
SIMULATING THE EFFECTS OF EXTREME DRY AND WET YEARS ON THE 

WATER USE OF FLOODING-IRRIGATED MAIZE IN A MEDITERRANEAN 

LANDPLANE. 

1 

2 

3 

4 

5 

6 

8 

10 

11 

12 

13 

14 

15 

 

Angel Utset1*, Antonio Martínez-Cob2, Imma Farré3, José Cavero2 

 

1. Researcher, Agrarian Technological Institute of Castilla y Leon (ITACYL), 7 

Apdo. 172, 47080 Valladolid, Spain. 

2. Tenure Scientist, Dpto. Genética y Producción Vegetal (EEAD), Lab. Asociado 9 

Agronomía y Medio Ambiente (DGA-CSIC), Apdo. 202, 50080 Zaragoza, 

Spain. 

3. Department of Agriculture Western Australia, 3 Baron-Hay Court, South Perth, 

WA, 6151, Australia 

 

* Corresponding author 

Email: utssuaan@itacyl.es 16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Telephone: +34 983410436 

FAX: +34 983414780 

 

 

ABSTRACT 

The effects of years of extreme rainfall events on maize water-use under traditional 

flooding irrigation in a Mediterranean landplane were estimated through a simulation 

assessment; combining a weather generator with an agrohydrological simulation model.  

Two options: “Fully Irrigation” and “Deficit Irrigation” were considered in the 

mailto:utssuaan@itacyl.es


simulations as the extreme water-management situations. Besides, a 2-m depth shallow 

water table and Free Drainage were considered as the typical extreme situations that can 

be found at the bottom of the simulated soil layer. Thirty “Dry” (DY) and “Wet” (WY) 

years were randomly selected from the weather generator output. The model SWAP was 

used to simulate the Relative Transpiration (RT), i.e. ratio between actual and maximum 

maize transpiration, Actual Maize Evapotranspiration (ETC), Percolated Water and 

Capillary Rising during wet and dry years and for each of the irrigation and bottom 

condition options. According to the modelling results, average mean RT is about 80% 

and 90% in dry and wet years, respectively. RT and ETC variability are very high under 

dry conditions although such variability is notably reduced if a suitable irrigation option 

is considered. Capillary rising can play a very important role during dry years in those 

places where irrigation is not enough, but water table is relatively shallower. On the 

other hand, a shallower water table can carry out RT reductions during wet years, due to 

water excess, although these negative effects are comparatively lower than those 

produced by rain scarcity. Besides, percolated water during wet years is very high, 

particularly in well irrigated farms.  
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Irrigation is needed to achieve reliable maize yields at the landplanes of Spain and other 

Mediterranean countries. Flooding irrigation has been traditionally conducted and it is 

still the most common irrigation method in the Mediterranean area. Due to 

environmental and water-constraint issues, a quite large irrigation modernisation is 

being conducted in Spain (Beceiro, 2003), aimed to replace flooding by sprinkler and 

other more-efficient techniques with governmental aids. However, it usually implies 

large investments and farmers need to be convinced that modernisation is worthy 

enough. Maize water-management in Spanish landplanes has been established by 

farmers through the historical experience (Farre, 1998). Flooding irrigation management 

depends on water-availability in some specific days, as well as on ancient “water rights” 

that are very inefficient under variable climate conditions (Neira et al., 2005). 

However, global climate seems to be changing (IPCC, 2001). Olensen and Bindi (2002) 

predicted reduced cereal productivity in the Mediterranean countries, due to water-

availability constraints in a future warmer and drier climate. On the other hand, climate 

variability and the frequency of extreme event could be incremented in the near future 

as a consequence of climate change (IPCC, 2001). Weather variability has been 

estimated as the most important climate-change risk in agriculture (Katz and Brown, 

1992; Mearns et al., 1996; Riha et al., 1996; Rosenzweig et al., 2002).  

Traditional flooding-irrigation management might be probably not enough to fulfil the 

crop-water requirements in the near future, particularly if droughts become more 

frequent. Besides, not only droughts but also heavy rainfalls might affect cropping 

systems. Rosenzweig et al. (2002) draw attention over the possible water-excess effects 

on crop yields, as result of extreme rainfall events associated to climate change. 

