
Published online 25 April 2007 Nucleic Acids Research, 2007, Vol. 35, No. 9 e71
doi:10.1093/nar/gkm093

An adaptation of the LMS method to determine
expression variations in profiling data
Paul Chuchana1, Dorian Marchand1, Mélanie Nugoli1, Carmen Rodriguez1,
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ABSTRACT

One of the major issues in expression profiling
analysis still is to outline proper thresholds to
determine differential expression, while avoiding
false positives. The problem being that the variance
is inversely proportional to the log of signal
intensities. Aiming to solve this issue, we describe
a model, expression variation (EV), based on the
LMS method, which allows data normalization and
to construct confidence bands of gene expression,
fitting cubic spline curves to the Box–Cox transfor-
mation. The confidence bands, fitted to the actual
variance of the data, include the genes devoid
of significant variation, and allow, based on the
confidence bandwidth, to calculate EVs. Each out-
lier is positioned according to the dispersion space
(DS) and a P-value is statistically calculated to
determine EV. This model results in variance
stabilization. Using two Affymetrix-generated data-
sets, the sets of differentially expressed genes
selected using EV and other classical methods
were compared. The analysis suggests that EV is
more robust on variance stabilization and on
selecting differential expression from both rare
and strongly expressed genes.

INTRODUCTION

In the context of the Human Genome Project, new
technologies have emerged allowing the simultaneous
analysis of a large number of genes in a single experiment.
The so-called DNA micro-arrays or DNA chips constitute
a prominent example. The goal of many of these
experiments is to identify differentially expressed genes
in cultured cells or tissue samples under different
physiological or pathological conditions. RNA expression

differences are often determined by calculating the ratios
of hybridization signals between a test and a reference
sample. One of the characteristics of expression profiling
is that, in a typical experiment, thousands of genes are
analyzed on a small number of experimental conditions.
However, it has proved challenging to identify genuine
expression differences while simultaneously avoiding false
positives.
Since the variance is inversely proportional to the log of

the signal intensities, and the signal intensities range from
1 (rare) to 105 (strongly expressed genes), although the
noise is the same for each gene analyzed on a given array,
the noise has more impact on the large majority of weakly
expressed genes than on the small fraction of strongly
expressed genes.
The variation on these experiments has many compo-

nents, including the variability of the biological samples,
labeling conditions, array specificity, reading efficiency for
each spot, etc. These variations can be categorized as
systematic variation, which can easily be corrected for,
and are referred to as calibration and normalization as
discussed by Balding et al. (1). Other variations, however,
are random, and may be accounted for through error
models. Several models have been used with more or less
success, to correct for random variation, including a
model based on the generalized logarithm (glog) (2),
which has been applied by a number of authors to
stabilize the variance (3–5). Alternative approaches have
been proposed such as noise filtering look up tables (LUT)
(6), which uses a scoring system in which a given context
will provide predictive values for reproducibility in fold
change (FC) results (7).
Here, we adapt the LMS approach, originally described

by Cole and Green (8), to model gene expression profiling
data. The authors initially used this approach for growth
charts of children. LMS allows to construct smoothing
reference centile curves, which fit cubic spline curves to the
Box–Cox transformation. This transformation leads to
normalization of the variance and thus defines standard
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intervals for significant expression differences. Using
this transformation, a confidence band adjusted to the
actual distribution of the data is defined, which identifies
the set of genes devoid of expression differences. The
confidence band was determined after applying a spline fit,
determining the median axis of the plot and the spline
curves defining the lower and upper limits of
the dispersion space (DS). Expression variation (EV)
measurements are then based on the size of this DS.
Here, we present the application of this method, and
comparisons with other strategies, on a dataset generated
using the Affymetrix platform.

