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1. Introduction

Most properties of surfaces (e.g. their reactivity) are strongly influenced by their

structure. A number of diffraction techniques have been developed in Surface Science

to find this structure with atomic accuracy, such as Low-Energy Electron Diffraction

(LEED) [1, 2, 3], Photoelectron Diffraction (PD) [4], Surface X-ray Diffraction (SXRD),

[5, 6], Near-Edge X-ray Absorption Fine Structure (NEXAFS), [7] etc. [1, 2, 8, 9].

Among these techniques, LEED plays a prominent role in the field due to similar progress

made in experimental and theoretical techniques, and nowadays is a technique that can

be found in nearly every surface science laboratory. Experimental intensities for different

Bragg beams diffracted from the surface are measured as a function of the energy of the

primary beam of electrons; these carry the information on the geometrical position of

atoms in the surface.

Diffraction amplitudes are complex-number functions of the parameters definining

the structure; these functions may be multivalued and their inverse has to be found inside

the physical appropriate Riemann sheet (the existence of several branches is usually

referred in the literature as ”multiple coincidences”). In principle nothing prohibits to

find the inversion algorithm linking the structure and the measured intensities, which

would provide us with the geometrical parameters in just one single step. In practice,

several technical problems make this a difficult program; we shall only mention the

following two difficulties: (1) The impossibility of measuring the diffracted wavefield

phase makes the inversion difficult as a great deal of information is carried away with

the phase itself and, (2) the strong interaction between the incident wavefield with the

surface electrons, i.e. multiple-scattering, makes the direct/inverse functions highly non-

linear, and quite difficult to localize the physically meaningful branches. Therefore, the

standard approach over the years has been to minimize a cost function, the so-called

R-factor, designed to quantify the agreement/discrepancy between experimental and

calculated spectra. This in turn is not free of complications because the R-factor is

an scalar function of a vector argument defining all the structural and non-structural

parameters needed to define the system, leading to a non-polynomial scenario in the

search for the global minimum that only could be solved with complete certainty in an

infinite amount of searching time. We should mention here how Prof. John Pendry and

his collaborators have led the way to identify and to find solutions to all aforementioned

fundamental problems for the LEED technique[1, 10, 11, 12, 13].

In this paper we analyze a new route to overcome the intrinsic non-polynomial

(NP) nature of traditional LEED analysis based on the use of an R-factor, in particular

Pendry’s R-factor[11]. The method is applied to experimental data, and its performance

is compared with state-of-the-art solutions proposed in the literature. More precisely,

we want to solve the following problem: Let N be the number of parameters defining

the structure. Then, the R-factor is a scalar function defined in �N . In general, this

hypersurface displays a complex topography, showing several local minima. If we intend

to find out its global minimum by simple brute force search, i.e. evaluating the R-factor



Quantitative LEED analysis using a simultaneous optimisation algorithm. 3

for every point of a grid in parameter space, we find that the number of trial model

structures, t, scales exponentially with N . In the case of a grid where the number

of values in each of the N dimensions is equal to np, t = nN
p structures should be

tried. Because the time needed to show the structure scales exponentially with the

number of unknown parameters, optimisation theory classifies this as a non-polynomial

or NP-complete problem [13]. In particular, if we carry out an exhaustive search on a

continuous interval of length L for each parameter, making sure that the solution is at

the worst case at a maximum distance ε from the true solution, we obtain:

t �
(

L
√

N

ε

)N

(1)

For high N values, this scaling law, t ∼ NN/2, is even worse than the exponential law

that appears in the grid case.

We will restrict ourselves to the determination of an ordered surface structure from

quantitative LEED. For a single incidence direction, the database is formed by a set of

I(E) curves. These are intensity vs. energy curves, one per reflection or ”beam”. For a

given model surface, the accurate evaluation of I(E) requires using a multiple scattering

formalism, which is computationally expensive. Improvements in LEED I(E) analysis

efficiency made so far have been focused in the development efficient intensity evaluation

methods, such as Tensor-LEED (TLEED) [12], and in the development of algorithms

that reduce the number of intensity evaluations during the optimisation procedure. The

present paper deals with the second subject.

In their pioneering contribution to develop direct methods for LEED, Pendry, Heinz

and Oed introduced the idea of reducing the traditional optimization method to a

multidimensional root finding. Starting from a linearized version of TLEED for the

scattering amplitudes, they have proposed an iterative solution for the related nonlinear

system of equations for intensities[13]. This class of methods fits all the datapoints

simultaneously, since it involves the minimisation of a vectorial function f : �N → �N .