Modelling assessments could help to estimate how inefficient flooding irrigation could 



be under variable weather conditions, as well as to support the decision of where and 

how to invest in irrigation, taking in account climate variability. These assessments can 

be done combining climate scenarios and crop-growth simulation models (Sivakumar, 

2000; Hoogenboom, 2000). 
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Several long-term assessments of global-change effects on Mediterranean agriculture 

appeared in the last years (Guereña et al., 2000; Wolf and Oijen, 2003; Villalobos and 

Fereres, 2004; Chartzoulakis and Psarras, 2005). Most of these predictive assessments 

considered the positive effects of the future atmospheric CO2 rising (IPCC, 2001). 

Nevertheless, recent results point out that these CO2-due positive effects have been 

overestimated in modelling approaches (Craft-Brandner & Salvucci, 2004; Aisnworth & 

Long., 2005), which reduces the reliability of such long-term assessment results for 

practical decisions concerning irrigation and other crop-management issues. 

However, the same modelling tools can be used to estimate the effects of climate 

variability at a more short term. Agricultural impacts of climate variability rather than 

long-term climate change impacts have received more attention in the last years 

(Sivakumar, 2005).  

The weather generators have been used in many of the assessments regarding climate 

effects on agriculture, as well as several other downscaling tools (Hoogenboom, 2000; 

Wilby and Wigley, 2001). A weather generator produces synthetic daily time series of 

climatic variables that can be used as input in crop models (Hoogenboom, 2000; 

Semenov and Jamieson, 2001). The weather generator usually mimics correctly the 

mean values of the climatic variables but underestimates their variability (Gregory et al., 

1993; Mearns et al., 1996; Mavromatis and Jones, 1998; Semenov and Jamieson, 2001; 

Mavromatis and Hansen, 2001; Wilby and Wigley, 2001).   



On the other hand, despite many crop-growth simulation models are currently available, 

only mechanistic models, i.e. those based on the physical laws of the soil-water-plant-

atmosphere continuum, are able to account on all the possible weather, soil and crop 

management that can be found (Hoogenboom, 2000). According to Eatherall (1997), 

mechanistic models should be used for assessing climate variability impacts on crop 

yields, rather than non-mechanistic or statistically based models. Particularly, those 

models that simulate soil-water movement solving the Richards equation, produce better 

results than the model based on the “cascade approach” (Ritchie, 1998) since they are 

able to simulate capillary rising, fast and slow drainage and other processes that occur in 

nature (Gabrielle et al., 1995; Maraux et al., 1998; Mastrorilli et al., 2003). 
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Accordingly, this paper is aimed to assess the reliability of maize flooding-irrigation 

management under the extreme drought and heavy rainfall conditions. The assessment 

is based on extreme-weather scenarios obtained from a weather generator, used as input 

of a mechanistic water-use simulation model. 

 

MATERIALS AND METHODS. 

General experimental features 

The simulations were conducted at Zaragoza (41º 43’ N, 0º 48’ W, 225 m altitude), 

which is located in the Ebro Valley, Northern Spain. The climate in the experimental 

site is Mediterranean semiarid, with mean annual maximum and minimum daily air 

temperatures of 21 and 8 ºC, precipitation of 353 mm, air relative humidity of 74% and 

average wind speed at 2m height of 2.4 m/s (Faci et al., 1994).  

The soil is Typic Xerofluvent. Cavero et al. (2000) reported some physical and chemical 

soil properties of the experimental area which comprises texture, soil bulk density and 

organic matter content. 



Although the sprinkler irrigated area has increased dramatically in the last 20 years 

(ANPC, 2003), flooding irrigation is the most common water-supply technique in the 

maize growing in the zone. The irrigation timing and water depths in such 

Mediterranean flooding-irrigation systems are quite variable (Neira et al., 2005).  Farre 

(1998) evaluated ten flooding irrigation managements at different maize stages. A “Full 

Irrigated” (FI) option comprised nine irrigations with an average water depth of 65 mm 

at each 15 days. On the opposite, a “Deficit Irrigation” (DI) option comprised only 3 

irrigation events with the same average depths. The Farre (1998) results were highly 

dependant on the yearly weather behaviour. However, significant differences between 

the “Fully Irrigated” and the “Deficit Irrigated” options were found at all the 

experimental years. Despite the variability in irrigation managements across the 

Mediterranean flooding-irrigation systems, most of them fall between these FI and DI 

options (Neira et al., 2005). Consequently, these two irrigation managements were 

chosen as the extreme representative alternatives to be evaluated under drought and 

heavy rainfall conditions. 
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The generated weather scenarios 