MATERIALS AND METHODS

The LMSmethod

The essential background of the LMS approach described
by Cole and Green (8) is summarized below. The usual
assumptions for data analysis are the standard assump-
tions of the linear model, i.e. the existence of additive
effects, the constancy of variance, the normality of the
variables and the independence of observations. If these
assumptions are not satisfied, two alternatives are
possible: either to devise a new analysis that meets these
assumptions, or to transform the data in order to meet
these assumptions. It is almost always easier to use a
satisfactory transformation than to develop a new method
of analysis. Tukey (9) suggested a family of transforma-
tions with an unknown power parameter l and Box and
Cox (10) modified it. The ‘classical’ Box–Cox power
transformation of the dependent variable is a useful
method to alleviate heteroscedasticity for dependent
variables with an unknown distribution.
The LMS method (11) models the variable y as a

semiparametric regression function of the dependent
variable x, so that the distribution of y changes smoothly
when plotted against x. The distribution is summarized by
three spline curves: the Box–Cox power that converts y to
normality (L), the mean (M) and the coefficient of
variation (S). The main application of this method is
to generate reference centile curves. The transformed
observations are independent and normally distributed
with constant variance. The Box–Cox transformation is
defined as

y�ðlÞ ¼
yl � 1

l
, 1

where y is the response variable and l is the transforma-
tion parameter.
For l¼ 0, the natural log of the data is taken instead of

using the above formula, since the ratio is undefined.
Based on this family of transformations, the LMS

method described by Cole and Green (8,11)
assumes that it is appropriate to consider the transformed
variable

~yðlÞ ¼
y=�ð Þ

l
�1

l
, for l 6¼ 0 2

and

~yðlÞ ¼ log
y

�

� �
, for l ¼ 0

where � is the median of y. This transformation maps the
median of y to ~y lð Þ ¼ 0, and it is continuous at l¼ 0.
Denoting the standard deviation of ~y lð Þ by �, the variable

z ¼
y=�ð Þ

l
�1

l�
, for l 6¼ 0 3

and

z ¼
log y=�ð Þ

�
, for l ¼ 0:

is assumed to have a standard normal distribution.
Assuming now that the distribution of y varies with

covariate x, and that l, � and � at x are read off the
smooth curves L(x) (Box–Cox power), M(x) (median) and
S(x) (coefficient of variation). The initials of these
parameters give the name of the LMS method. So the
formula

z ¼
y=MðxÞð Þ

LðxÞ
�1

LðxÞSðxÞ
, LðxÞ 6¼ 0 4

and

z ¼
log y=MðxÞð Þ

SðxÞ
, LðxÞ ¼ 0

converts the measurement y to its normal equivalent
deviate z.

Cole and Green (8) pointed in the discussion of their
article that for n independent observations yi at corre-
sponding values xi, the log-likelihood function derived
from (4) is proportional to

lðL,M,SÞ ¼
Xn
i¼1

LðxiÞ log
yi

MðxiÞ
� logSðxiÞ

�

�
1

2

yi=MðxiÞ½ �
LðxiÞ�1

LðxiÞSðxiÞ

( )2
1
A 5

and the curves L(x), M(x) and S(x) are estimated by
maximizing the penalized likelihood

lðL; M; SÞ �
1

2
�L

Z
fL00ðxÞg2dx�

1

2
�M

Z
fM 00ðxÞg2dx

�
1

2
�S

Z
fS 00ðxÞg2dx 6

The �L, �M and �S values are usually called the
smoothing parameters and can be regarded as the tuning
parameters that control the trade-off between goodness of
fit of the data and smoothness. They are used for each of
the L, M and S curves, where larger values correspond to
stronger smoothing.

The three L, M and S curves can be estimated
with spline functions. This form of penalty leads to
natural cubic splines with knots at each distinct value
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of x. Basic references for spline descriptions can be found
in Wegman (12) and Nürnberger (13), although the
essential background is described here for self-complete-
ness of the article.

A cubic spline is a piecewise cubic polynomial such that
the function, its derivative and its second derivative, are
continuous at the interpolation nodes. The natural cubic
spline has zero second derivative at the endpoints. It is the
smoothest of all possible interpolating curves, since it
minimizes the integral of the square of the second
derivative. A knot is a point in the domain space of a
function where pieces of a fitted surface join.

