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Abstract 

A formula is proposed to calculate the chemical austenitising temperature derived by 

means of a neural network model. A wide range of compositions were used, allowing to predict 

changes of tendency in the slopes of the austenitisation temperature, consistent with the 

existence of a eutectoid composition. 
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1. Introduction 

One of the most important factors to take into account in designing a steel is the 

temperature at which austenite is the only stable phase present. This matter has been objective 

of research for long, the most well known done by Andrews [1], who proposed an empirical 

formula that works extremely good in a limited range of compositions. The aim of this paper is 

to extend the chemical compositions where the formula is applicable, as well as to find an 

expression that could account for the change of tendency when an eutectoid point is present. For 
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this purpose new modelling techniques like neural network and the latest of assessed 

thermodynamic data for steels, MTDATA, are used [2]. 

In normal regression methods, the analysis begins with a prior choice of a relationship 

(usually linear) between the output and the input variables. A neural network is capable of 

performing a greater variety of no-linear relationships of considerable complexity. Data are 

presented to the network in the form of input and output parameters, and the optimum non-

linear relationship is found by minimising a penalized likelihood. In effect the network tries out 

many kinds of relationships in its search for an optimum fit. As in regression analysis, the 

results consist of a function that relates the inputs to the outputs by a series of coefficients called 

“weights”. In spite of its apparent sophistication, the method is as blind as regression analysis, 

and neural networks can be susceptible to overfitting. This paper deals with the analysis of the 

influence of alloying elements such as Mn, Cr, Ni, Si and Mo, separately and together.  

First of all it is necessary to define the chemical austenitising temperature Tγ. Two 

possible definitions for the Tγ could be drawn: i) the minimum temperature at which only 

austenite exists (no carbides at all); ii) the temperature when ferrite disappear from the 

microstructure. Fig. 1 shows an example of an isopleth corresponding to the Fe-C-Ni alloy with 

0.85% of C. This simple example illustrates how different could be Tγ values and its tendencies. 

If the first Tγ  definition is assumed, open squares, it increases as Ni concentration does, while 

the tendency is opposite, decreasing Tγ with increasing Ni contents, if the second definition is 

used, solid squares in Fig. 1. 

The experimental data used to create the neural network model was collected from 

published data [3-6], where precipitates were detected although not identified, thereby the first 

Tγ definition will be use. 
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2. Experimental procedure: Construction of the model 

2.1. The technique 

Neural networks are parameterized non-linear models used for empirical regression and 

classification modelling. Their flexibility enables them to discover more complex relationships 

between the data than traditional linear statistical models.  

A neural network is ‘trained’ on a set of examples of input and output data. The 

outcome of the training is a set of coefficients (referred to as weights) and a specification of the 

functions which in combination with the weights relates the input to the output. The training 

process involves a search for the optimum non-linear relationship between the input and output 

data and is computer intensive. Once the network is trained, estimation of the outputs for any 

given inputs is very rapid. 

One of the difficulties with blind data modelling is that of ‘overfitting’, in which 

spurious details and noise in the training data are overrated by the model. This gives rise to 

solutions that generalize poorly. MacKay [7-8] has developed a particularly useful treatment of 

neural networks in a Bayesian framework, which allows for the calculation of error bars 

representing the uncertainty in the fitting parameters. The method recognises that there are 

many functions which can be fitted or extrapolated into uncertain regions of the input space, 

without unduly compromising the fit in adjacent regions which are rich in accurate data. Instead 

of calculating a unique set of weights, a probability distribution of sets of weights is used to 

define the fitting uncertainty. The error bars therefore become large when data are sparse or 

locally noisy.  

The Bayesian framework for neural networks has two further advantages. First, the 

significance of the input variables is automatically quantified. Consequently, the significance 
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perceived by the model of each input variable can be compared against metallurgical theory. 

Second, the network's predictions are accompanied by error bars which depend on the specific 

position in input space. These quantify the model's certainty about its predictions. 

 

2.2. The experimental database 

A complete description of the chemical composition and the transformation temperature 

is required to ideally model the Tγ temperature in steels. A search of the literature [3-6] allows 

us to collect 700 individual cases where detailed chemical composition and decomposition 

temperature were reported. Table 1 shows the list of 6 input variables used for the Tγ 

temperature analysis.  

Table 1. Variables that influence Tγ temperature in steels. SD is standard deviation. Concentrations are 

in wt.%.  