A daily climate series of maximum and minimum temperatures, global soil radiation 

and precipitation were available from 1971 to 2002 at the experimental site. Since maize 

crop season is comprised between May and October (Farre, 1998), only accumulated 

rain during these months was considered as “effective precipitation” (EP). Table I 

shows the statistics of the local precipitation series considering both, the yearly 

accumulated and the effective precipitation. Table I shows also the 10th and 9th 

percentiles of both precipitation distributions, since rainfalls under or above these 

percentiles can be considered as extreme events (IPCC, 2001). Effective Precipitation is 



almost half the mean total yearly precipitation. However, it is more variable than 

considering the whole year. Besides, the absolute minimum EP and particularly the 10th 

percentile are considerably lower than the corresponding values considering the whole 

year. It means that droughts are more probable during the maize crop season, in the 

summer months, than during the winter.  
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Despite of two particular wet or dry years can show similar total rainfall, precipitation 

distribution within the year can yield to very different agricultural consequences. 

Therefore, the number of rainy days i.e. recorded rainfall higher than 0.1 mm, was 

considered in the analysis. Besides, the number of events with daily rainfall above the 

90th percentile was used as another index of extreme precipitation conditions. This index 

was considered by Sanchez et al. (2004) while simulating future climate events in the 

Mediterranean area. The 90th percentile of the recorded rainfall data is 14.0. 

The LARS-WG weather generator (Semenov and Barrow, 2002) was used in present 

study. LARS-WG is one of the two more frequently reported weather generators (Wilby 

and Wigley, 2001). LARS-WG results were as accurate as those obtained with WGEN 

and other weather generators (Mavromatis and Jones, 1998; Semenov et al., 1998; 

Mavromatis and Hansen, 2001). The available local series was used to obtain five 

hundred realizations of daily values of precipitation, temperatures and global radiation 

from LARS-WG.  

Thirty droughts (DY) and severe rainfall (WY) years were randomly selected from the 

500 realizations obtained from LARS-WG. Dry years were considered as those when 

EP was lower than the corresponding 10th percentile; whereas severe rainfall years were 

those when EP was higher than the 90th percentile. According to Hansen et al. (2005), 

constraining the weather generator outputs is a better approach than adjusting the 

generator input parameters in order to produce reliable weather data. 
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The mechanistic water-use simulation model. 

The Maize water-use at each DY and WY was simulated through the physically-based 

model SWAP (Van Dam et al. 1997). SWAP is a functional combination of advanced 

soil water simulation models and a crop-growth simulation model. The Richards 

equation for soil-water movement is solved in SWAP by a numerical scheme, including 

several practical options for the initial and boundary conditions, as well as a “sink” term 

according to the Feddes et al. (1978) root-water uptake function. This function depends 

on soil water pressure head, h, and the maximum extraction rate, Smax. 

max)()( ShhS ⋅=α  [1.] 
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where α (h) is a coefficient which takes values from zero to one, according to the soil 

water potential. 

Maximum uptake, Smax, is calculated for a homogeneously distributed rooted zone, 

according to: 
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where Tpot is the maximum possible transpiration rate and zr is the rooting depth. 

The Feddes et al. (1978) function has the advantage that accounts not only for the crop 

transpiration reductions due to lower soil-water contents, but also for the reductions 

related to soil-water excess conditions. Utset et al. (2000) reported values of the α (h) 

coefficient in the Feddes et al. (1978) function lower than one, immediately after heavy 

rainfalls and directly related to near-zero soil water potentials.  

The soil hydraulic properties, as required in SWAP inputs, were estimated from the 

pedotransfer functions proposed by Rawls et al. (1982) and Rawls et al. (1998). 

Physical soil data needed for these estimations, i.e. mechanical composition, soil 

density, and soil organic matter content, were obtained from published data (Farré, 



1998; Cavero et al., 2000). Table II shows the soil physical measured data and the 

corresponding estimated soil hydraulic properties at each soil layer. According to 

Cavero et al., 2000, the soil at the study site can be considered as well drained and 

representative of all the soils in the zone. Furthermore, the estimated Van Genuchten’ 

coefficients also correspond to a well-drained loam soil (Carsel and Parrish, 1988).  
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The measured field capacity soil-water contents (Farré, 1998) were considered as the 

initial conditions for SWAP simulations. The maize crop function included in SWAP 

(Van Dam et al., 1997) was used for the crop water-uptake calculations. Maize seeding 

and harvest dates were assumed as May 15 and October 15, respectively, which agree 

with the traditional crop management in the zone (Farre, 1998). A 1-m soil depth was 

considered to simulate the soil-water balance, because it corresponds to the observed 

maximum maize root-length (Farre, 1998). 