These parameters correspond to the equivalent degrees
of freedom (edf ) parameters. edfL, edfM and edfS, which
specify edf for the L, M and S curves, respectively. The
strategy to maximize the penalized likelihood function is
to optimize the M curve edf, by increasing and/or
decreasing the edf by 1 until the change in the penalized
log likelihood is small (this depends on the sample size,
but a change of less than two units is not significant—for
large samples a bigger change is needed). This interactive
procedure is stopped when the convergence in the
likelihood maximization is obtained. Once the M curve
is fitted, the process is repeated for the S curve. In many
situations a constant value (i.e. 1 edf ) is sufficient, and this
should be tried first. Three edfs should then be tested,
rather than two, which force a linear trend on the S curve
and can lead to irrelevant values at the extremes of the
range. Higher edf values may be suitable for large and/or
complex datasets. Finally the L curve is fitted, in a similar
way to S curve fitting. Cole and Green (8) modified the
original Fortran program written to automatically fit
the model. Parameter smoothing was done using LMS,
a R package (http://www.biostat.harvard.edu/�carey/
vcwww4.html) or the COLELMS Stat module (http://
ideas.repec.org/c/boc/bocode/s360702.html). Once the L,
M and S curves are estimated, any required centile curve
can be derived from them.

The measurement centile is given by

C�ðxÞ ¼ MðxÞ 1þ LðxÞSðxÞz�ð Þ
1=LðxÞ, LðxÞ 6¼ 0 7

or

C�ðxÞ ¼ MðxÞ exp SðxÞz�ð Þ, LðxÞ ¼ 0

where � defines the lower tail area of the centile and z� is
the normal equivalent deviate of size �. Hence C�/2 and
C1��/2 define a confidence bandwidth for the regression
curve. In the next section, this confidence bandwidth will
be referred to as DS.

Definition of the dispersion space

Maintaining the notation, xi and yi denote the expression
of the ith gene in two experimental conditions. The
confidence band defines the set of genes with constant
expression or non-significant variation Equation [7]. The
width of the confidence band, which will be referred to as
DS, is dependent on the smoothing parameter � and can
be adjusted if needed. Since the transformed z values have
a standard normal distribution, the � value can be
interpreted from a statistical point of view and DS(�)

can be considered as a confidence bandwidth of level �.
Therefore, � was set to �¼ 0.317, this defines splines for
the DS that correspond to one standard deviation and
include 68.3% of the spots (xi, yi value pairs) (Figure 1A).
Thus, each spot located outside the DS can be associated
to a P-value (fractile of the normal distribution), which
will define its deviation from normality and provide
statistical support for the identification of differential
expression (14,15).

Cells and RNA preparation culture conditions and reagents

B6.1 cell (16) is a mouse cytotoxic T cell clone requiring
exogenous IL2 for growth. Cells were cultured in Iscove’s
modified Dulbecco’s medium (IMDM) containing 10%
heat-inactivated fetal calf serum, 10mM Hepes pH 7.0,
0.05mM b-mercaptoethanol, 2mM glutamine and
saturating concentrations of mouse rIL2 [1% X63mIL2
supernatant; (17)]. Cytoplasmic RNA from B6.1 cells
exponentially growing in the presence of IL2, or a
few hours after IL2 withdrawal was prepared using
the NP40 method as described (18). After electrophoresis
through denaturing 1.2% formaldehyde-agarose gels,
RNA samples were transferred to nylon membranes
(GeneScreen, NEN, Boston, MA) and rRNA distribution
visualized by methylene blue staining (19).

Affymetrix GeneChip probe array hybridization

For cRNA synthesis, 10 mg of RNA from B6.1 cells,
grown under different conditions, was used as a template
for double-stranded cDNA synthesis using the Superscript
Choice System (Invitrogen) and a T7-(dT)24 primer
according to the Affymetrix protocol. After purification,
double-stranded cDNAs were used as a template for
in vitro T7 transcription using the Bioarray high-yield
transcript labeling kit (Enzo, Farmingdale, NY). Yields of
cRNA synthesis (�60 mg), were highly similar between
different samples as monitored by spectrophotometry.
Quality of in vitro transcribed cRNA was monitored
with the BioAnalyzer Chip (Agilent Technologies,
Palo Alto, CA), following the manufacturer’s protocol.
Twenty-two micrograms of each cRNA popula-

tion were fragmented. First, 5 mg was used to check
the quality of the target on the Te3 test chips.
Subsequently, 15 mg was used for hybridization of
murine genome GeneChip probe arrays U74Av2 (both
from Affymetrix, Santa Clara, CA). Hybridization,
washes, antibody amplification and staining were
performed following the manufacturer’s instructions in
an Affymetrix fluidics station and scanner. Analysis of the
raw data was performed using Affymetrix Suite Software
(MAS5) and NetAffx, VSN (5), or the EV method
described here. The dataset is available as an Excel file
at http://jasanz2.cib.csic.es/B61Database.xls