 Minimum Maximum Average SD 
C 0.00 2.09 0.41 0.31 

Mn 0.00 20.00 0.78 1.59 
Si 0.00 3.40 0.21 0.41 
Ni 0.00 40.00 1.32 3.49 
Cr 0.00 18.39 1.71 3.80 
Mo 0.00 5.09 0.28 0.76 

Tγ,(ºC) 440.00 1290.00 798.20 145.29 

 

2.3. The neural network analysis 

The aim is to be able to estimate Tγ temperature as a function of the input variables 

listed in Table 1. The network consists of three layers: the first layer consisting in six input 

nodes; the second one, a number of hidden nodes and finally an output node representing Tγ 

temperature. The network was trained using 350 examples randomly chosen from a total of 700 

available, the remaining 350 examples being used as ‘new’ experiments to test the trained 

network. 
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Chemical composition of each alloy element (xi) defines the inputs nodes, and the Tγ 

temperature, y, the output node. The function for a network of i hidden units is given by,  
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Notice that the complexity of the function is related to the number of hidden units but 

one hidden-unit model may not be sufficiently flexible. The availability of a sufficiently 

complex and flexible function means that the analysis is not as restricted as in linear regression 

where the form of the equation has to be specified before the analysis. Fig. 2 (a) shows that as 

expected, the inferred noise level of data (σv) [7] decreases monotonically as the number of 

hidden units increases. However, a high degree of complexity owing to a large number of 

hidden units may not be justified, and in an extreme case, the model may meaninglessly attempt 

to fit the noise in the experimental data. MacKay [8] has made a detailed study of this problem 

and has defined a quantity (the ‘evidence’), which comments on the probability of a model [8]. 

In circumstances where two models give similar results over the known data set, the more 

probable model would be predicted to be the simplest one; this simple model would have a 

higher value of evidence. The evidence framework was used to control the regularization 

constants and σv [8]. 

To find out the optimum number of hidden units of the model, the following procedure 

was used. The experimental data were partitioned equally and randomly into a test dataset and a 

training dataset. Only the latter was used to train the model, whose ability to generalize was 
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examined by checking its performance on the unseen test data. The test error (Ten) [7] is a 

reflection of the ability of the model to predict the output value in the test data: 

( )∑ −=
n

2
nnen ty5.0T  

(3) 

where yn is the set of predictions made by the model and tn is the set of target 

(experimental) values. In Fig. 2(b), it can be seen that the calculated test error for this Tγ 

temperature model goes through a minimum at eleven hidden units, Ten =0.285. Therefore, the 

optimum model is that which considers only eleven hidden units. The level of agreement for the 

training and the test data is shown in Fig. 3(a) and (b); good predictions occur in both instances. 

However, it is possible that a committee of models can make a more reliable prediction 

than an individual model. A committee of seven best models gives a value of Ten = 0.273. 

Therefore, the neural network model used to calculate the Tγ temperature in this paper is a 

committee of seven best models. Comparison between the calculated and measured values of Tγ 

temperature for the training and test data is shown in Fig.4 for the best committee (consisting of 

seven best models).  

2.4. Significance of input variables 

Fig.5 illustrates the significance (σw) [7] of each of the input variables, as perceived by 

the neural network, in influencing the Tγ temperature. The carbon content together with 

chromium content clearly has a large intrinsic effect, which is consistent with experimental 

evidences reported in the literature for decades. The content in manganese in the steel also have 

a significant effect on Tγ temperature, as it was well established in literature [3], meanwhile the 

influence of silicon, nickel and molybdenum is moderate. 
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3. Results and discussion 

3.1. Use of the model 

A neural network model was used to analyse, in a first step, the evolution of the Tγ 

temperature in binary systems. In this sense, Fig. 6(a) shows the evolution of Tγ temperature 

with carbon content for Fe-C steels. Solid line represents the model predictions meanwhile 

dashed lines represent the error bounds. 

It is clear from Fig. 6(b) that no phase transition between γ →α it is possible for 

chromium content higher than 14 wt.% since error bounds increase considerably. Likewise, a 

similar effect with increasing molybdenum content is detected, i.e. no γ →α transformation for 

molybdenum content higher than 3.8 wt.% is produced which is in accordance with phase 

diagram assessments, Fig. 6(c).  