Since traditional maize cropping-areas are usually located nearby rivers and channels, a 

relatively shallower water-table could be expected. However, water-table depth is quite 

variable and it can be found between 1 and 30 m (ANPC, 2003). Therefore, two 

different bottom boundary conditions were considered: (i) A 2 m depth water-table, 

representative of the shallower extreme case and (ii) Free drainage at the bottom of the 

1m-depth soil layer considered for simulations. 

The Priestley and Taylor (1972) reference-evapotranspiration method, as well as the 

maize coefficients provided by Doorenbos and Pruitt (1977) were used for calculating 

the maize daily evapotranspiration, assumed as the top boundary condition in Richards-

equation parameterization. Martínez-Cob (2002) pointed out that the Priestley and 

Taylor (1972) reference-evapotranspiration calculations under the semi-arid and windy 

Mediterranean-planes conditions, could be significantly lower than those obtained 

through the physically-based Penman-Monteith approach, presently considered as the 



state-of-the art in such calculations (Allen et al., 1998; Smith, 2000). However, if the 

Priestly and Taylor (1972) calculated evapotranspirations are used as SWAP input, the 

model yields statistically equivalent results than those obtained considering the 

evapotranspirations calculated by the Penman-Monteith approach (Utset et al., 2004). 
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SWAP simulations were conducted at each of the thirty dry and wet years, considering 

each of the two extreme irrigation-management options described above, FI and DI, as 

well as each of the two different bottom boundary conditions, corresponding to 

shallower or deeper water-tables. Simulation results comprised maximum and actual 

maize transpiration, maximum and actual soil evaporation, runoff, capillary rising and 

percolated water. Effective precipitation and Total Water Supply (TWS), i.e. effective 

precipitation plus irrigation, were estimated at each case. Maximum and actual maize 

evapotranspiration were calculated from the simulated results, as well as the Relative 

transpiration (RT), i.e. the ratio between actual and maximum transpiration. Relative 

Transpiration is directly related to crop yields and to the fulfilment measure of crop-

water requirements (Smith, 1992). Therefore, RT was assumed as an irrigation-

efficiency index in our assessment. 

 

RESULTS AND DISCUSSION 

Figure 1 depicts the effective precipitation during the dry and wet years. The 

corresponding 10th and 90th percentiles are drawn in the figure as broken lines. Besides, 

Table I shows the EP summary statistics during DY and WY. Despite standard 

deviations in WY is higher than that found in DY, the corresponding coefficient of 

variation is considerably low. LARS-WG and other weather generators usually 

underestimate the inter-annual variability (Wilby and Wigley, 2001). However, the 



results shown in Table I clearly indicate that rainfall variability during dry years is 

higher than during wet years. 
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The number of rainy days in dry years (NRDY) is much lower than in extreme wet 

years, as expected. Variability in number of rainy days is also higher during dry years. 

Furthermore, the average number of heavy rainfall days during the simulated extremely 

wet years is 9.8, four times greater than the corresponding average number in dry years.  

Considering both extremely wet and dry years in the statistical analysis, the RT mean is 

still relatively good.  However, the RT absolute minimum in both cases is quite 

unacceptable, indicating that simulation results comprise also significant yield-losses 

years. The RT median is higher than mean and the RT distribution shows a negative 

skewness in both cases. Hence lower RT values are less probable, particularly in wet 

years. A relatively high coefficient of variation was found, pointing out that extreme 

wet and dry years will carry mainly an important yield variation. The CV of Relative 

transpiration is much higher during dry years. 

The RT mean in dry years is lesser than that obtained considering extremely wet years. 

Particularly, RT kurtosis coefficient in dry years is quite different than the 

corresponding coefficient in wet years, indicating that RT distribution significantly 

departs from normality as compared to RT distribution in wet years.  

The simulated maize actual evapotranspiration follows the same behaviour than RT 

during dry and wet years. Maximum evapotranspiration (ET0) also follows the same 

behaviour, although differences between dry and wet years are much lower than in the 

RT case. 

Figure 2 depicts the Box and Whisker plots of the Relative Transpiration, as grouped 

according to the weather (extremely wet or dry years), irrigation management (deficit or 

full irrigated option) and conditions at the bottom of the 1-m depth simulated soil layer, 



i.e. free drainage (FD) or shallower water-table at 2-m depth (2m). Dry years yield to 

smaller RT means and higher standard deviations. Full irrigation option and a relatively 

shallow water table give raise also to higher RT. Particularly, these factors are 

associated to very low RT variability, which is quite small in the FI option. 
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The RT mean is particularly low if a deficit irrigation management is chosen during a 

dry year in a field where free drainage can be assumed as the most probable condition at 

the bottom of the 1-m depth simulated soil layer. RT mean is also lower during wet 

years, keeping the same irrigation management and bottom conditions.  