Affymetrix Latin square data for expression algorithm
assessment

The data, freely available from Affymetrix, comes from
the hybridization of 42 human genome U133 chips with
three technical replicates of 14 separate hybridizations of
42 spiked transcripts in a complex human background
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at concentrations ranging from 0.125 to 512 pM. Thirty of
the spikes are isolated from a human cell line, four spikes
are bacterial controls and eight spikes are artificially
engineered sequences believed to be unique in the human
genome. The data is available at http://www.affymetrix.
com/support/technical/sample_data/datasets.affx

RESULTS

Determining EVs

First of all, the DS comprising the invariant genes was
defined, EV of outlier genes was subsequently assessed.
This was done by measuring the distance d(O,S)
between each spot ‘S’ and its orthogonal projection
to the median ‘O’ (Figure 1). The distance d(O,U)
between ‘O’ to the intersection between the segment
[OS] and the DS curve was also measured, and EV
of spot ‘S’ was defined as the ratio of these two
distances: Ev�(S)¼ d(O,S)/d(O,U). Therefore, Ev�(S)
represents the normalized value of the expression level.
|Ev�(S)|¼ 1 defines the baseline for genes presenting no
EV. The plus sign was applied to values exceeding the
upper spline limit and the minus sign to values below
the lower spline limit (Figure 1B).

Threshold for EV

We applied this approach to a dataset obtained by
expression profiling of the mouse B6.1 CTL cell line on
12K mouse Affymetrix MG-U74Av2 chips. As shown in
Figure 1A, the plot of the data resulted in a comet shape,
typical for expression profiling data, and the first diagonal
did not overlap the median axis. As described above, each
spot outside the DS is associated with a P-value.

Different settings will adjust the stringency applied
to the selection of differentially expressed genes (different
P-values). Since published data commonly show that
the fraction of genes differentially expressed on sub-
genome-wide arrays range from 0.1 to 5% of the genes,
depending on the nature of the array and the biological
model studied (14,15), two commonly used P-values,
namely 0.05 and 0.01, were utilized to determine the
number of differentially expressed genes.

Assessing variance stabilization

First, it was verified that EV stabilized the variance, and
then we compared the variance stabilization obtained with
EV with other methods also known to stabilize variance,
such as VSN, a method specifically devised to stabilize
variance of expression array data (5). VSN defines
a statistical model for gene expression profiling data

Figure 1. Gene expression scatter plot of Affymetrix oligo-array data and EV unit. (A) Dataset generated with Affymetrix chips. Hybridization,
washes, antibody amplification and staining were performed using the Affymetrix fluidics station and scanner following the manufacturer’s
instructions. Data was log10 scaled; scatter plots show uneven variance resulting in increased dispersion at low expression levels. Note that the first
diagonal (black) and the median axis (yellow) do not overlap. Shown on the plot Median and confidence interval curves corresponding to parameter
setting of �¼ 0.317 (green upper limit, red lower limit) are also shown on the plot. (B) DS (�¼ 0.317, green and red plain curves) and iso-variation
representing expression variation EV�(X)¼ 2 (green and red dotted curves) correspond to the confidence limits defined with a P-value¼ 0.05. For
each spot S, its orthogonal projection to the median O was determined and the distance between O and U d(O,U) (intersection of the segments O,U
and the curve of the DS) measured. For each spot located along the O, S line, the value d(O,U) represents the unit of expression. Expression
variation Ev�(S) thus corresponds to the d(O,S)/d(O,U) ratio. |EV�(S)|¼ 1 defines the baseline for genes presenting no EV. The plus sign was applied
to values exceeding the upper spline limit and the minus sign to values below the lower spline limit.
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based on an arcsinh transformation. It comprises data
calibration, quantification of differential expression as
well as of measurement error (http://www.dkfz.de/abt
0840/whuber; R project and bioconductor library, at
http://www.r-project.org/).

