2

V
t +FA

F
t

M2
A − q2

(
M2

V

q2 − 1

)[
− 2λV A

2 + λV A
4 + 2λV A

5

]

+FA′

F
t

M2
A′ − q2

(
M2

V

q2 − 1

)[
− 2λV A′

2 + λV A′

4 + 2λV A′

5

]

G a
V π − 2GV

F
M2

V
t +2FA

F
M2

V

M2
A − t

[
− 2λV A

2 + λV A
3

]
+2FA′

F
M2

V

M2
A′ − t

[
− 2λV A′

2 + λV A′

3

]

FA

(
2λV A

2 − λV A
4 − 2λV A

5

)
+ FA′

(
2λV A′

2 − λV A′

4 − 2λV A′

5

)
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G̃ a
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F
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V M2
A

(M2
A − q2)q2 + O(ǫ)

B. One-loop corrections Π(t)|m1,m2

B.1 Single resonance approximation

In this appendix we show the explicit form of the one-loop corrections generated by

the considered two-particle absorptive cuts, which have been calculated by using the

dispersive method discussed in section 4. Note that the different Π(t)|Rπ include the

factor 2 that accounts that, for instance, the axial correlator gains contributions both

from the ρ0π− and ρ−π0 channels. These expressions can be simplified by means of

the large–NC relations in Eqs. (4.8), (4.9) and (4.10), which relate the resonance

5Note that we have used the constraint coming from the scalar form factor to Aπ (Table A.3).

– 40 –



masses and the couplings FV , GV , FA, cd:
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Π(t)|Pπ = 0 . (B.4)

B.2 Contributions from extra multiplets V ′, A′

Now we give the explicit expressions of the one-loop resonance corrections in the case

of considering an extra multiplet for V ′ and A′. In the case of the V π cut, the result

is the same as in the SRA, i.e. Eq. (B.1). For the case of the Sπ one can use the

result in the SRA, with only changing MA to MA′ everywhere. For the other ones,
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one finds
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In section 4.2 the high-energy behaviour of the correlator is expressed in terms

of the functions ξ
(m)
m1m2 , which read
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Finally, we present the required functions for the determination of the chiral

couplings Lr
10(µ) and Cr

87(µ), χ
(1)
m1m2 and χ

(2)
m1m2 respectively. They depend only on

the resonance masses.
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χ
(1)
Pπ = 2

(
1 − M2

V

M2
V ′

) (
M4

P

M2
V M2

V ′

− M4
P

M4
V

+
M4

P M2
V ′

M6
V

− M2
P

M2
V

− M2
P M2

V ′
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P
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P
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V ′
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V ′

M2
P
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χ
(1)
V π =

(
7−30M2

V

M2
A

+
21M4

V

M4
A

+
8M6

V

M6
A

)
ln

(
M2

A

M2
V

−1

)
+

8M4
V

M4
A

+
25M2

V

M2
A

−101

6
+

M2
A

M2
V

,(B.19)

χ
(2)
V π =
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ln
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C. Dispersive relation

In the purely perturbative calculation (without Dyson resummations) and under the

Single Resonance Approximation, the two-point function at next-to-leading order in

the 1/NC expansion reads as:

Π(t) =
D(t)

(
M2

R − t
)2 , (C.1)

where MR is the mass of the corresponding resonance in the s–channel, and D(t) is

an analytical function except for the unitarity logarithmic branch (without poles).
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Figure 3: Integration circuit.

In order to recover the correlator, the complex integration in the circuit of Fig-

ure 3 is performed:

Π(s) =
1

2πi

∮
dt

Π(t)

t − s
. (C.2)

If it is assumed that |Π(t)| → 0 when |t| → ∞, the contribution from the external

circle of the circuit is zero and it is found that:

Π(t) =
∑

m1,m2

Π(t)|m1,m2 −
ReD′(M2

R)

M2
R − q2 +

ReD(M2
R)

(
M2

R − q2
)2 , (C.3)

with D′(t) ≡ d
dt

D(t) and with the different contributions of each two-meson absorp-

tive cut given by the dispersive integral,

Π(s)|m1,m2 = lim
ǫ→0

[∫ M2
R
−ǫ

0

dt
1

π

ImΠ(t)|m1,m2

t − s
+

∫ ∞

M2
R

+ǫ

dt
1

π

ImΠ(t)|m1,m2

t − s

− 2

πǫ
lim

t→M2
R

{
(M2

R − t)2 ImΠ(t)|m1,m2

t − s

} ]
, (C.4)

where MR is the mass of the intermediate resonance produced in the m1, m2 form-

factor.

From Eq. (C.3), one notices that, as soon as the value of the real part of D(t)

and its first derivative are fixed at M2
R, the whole correlator becomes fixed by them

and the spectral function at t 6= M2
R. This corresponds to providing a renormalization

prescription for the corresponding coupling and resonance mass.