Actual evapotranspiration follows similar behaviour than RT during dry and wet years 

regarding bottom condition and irrigation management. Mean Percolated Water is null 

during dry years, in a maize field with shallower water table and irrigated with the DI 

option. On the other hand, average percolated water is very high during wet years, 

particularly in the FI case: 314.8 mm if a shallower water table is considered and 296.6 

mm if free drainage at the bottom of the simulated soil layer is assumed. The simulated 

average Capillary Rising is different from zero only in fields where water table is 

shallow and irrigation is clearly short. The CR average is 53.9 mm in wet years and it 

reaches 220.4 mm in dry years.  

According to a performed Duncan test, almost all the evaluated factors affect the 

simulated maize actual evapotranspiration. The presence of a shallow water table has no 

influence in the studied variables during dry years if full irrigation is considered. 

However, the bottom condition option significantly affects the Relative Transpiration, 

Capillary Rising and Maize Evapotranspiration in the case of deficit irrigation during 

dry years. Besides, the bottom conditions yield to significant differences in all the 

considered variables during wet years in the deficit irrigation option. Furthermore, 

Relative transpirations remain similar in both irrigation options and weather behaviours 



if a shallow water table is found, despite that maize evapotranspirations are significantly 

different. These results indicate that capillary rising and water-table depth can play a 

very important role under extreme weather conditions, although they are largely ignored 

and infrequently measured. Percolated Water depends only on irrigation option during 

dry years. However, it is significantly higher in wet years if water table at the bottom of 

the maize root zone is not very deep.  
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Figure 3 depicts the simulated RT during dry years as a function of TWS, considering a 

water table at a 2-m depth. The line shows the obtained regression. As can be seen in 

the figure, higher TWS give raise to a reduction in RT rather than to further increments. 

These negative effects of extreme precipitation values were already noticed 

(Rosenzweig et al., 2002) but not yet simulated. Since the Feddes et al. (1978) root 

water-uptake function is able to account on water-excess effects on crop water use, our 

simulation approach can estimate the extreme rainfall effect also, whereas other models 

are unable to evaluate that consequence. Simulations indicate that precipitation excess 

could bring a negative effect in flooded irrigated maize, if relatively shallow water 

tables are found. However, this effect is lower in the well-drained soils of the zone, 

compared to the yield reductions associated to dry conditions or an incorrect irrigation 

management.  

 

CONCLUSIONS 

Extremely dry years yield to an average reduction of maize relative transpiration and 

hence to the flooding-irrigation efficiency, although average values are still satisfactory.  

The flooding irrigation efficiency during these extreme dry years seems to be quite 

variable. Nevertheless, reliable results can be achieved in most of the cases if suitable 

irrigation management options are considered. Wet years would carry an important 



amount of percolated water. Besides, relative transpiration and therefore irrigation 

efficiency is lower during extremely rainy years if a shallow water table is found. This 

negative effect, however, is comparatively lower than the relative transpiration 

reduction associated to rainfall scarcity, which can be due to the well soil drainage 

conditions. Water capillary rising from relatively shallower water-tables can partially 

supply the maize water-requirements under dry years, even in the case of irrigation-

water shortage.  
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The obtained results could considerably change according to soil conditions, because 

physically-based agrohydrological models as SWAP are highly dependant on the soil 

hydraulic properties. However, similar outcomes could be achieved for other well 

drained soils of the zone. 

The use of weather generators, to provide the weather scenarios, combined with an 

agrohydrological model, to simulate all the components of the water balance; seems to 

be a practical approach to support agricultural decision-making under variable weather 

conditions. Furthermore, the Feddes et al. (1978) function for root water-uptake, as 

considered in SWAP, could help to estimate the effects of water excess in crop growth, 

particularly in the case of heavy rains. 
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Table I. Mean, standard deviation (SD), Coefficients of Variation (CV), maximum 

(Max) and minimum (Min) values and the 10th and 90th percentiles of the recorded 

yearly accumulated precipitation and effective precipitation (EP), during the maize crop 

season from May to October, as well as the generated EP for dry (EPDY) and wet 

(EPWY) years and the corresponding numbers of heavy rain days (NRDY), (NRWY). 