The VSN and EV approaches were applied in parallel to
a previously studied Affymetrix dataset (20). It appears
that both the EV and VSN transformations resulted
in variance normalization (see Figure 2). EV-treated
data showed a median for the standard deviation of
3.16%, with a range of absolute values of 5.98, whereas
for VSN-transformed data the median for the standard
deviation was of 3.25% and the range of absolute values
of 1.75. Since for a 3-fold wider range of absolute data of
EV as compared to VSN (5.98 versus 1.75), we have a
similar median for the standard deviation, this can be
interpreted as a 3-fold more robust variance stabilization
of EV as compared to VSN. The same dataset was
analyzed by MAS5 (Affymetrix), but this program does
not take into account data heteroscedasticity and has no
effect on variance stabilization.

Median role

In many experiments, the median of the cloud defined
by the expression values, rather than a straight line, very
often has a concave distortion, less often is convex or even
sigmoid. This general shape of the cloud describes the
problems of the selections realized by MAS5 and VSN,
which are somewhat contradictory. For a cloud of points
with a concave distortion, MAS5 favors the selection of
up-regulated genes whereas VSN favors the selection
of down-regulated genes. For the rare cases where the
median is linear, VSN and EV, through different
approaches, since both normalize the variances, lead
to a quite similar set of selections. Since EV models
the median, its shape is taken into account for the
selection of outliers.

MAS5 makes straight lines to define outliers, and
neither MAS5 nor VSN take into account the shape of the
curve. EV, however, is modeling the median (Figure 1).

Comparison of different approaches to select differentially
expressed genes

As a next step, the B6.1 dataset, obtained after hybridizing
Affymetrix chips was analyzed with the three methods,
to identify differentially expressed genes. Thus, the dataset
was analyzed using either the standard Affymetrix
filtration method followed by a FC selection (7), a VSN
transformation followed by a FC approach (it was
acceptable to apply FC on the VSN-transformed data,
since its variance had been stabilized), or EV.
A set of 555 genes, representing 4.5% of the total

number of genes, with the higher differences in expression
levels was selected with each approach. These genes
represented a P-value �0.05 as a limit for EV. The same
number of genes were selected with VSN when a
FC� 1.63 was used on VSN transformed data, and on
MAS5 (21), when a FC� 1.8 was used. It should be noted
that MAS5 also filters out genes expressed at low levels,
based on the difference between perfect match and
mismatch probe signals (present/absent calls), remaining
42.3% of the genes after the filtering.
When 555 genes selected with each of the methods,

comparison between the selected sets with VSN and EV
shows that 396/555 genes were common to both methods
(Figure 3). Furthermore, comparison of the gene sets
selected by MAS5 and EV indicated that 183/555 genes
were common to MAS5 and EV (Figure 3). Interestingly,
these comparisons also show that whereas VSN selects a
higher fraction of down-regulated genes as compared to
MAS5 and EV (Figure 4B), whereas MAS5 selects a
higher fraction of up-regulated genes from the same
dataset (Figure 5B). EV, however, is able to select a
similar number of over- and down-regulated genes
(Figures 4A and 5A). It is conceivable that the differences
between EV and VSN could be related to the fit to the
actual distribution of the data adopted by either method.
Indeed, the distribution of the analyzed dataset was
‘banana shaped’ and whereas EV is fitted to the median,
the selection on VSN-transformed data was centered
around 0, resulting in selection differences in the median

Figure 2. Variance stabilization of Affymetrix oligo-array dataset by means of VSN arcsinh transformation (A) or spline fit (B). The SD values
(Y-axis) are plotted against a running index (X-axis) where each value corresponds to a gene, from 6070 randomly selected genes. Red dots indicate
the median of SD calculated on bins each corresponding to 10% of ranked genes.
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range of expression (Figure 4). A difference was also noted
in the selection efficiency at low- and high-expression
ranges (Figure 4D and E), where EV identifies as
regulated, genes not identified by VSN. These differences
can be related to differences in variance stabilization. The
differences between EV and MAS5 could be related to
normalization on the variance distribution of the data
adopted by either method. MAS5 did not select the lowest
or highest expressed genes. It only selected genes expressed
at intermediate levels (Figure 5E), as previously reported
by others (22).