Likewise, it is worth mentioning the change in tendency in Tγ temperature in Fig. 6(b) 

with chromium content. In this sense, a decrease in Tγ temperature is expected as chromium 

content increases up to 8 wt.%, meanwhile a rise in Tγ temperature values is obtained for further 

amounts of chromium, which is consistent with Fe-Cr phase binary diagram predictions. 

Fig. 6(e) shows evolution of Tγ temperature with Mn content, meanwhile Fig. 6(f) 

shows the evolution of Tγ increasing the content in nickel. It is shown that Tγ temperature 

monotonically decreases as Mn and/or Ni content increase, which is in agreement with 

respective binary phase diagrams. 

4. Validation of the neural network model  

The created neural network model has been validated using MTDATA [2] together with 

the NPL database, the latest of assessed thermodynamic data for steels. A series of equilibrium 

calculations on Fe-C-X ternary alloys, where X stands for Cr, Mo, Ni, Mn and Si, were selected 
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for the validation. Table 2 shows the range of chemical compositions used for the calculations. 

The evolution of phase fractions for steels at a variety of temperatures was calculated allowing 

for the potential existence of cementite, ferrite and austenite in all cases. In some systems others 

phases were included, such as CMo2 and M6C in Mo containing alloys and M7C3 and M23C6 in 

Cr alloys, where M stands for substitutional elements. 

Table 2. Theoretical range of chemical compositions studied (wt.%). Fe is set to balance. 

C Mn Ni Si Mo Cr 
0.08-0.85 0-2 0-9 0-2.1 0-5 0-18

Results thus obtained were plotted against the predictions obtained by the model, Fig. 7, 

showing the good level of agreement achieved, especially in the systems containing Si, Mn and 

Ni. Due to the complex phase diagrams of some Mo and Cr steels, is not surprising that they 

exhibit a higher discrepancy, but in all cases it lays within the error bars limits, therefore 

validating the created model. 

5. Determination of a new formula for the Tγ temperature 

Determination of an equation that summarises the knowledge provided by the neural 

network model created will allow making a much easier use of it.  

In order to obtain a formula for the Tγ temperature is necessary to disclose the effect of 

different alloying elements. The same compositions shown in Table 2, but increasing the C up 

to 1.5 wt.%, were used. A paraboloid type equation, rather than lineal, is found to be a better 

approximation to take into account the different tendency of the Tγ temperature once the 

eutectoid point is pass, equation 4  

Tγ (ºC) = To– t1 [C]1/2 + t2 [X]+ t3 [C] [X] + t4 [C]2 + t5 [X]2 (4) 

where To stands for the Tγ temperature for pure-iron, [C] and [X] stands for the mass 

percentage of carbon and other alloying elements, and ti (i=1…5) represent fitting constants. 
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The equation keeps the square root dependence for carbon proposed by Andrews [1], and it also 

includes terms that take into account the interaction of C-alloying element, C X, and a square 

dependence of both. 

Due to the fact that Fe and C have the largest effect on the Tγ, before everything else, 

their fitting constants were determined. After a first set of calculations a mean value of 922 oC 

for the independent term To, and −233 and 67.5 for the carbon coefficients t1 and t4, was 

obtained. Fixing these values, a second set was perform to reveal the values for the remaining 

constants, see Table 3. 

 

Table 3. Fitting parameters obtained for equation 4. To = 922, t1 = -233 and t4 = 67.5 were fixed values. 

X t2 t3 t5 
Cr -5.7 30.2 1.3 
Ni -26.3 34.2 0.5 
Si 64.7 -65.7 4.1 

Mo 41.9 -4.2 10.9 
Mn -14.3 32.7 -8.4 

Equation 4 was tested against the original data used by Andrews [11-12], which range 

of applicability is up to 0.6 wt.% for C, 2 wt.% for Mn, 5 wt.% for Ni, 1.78 wt.% for Si, 1 wt.% 

for Mo and 4.5 wt.% for Cr. The extent of agreement is reasonable good, (R2= 0.84) given the 

range of compositions and temperatures involved, as illustrates Fig. 8 (a). Table 4 was used to 

test the reliability of the model, and to compare with predictions obtained by the classical 

Andrews equation. 

Table 4. Range of chemical compositions in (wt.%). 