  Mean SD CV Max Min 10th P  90th P 

Year 324.6 78.9 24.3 466.7 184.1 246.2 445.8

EP 155.2 58.9 38.0 263.0 47.3 85.2 249.7

EPDY 58.6 15.6 26.7 74.8 26.1 - - 

EPWY 270.0 24.8 9.2 329.9 249.9 - - 

NRDY 47.6 8.8 18.4 69.0 34.0 - - 

NRWY 67.8 10.8 16.0 88.0 46.0 - - 

 

 
 



Table II. Soil properties at each measured layer: pH, Carbon (C), Nitrogen (N) and 

CaCO3 contents; soil mechanical composition, soil density (D), Field capacity (FC); 

wilting point (WP); as well the coefficients of the Van Genuchten´s model*, i.e. residual 

(θres) and saturated (θsat) water contents, and alpha (α) and n parameters as well as the 

saturated hydraulic conductivity (Ks). 

Layer 

Depth 
 (cm)  0-30  30-60  60-90  90-150

pH  8.3 8.3 8.4 8.5

C (%) 0.95 0.49 0.43 0.45

N (%) 0.102 0.052 0.045 0.047

CaCO3 (%) 36.5 37.1 37.8 37.3

Sand (%) 43.3 62.3 57 51.8

Silt (%) 40.1 26.4 30.6 34.6

Clay (%) 16.6 11.3 12.4 13.6

D (Mg m-3) 1.32 1.38 1.38 1.41

FC (m3 m-3) 0.267 0.275 0.271 0.283

WP (m3 m-3) 0.103 0.091 0.08 0.078

θres (m3 m-3) 0.17 0.14 0.15 0.16

θsat (m3 m-3) 0.76 0.84 0.85 0.80

α cm-1 0.3284 0.3525 0.4911 0.4286

n  1 264 1 396 1 341 1 317

Ks (cm/day) 25.61 79.51 58.64 34.62

 

* the Van Genuchten’ coefficients and the hydraulic conductivity were estimated from 

pedotransfer function, using the measured soil physical data. 



Table III. Means, standard deviations (std), coefficients of variation (CV), medians, 

maximum (max) and minimum (min) values, as well as the skewness and kurtosis 

coefficients of the Relative Transpiration (RT), actual (ETC) and maximum (ET0) maize 

Evapotranspiration, Percolated Water (PW), Capillary Rising (CR) and Total Water 

Supply (TWS) considering all data, as well as dry and wet years, separately. 

 

A. All data analysis. 

  RT ETC PW CR TWS 

mean 0.795 564.7 58.7 55.1 570.2

std 0.314 123.9 62.3 99.8 204.8

CV 39.5 21.9 106.2 181.1 35.9

median 0.967 614.8 42.8 0.0 599.0

max 0.995 709.6 296.7 293.2 896.5

min 0.121 291.6 0.0 0.0 301.4

skewness -1.282 -1.061 0.840 1.334 0.014

 

 

 

Dry  

years 

kurtosis -0.234 -0.375 0.377 -0.082 -1.764

mean 0.900 643.9 163.8 13.5 810.6

std 0.140 68.9 149.8 32.3 210.6

CV 15.5 10.7 91.4 239.8 26.0

median 0.967 652.0 163.2 0.0 782.5

max 0.992 763.3 418.0 166.1 1114.8

min 0.266 397.8 0.0 0.0 450.2

skewness -2.165 -0.964 0.144 2.761 -0.010

 

 

 

Wet 

years 

kurtosis 4.749 1.607 -1.767 7.507 -1.583
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Fig. 1. Thirty realizations of Effective Precipitation (EP) from May to October during 

dry (DY) and wet (WY) years as obtained from the LARS-WG generator. The broken 

lines depict the 10% (Fig. 1A) and 90% (Fig. 1B) percentiles. 
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A. Analysis respecting wet or dry years 
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B. Analysis respecting soil-water movement condition at the bottom of the 1-m depth 
soil layer. 
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C. Analysis respecting irrigation management.. 
 
 

Fig. 2. Box and Wilcox graphs of simulated Relative Transpirations, according to 

weather behaviour during dry (DY) and wet (WY) years, the condition at the bottom of 

the 1-m soil layer considered for simulations, as well as the water management option 

i.e. deficit of full irrigation. 
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Fig. 3. Relative transpirations as a function of Total Water Supply in dry years, 

considering a shallower water-table at 2-m depth. 
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