Specificity and sensitivity of EV as compared toMAS5
and VSN

The U133 Latin square dataset from Affymetrix (see
Materials and Methods section) was used to demonstrate
the specificity and sensitivity of EV. Indeed, analysis
of experiments with the lowest changes in the
concentration of the spikes (2-fold, i.e. comparison of
experiments 1 and 2), showed a large increase in
specificity, concomitant with a moderate sensitivity
decrease with decreasing P-values ranging from 0.05 to
0.0001 (see Figure 6A). Furthermore, with increasing FC
of the spikes (2-fold: experiments 1 and 2; 4-fold:
experiments 1 and 3; 8-fold: experiments 1 and 3), there
is a large increase in specificity, concomitant with a more

moderate increase in specificity (not shown). In addition,
to directly assess EV performance, it was decided to
compare in one hand the sensitivity of the different
methods for a given specificity (Figure 6B), and on the
other hand, the specificity for a given sensitivity (Figure
6C). Indeed, when the specificity was fixed for all the
methods at 15% (value obtained with MAS5), EV
(P¼ 0.05) showed a 1.27-fold higher sensitivity than
MAS5 and 6.32-fold higher than VSN (Figure 6C).
Furthermore, when the sensitivity was fixed for all
the methods at 47% (value obtained with MAS5),
EV (P¼ 0.005) showed a higher specificity than
MAS5 (2.3-fold) and VSN (58-fold) (Figure 6D).
EV performance, in terms of sensitivity and specificity,
was systematically compared with other methods in
addition to VSN and MAS5. These comparisons were
made constructing receiver operatic characteristics (ROC)
curves, where the overall accuracy or sensitivity across a
range of P-value cutoffs is plotted on the y-axis, whereas
the false-positive rate (FPR), assessed from the number of
transcripts not included in the Latin square set that are
determined to have changed significantly, is shown on the
x-axis. EV performance was compared with MAS5
(21,23), Rosetta Resolver (24,25), dChip/PM-MM (26),
and two versions of the two-tailed t-test: the heterosce-
dastic version without log transformation of the intensities
(ttest/nolog/hetero) and the homoscedastic version after
log transformation (ttest/log/homo). Rajagopalan (27) has
already shown that in this type of analyses, MAS5 and
Resolver have a superior performance than dChip or t-
tests. Our data shows that this is also true for EV (Figure
6D). Indeed, at a fixed FPR, chosen for comparison
purposes, within the same range as obtained with other
methods, EV detects many more true changes, not only
than dChip and t-tests, but also than MAS5 and Resolver
(Figure 6D and E), in particular for FPR rates higher than
0.12 for Resolver or FPR higher than 0.25 for MAS5.
Conversely, to obtain a comparable level of accuracy,
MAS5, Resolver, dChip and t-tests would generate many
more false-positive calls (Figure 6D and E). Furthermore,
EV was not outperformed by other methods on any of the
analyses we have carried out so far.

DISCUSSION

In expression profiling analyses, outlining proper
thresholds to determine differential expression, avoiding
false positives, still remains one of the major issues to be
solved. One of the problems encountered with DNA array
datasets is the unequal distribution of the variance,
which is inversely proportional to the log of intensities,
consequently affecting threshold settings for differential
expression. In the analysis of expression profiling datasets,
the central issue comes down to building confidence
intervals that successfully fit the variability due to noise
(experimental or technological). One way to solve the
problem is to mathematically transform the data in order
to normalize the variance.

Here, we propose the use of the normalized value of the
expression level (EV), a model for micro-array data

EV

VSN

MAS5

298
(230/68)

46
(0/46)

113
(84/29)

259
(77/182)

137
(56/81)

74
(2/72)

85
(1/84)

Figure 3. Comparison of differentially expressed genes selected with
EV, VSN and MAS5. A set of 555 differentially expressed genes was
selected from an Affymetrix-generated dataset either with EV,
VSN-transformed data, and MAS5. Each analysis is represented by a
colored circle. The intersections represent the overlaps between
the different analysis methods. Numbers in bold correspond to
the total number of genes detected on each compartment, whereas
values between brackets indicate the up- and down-regulated genes
respectively.
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processing based on spline functions, which has proved its
ability to provide models for complex phenomena (28) and
curve fitting in data analysis of observations with random
components. The examples analyzed with EV show that,
due to the Box–Cox spline transformation, the trans-
formed data shows a normal distribution, and allows the
definition of a continuous confidence band delineating the
DS, the interval including all genes devoid of significant
expression changes, which can be adjusted to a standard
deviation. The values (xi, yi) for each gene in the dataset
not included in DS (located outside the upper or lower
spline curves) is then associated with a P-value, which
provides statistical support for the selection of outliers.