The fact that the spectral function vanishes at infinite momentum ensures that

there are no terms of the form Π(t) ∼ tm ln (−t), with m ≥ 0. Furthermore, the

polynomial terms Π(t) ∼ tm with m ≥ 0 must be also identically zero in order

to keep Π(t) → 0 at |t| → ∞. Hence, the expression in Eq. (C.3), is the general

expression for the correlator within the SRA. The inclusion of higher resonances can

be performed in a straightforward way.
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This means that although the presence of O(p4) χPT operators with NLO cou-

plings in 1/NC , L̃i, is not forbidden by the symmetry, the QCD short-distance be-

haviour imposes that, in our realization, they do not get renormalized, as suggested

in Ref. [15], and they do not contribute to the observable at the end of the day. This

provides a further understanding to the lack of running found in the L̃i couplings

in the one-loop analysis of the generating functional performed in Ref. [17] after

imposing the high-energy constraints.

C.1 Diagrammatic Calculation

For sake of simplicity we will refer now just to the vector correlator although the

extension to other channels is straightforward. At tree-level, it is found that

Π
V V

(t) =
2F 2

V

M2
V − t

. (C.5)

The resonance parameters FV and MV get renormalized at the next-to-leading order

in 1/NC (FV = F r
V + δFV and M2

V = M r 2
V + δM2

V ) in order to cancel the ultraviolet

divergences from the one-loop diagrams:

Π
V V

(t)|tree =
2 F r 2

V

M r 2
V − t

+
4 F r

V δFV

M r 2
V − t

− 2 F r 2
V δM2

V(
M2 r

V − t
)2 + O

(
1

NC

)
, (C.6)

Π
V V

(t)|1−loop =
D(t)|1−loop(
M r 2

V − t
)2 =

∑

m1,m2

Π(t)|m1,m2 +
c1 + γ1 λ∞

M r 2
V − t

+
c2 + γ2 λ∞(
M r 2

V − t
)2 , (C.7)

where c1,2 and γ1,2 are constants determined by the one-loop calculation. Taking into

account Eq. (C.3), one gets

c1 + γ1 λ∞ = −Re
{
D ′(M r 2

V )|1−loop

}
,

c2 + γ2 λ∞ = Re
{
D(M r 2

V )|1−loop

}
. (C.8)

All the relevant ultraviolet divergences are shown in Eq. (C.7). As mentioned

before, the polynomial divergences Π
V V

(t) ∼ γ−m tm λ∞ cannot produce any con-

tribution at the end of the day, so they exactly cancel at any energy. Once again,

considering well behaved correlators –and therefore form factors– at large energies is

crucial.

The renormalization procedure through the FV and MV counter-terms gives

4F r
V δFV + γ1 λ∞ = 0 ,

−2 F r 2
V δM r 2

V + γ2 λ∞ = 0 . (C.9)

The renormalized amplitude up to next-to-leading order in the 1/NC expansion

shows the general structure

Π
V V

(t) =
∑

m1,m2

Π(t)|m1,m2 +
2F r 2

V + c1

M r 2
V − t

+
c2(

M r 2
V − t

)2 . (C.10)
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The unknown subtraction constants c1 and c2 can be absorbed in a redefinition of

F r
V and M r

V . One can set them to zero, i.e., c1 = c2 = 0, and F r
V and M r

V result then

renormalization-scale independent.

C.2 Contribution from High-Mass Absorptive Cuts

Because of the approximation of neglecting intermediate states with two resonances,

made in section 4.4, it is convenient to analyse the effect on the χPT couplings of

absorptive cuts with higher and higher production thresholds. When the threshold

Λ2
th is above the resonance mass M2

R, one finds for the low energy limit q2 ≪ Λ2
th,

Π(q2)|ρ =

∫ ∞

Λ2
th

dt
1

π

ImΠ(t)

t − q2 =
∞∑

n=0

(
q2

Λ2
th

)n ∫ ∞

1

dx
1

π

Im Π(x · Λ2
th)

xn+1 . (C.11)

The contributions become smaller and smaller as the value of the production thresh-

old Λ2
th is increased, supporting the approximation in section 4.4.

On the other hand, in the deep euclidean region Q2 = −q2 ≫ Λ2
th, one gets

∣∣Π(q2)|ρ
∣∣ ≤ 1

Q2

∫ ∞

Λ2
th

dt
1

π
|ImΠ(t)| , (C.12)

which becomes smaller and smaller as Λ2
th is increased.

Note the importance of a well-behaved spectral function, that is, ImΠ(t) → ∞
at |t| → ∞, in order to be able to use the expressions of this appendix.
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