Fe-C-Mn-X C Mn X 
Cr 0.2 1.5 1-10 
Ni 0.6 1.5 1-9 
Mo 0.2 1.5 0.5-3.5
Si 0.8 1.5 0-2 
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As it is clear from Fig. 8(b) and (c) a change of slope in the Tγ is predicted, which is 

consistent with the existence of an eutectoid concentration. Such prediction is impossible using 

a linear type equation like Andrew’s. 

Finally it is worth mentioning that equation 4 allows us to extend the Tγ calculation to 

heavily alloyed steels, where Andrews equation is unable to perform reliable predictions since 

those steels are out of its range of applicability, Fig. 8(b) to (e). 

6. Conclusions 

Modelling of the austenitising temperature, Tγ, is carried out in this paper. An artificial 

neural network method based on a Bayesian framework has been used to rationalize the 

published data on Tγ in steels. The analysis is empirical but after appropriate training, it is found 

to reliably reproduce known metallurgical experience. The method is useful because the 

optimised network summarizes knowledge in a quantitative manner and can be retrained as new 

data became available. This model is different to those empirical and semi-empirical models 

created by fitting equations to experimental data. 

A new equation to predict Tγ temperature has been proposed. The range of applicability 

of the proposed equation widen that proposed by Andrews [1] in close to 4 wt.% for Ni and Mo, 

about 14wt.% for Cr and 1 wt.% for C. This wide composition range, allow predicting change 

of tendency in the slope of Tγ consistent with the existence of eutectoid compositions. 
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Figure captions 

Figure 1. Carbon isopleth of the Fe-C-Ni system .C is 0.85 wt.% and Ni varies from 0 

to 9 wt.%, Fe is set to balance. FCC_A1 and BCC_A2 stand for austenite and ferrite 

respectively. 

Figure 2. Variation of (a) inferred noise level (σv), and (b) test error (Ten) as a function 

of the number of hidden units. 

Figure 3. Comparison between calculated and measured Tγ temperature values: (a) 

training data and (b) test data. 

Figure 4. Comparison between the calculated and measured values of Tγ temperature 

using the seven models committee. 

Figure 5. Bar chart showing the significance (σw) of input variables influencing in Tγ 

temperature perceived by the model. 

Figure 6. Evolution of Tγ with (a) carbon content in a Fe-C phase diagram, (b) 

chromium content in a Fe-Cr phase diagram, (c) molybdenum content in a Fe-Mo diagram, (d) 

silicon content in a Fe-Si diagram, (e) manganese content in a Fe-Mn diagram and (f) nickel 

content in a Fe-Ni diagram. 

Figure 7. Comparison between MTDATA calculations and Neural Networks 

predictions for the Tγ  in some ternary systems. 

Figure 8. (a) Plot of the data measured versus calculated according to equation 4 and 

Table 3. Comparison of the results obtained by MTDATA, equation 4 and those predicted by 

Andrews in quaternary alloys according to Table 4, (b) Cr, (c) Ni, (d) Mo and (e) Si containing 

quaternary alloys 
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Figure 1. Carbon isopleth of the Fe-C-Ni system .C is 0.85 wt.% and Ni varies from 0 to 9 wt.%, Fe is set to 

balance. FCC_A1 and BCC_A2 stand for austenite and ferrite respectively. 
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Figure 2. Variation of (a) inferred noise level (σv), and (b) test error (Ten) as a function of the number of hidden 

units. 
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Figure 3. Comparison between calculated and measured Tγ temperature values: (a) training data and (b) test data. 
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Figure 4. Comparison between the calculated and measured values of Tγ temperature using the seven models 

committee. 
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Figure 5. Bar chart showing the significance (σw) of input variables influencing in Tγ temperature perceived by 

the model. 
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Figure 6. Evolution of Tγ with (a) carbon content in a Fe-C phase diagram, (b) chromium content in a Fe-Cr phase 

diagram, (c) molybdenum content in a Fe-Mo diagram, (d) silicon content in a Fe-Si diagram, (e) manganese 

content in a Fe-Mn diagram and (f) nickel content in a Fe-Ni diagram. 
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Figure 7. Comparison between MTDATA 

calculations and Neural Networks predictions for the 

Tγ  in some ternary systems. 
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Figure 8. (a) Plot of the data measured versus 

calculated according to equation 4 and Table 3. 

Comparison of the results obtained by MTDATA, 

equation 4 and those predicted by Andrews in 

quaternary alloys according to Table 4, (b) Cr, (c) Ni, 

(d) Mo and (e) Si containing quaternary alloys. 
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