The specificity and sensitivity of EV were determined
analyzing the U133 Latin square dataset from Affymetrix.
The dataset was generated from the hybridization of
42 human genome chips with 3 technical replicates of
14 separate hybridizations, obtained from a human RNA

containing 42 spiked transcripts at concentrations ranging
from 0.125 to 512 pM. These comparisons demonstrate
that EV was more robust than MAS5 and VSN in this
type of analysis. Indeed, when analyzing experiments in
which the spikes had a 2-fold change, for a fixed specificity
EV showed a 1.27-fold and 6.32-fold higher sensitivity
than MAS5 and VSN, respectively (see Figure 6B); and
for a fixed sensitivity, EV was 2.3-fold and 58-fold
higher specificity than MAS5 and VSN, respectively
(see Figure 6C). Performance of EV was also directly
compared to MAS5, Resolver, dChip and two types of
t-test analyses, showing also a better performance than
these tests (Figure 6D and E). The specificity of EV
showed a large increase with the increase of FC in the
spikes, concomitant with a moderate increase in specificity
(not shown).
The comparison of EV, VSN and MAS5 data analysis

from a real expression profiling experiment (B6.1-arrays),

Figure 4. Differentially expressed genes selected on spline (EV) or VSN transformed data. The same dataset represented in Figure 2 was used to
select differentially expressed genes on spline (EV) or VSN-transformed data. MA plots of scaled log-transformed signals for probe sets from two
experimental conditions of the B6.1 cells. Color codes are as in Figure 1. Up-regulated genes are shown as green bold dots, down-regulated as red
bold dots. (A) Distribution of 555 genes (P-value¼ 0.05) selected upon a spline fit. (B) Distribution of 555 genes (FC¼ 1.63) on VSN-transformed
data. (C) Distribution of genes selected by both approaches. (D) Distribution of genes selected by EV (spline fit) alone. (E) genes selected by VSN
(arcsinh transformation) alone.
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comparing the profiles of exponentially growing and
G1-arrested cells (Figures 3–5) gave a slightly different
picture. In this experiment, EV leads to a more robust
variance stabilization than VSN; in addition, EV leads to
an increase in the homogeneity of the selected sets, and
thus to an increased reproducibility on the selection of
outliers. In this experiment, however, the direct compar-
ison of the three methods, clearly shows that EV and VSN
are closer (71%) than MAS5, whereas the coincidences
between EV and MAS5, or VSN and MAS5 are 33 and
38% respectively. The differences between EV and VSN
are mainly due to the fact that EV takes into account the
shape of the diagonal in the form of concave or convex
distortions. In the small fraction of datasets devoid of
such distortions, there are virtually no differences in the
set of selected genes (not shown), and VSN performs
definitively better in this experiment than in the
Latin square data analysis. The data reported here also
demonstrate that, unlike classical approaches such
as MAS5, EV does not encounter any difficulty on

selecting regulated genes with either high- or low-
expression levels.

Furthermore, in two analyses in which chips hybridized
with RNAs obtained from cells grown in two different
conditions (A and B), and the set of selected genes
was compared with another dataset in which the datasets
compared were 10xA and B. It is relevant that in
both comparisons, the set of identified genes was
rigorously the same (498% identities) (not shown). This
demonstrates, not only the strength and robustness of EV
on variance stabilization, and might allow to compare
data obtained under different conditions, and even
datasets generated with chips from different origins.

For physiological and pathological processes, in general
there is no a priori evidence for a higher number of
up-regulated or down-regulated genes. Normalization of
the distribution by the Box–Cox transformation makes
globally a symmetric distribution of expression datasets,
although at the extremes of this distribution, asymmetries
are often detected. Moreover, it is possible to force an

Figure 5. Differentially expressed genes selected using spline or MAS5 Affymetrix selection. MA plots of scaled log-transformed signals for probe
sets from two experimental conditions of the B6.1 cells, using the same dataset and color codes as in Figure 4. (A) Distribution of 555 genes
(P-value¼ 0.05) selected upon a spline fit. (B) Distribution of 555 genes selected by MAS5 (FC¼ 1.8). (C) Distribution of genes selected by both
approaches. (D) Distribution of genes selected by EV (spline fit) alone. (E) Genes selected by FC on MAS5 alone.
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asymmetric selection, by using different sets of tuning
parameters (EV thresholds), when there is information
suggesting that the ‘treatment’ will lead to a larger number
of either up-regulated or down-regulated genes. It should
also be noted that the selection of genes is only one of the
steps in the process of data analysis, the data should be
strengthened by replicated analysis with other biological
samples, and subsequently validated by northern, western,
Q-PCR, etc.

In conclusion, splines seem to be well adapted for
micro-array analyses since, (i) the transformed data shows
a normal distribution and the median axis overlaps the first
diagonal; (ii) it results in a robust variance stabilization;
(iii) its usage is independent of the number of genes present
on each dataset and the technological origin of the arrays;
(iv) they are defined piecewise and are more adjusted to
local distortions of the data, thus improving the fit; (v) the
width of DS can be adjusted by changing the values of the
parameter �; and (vi) asymmetric selection of up-regulated
or down-regulated genes can be forced by changing the

tuning parameters. We, thus, propose that EV could play a
pivotal role in expression profiling data analysis, since it
overcomes many of the difficulties shown by other methods
on selecting differentially expressed genes.

ACKNOWLEDGEMENTS

The authors are indebted to Dr Irene Lopez-Vidriero
(CNB-CSIC, Madrid) for help with the Latin square
dataset analysis with MAS5. Drs Alain Henaut and Ulrich
Mansmann for critical reading of the manuscript and
useful propositions and comments. We would like
to acknowledge Dr Andrew Kramar for his help in
improving the English. This work was supported by funds
from the Association pour la Recherche sur le Cancer
(contract ARC 5122) and the CIT program of the Ligue
Nationale Contre le Cancer; work in JAGS’ lab
was financed by grant number DAMD17-02-1-0339
from the USAMRAA breast cancer program and
SAF2003-00519 from the Spanish Ministry of Education

0

15

30

45

60

MAS5 EV 
P=0.05

VSN 
FC=5.7

0

10

20

30

40

50

MAS5 EV 
P=0.005

VSN 
FC=1.7

Specificity Sensitivity

A B C
P

er
ce

nt
ag

e

0

10

20

30

40

50

60

70

0.05 0.01 0.005 0.001 0.0005 0.0001
P-value

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

0

20

40

60

80

100

C
or

re
ct

 c
al

l (
%

)

0 10
False-positive rate (%)

40

50

60

70

80

90

0 0.5 1
False-positive rate (%)

ttest/log/homo
ttest/nolog/hetero
dChip/PM-MM

EV
MAS5
Resolver

EV
MAS5
Resolver

D E

C
or

re
ct

 c
al

l (
%

)
82 4 6

Figure 6. Sensitivity and specificity of EV determined on the Affymetrix Latin square dataset. Data from a Latin square experiment available from
Affymetrix (see Materials and Methods section), where 42 human genome U133 chips were hybridized with three technical replicates of 14 separate
hybridizations of 42 spiked transcripts in a complex human background at concentrations ranging from 0.125 to 512 pM was used to determine the
sensitivity and specificity of EV, as compared to MAS5 and VSN. (A) Changes of specificity (blue) and sensitivity (gray) in EV analyses with a 2-fold
change in the concentration of spikes. The data presented corresponds to the comparison of experiments 1 and 2, but is representative of comparison
between experiments n and nþ 1 (corresponding to spikes with 2-fold change). (B) Direct comparison of sensitivity changes (gray) at a fixed
specificity (blue) for the dataset analyzed with MAS5, EV and VSN. (C) Direct comparison of specificity changes (blue) for a fixed sensitivity (gray)
for the dataset analyzed with MAS5, EV and VSN. (D) Comparison of EV performance with MAS5, Resolver, dChip/PM-MM, t-test/nolog/hetero
and t-test/log/homo in terms of sensitivity and specificity, using P-value cutoffs for each (0.0025, 0.005, 0.01, 0.05, 0.1) and represented as receiver
operatic characteristics (ROC) curves. The overall accuracy or sensitivity across all concentrations is plotted on the y-axis versus the false-positive
rate (x-axis), determined from the number of transcripts not included in the Latin square set that are determined to have changed significantly.
(E) Detail from the graph depicted in (D).
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