Indeed direct methods based on the holographic approach[14], and the quasi-direct

method proposed by the direct fitting of a a subset of experimental intensities have

been the two most promising routes to find solutions for structural problems that could

easily get out of hand as the system becomes more and more complex.

Multidimensional function minimisation techniques can be classified into local and

global. Local methods (e.g. steepest descent making downhill moves in the R-factor

hypersurface [15, 16, 17]) have the advantage of scaling like the number of unknowns

to be found squared (N2), but they have the disadvantage of exploring only the

nearest single local minimum. Alternatively, global methods allow uphill moves on

the hypersurface to explore several minima by crossing between ”valleys”. Most of

these methods work by constructing Markov chains of structures and are based in the

ergodic principle. Some examples are Genetic Algorithms (GA) [18], Random Sampling

Algorithms (RSA) [19] and Simulated Annealing (SA)[20]. All of them would find the

correct global minimum if given infinite time; however, within a finite time interval
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the degree of success varies depending on the particular circumstances and has to be

studied independently, often to optimize the parameters in the search. As an example

of selection of different parameters, the simulated annealing algorithm is interpreted

as a physical adiabatic cooling performed under quasi-equilibrium conditions, and the

cooling scheme is choosen to achieve a robust performance[20, 21].

In a previous paper, we have proposed simultaneous optimisation (SO)[22] based on

a number of theoretical simulations, and we have shown it can be successful in two highly

nonlinear scattering problems: single atom phase shifts retrieval from backscattered

intensities, and surface structure optimisation from LEED simulated data. In the

present paper, the SO method is described in full detail and its performance is tested

against real LEED experimental I(E) data measured for Cu(100) and Fe0.53Al0.47(100)

surfaces. These two systems have also been studied with RSA, allowing us to take a

benchmarck on performance against a different method known already to be efficient and

robust. The SO algorithm consists of two shells: (i) an inner shell where structures are

obtained by solving non-linear systems of equations by applying Broyden’s method[23]

(at this point only a random subset of the experimental database is used), and (ii) an

outer shell, where the structures obtained in the inner shell are validated against the

whole experimental database by using Pendry’s R-factor.

2. The algorithm

Several R-factor prescriptions can be considered for the structural problem[2]; the basic

task consists in comparing values for calculated and experimental intensities curves,

I(E), but first and/or second-order derivatives of the I(E) curves might be used too. Let

us consider a simple and basic R-factor, the least-square correlation factor:

R ∼
∑

�α

|qth(�x, �α) − qexp(�α)|2 (2)

where q is used to indicate that any convenient function of the intensities might be used

for the comparison, �x = (x1, . . . , xN ) are the N unknown structural parameters, and

�α = (Ei;�g) runs over energies and beams. The full experimental database is made of

intensities measured for different energies, Ei, in every accesible beam, �g: S = {I�α},
containing ND numbers.

From quite general statistical arguments, we expect the R-factor hypersurface to

have a number of shallow local minima, related to random correlations between theory

and experiment, and a few deeper wells due to structural coincidences [20]. Thus, if

a downhill method were to be used, an independent minimisation would be needed at

every local minimum. Since the number of minima grows exponentially with N , such a

multiple launch strategy is an NP-problem.

A most popular R-factor, RP , has been defined by Pendry [11]. Intensities are

affected by background contributions of temperature effects and electron damping,

so R-factors that make use of I(E) derivatives are, in general, more reliable because

these contributions are largely cancelled out. In particular, RP treats all maxima
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and minima at the I(E) equally, since all of them contain useful information about

constructive/destructive interference conditions closely related to the structure. In fact,

Pendry’s R-factor compares the so-called Y -functions, based on logarithmic derivatives,

to highlight all the extrema found in the spectra, and RP quantifies the agreement

between experimental and calculated Y -functions.

Usually, the set of experimental data, S, contains many more datapoints, ND, than

geometrical parameters in the model, N . As pointed out by Kleinle et al, R-factors

using the information contained in their derivatives need to be calculated on a fine grid

of energies where some datapoints are correlated. These authors suggested computing

an R-factor that only depends on intensities on a coarse energy gride[24]. From a formal

point of view, only a small subset of N independent datapoints SN ∈ S should be needed

to uniquely determine the structure. In practice, however, multiple coincident solutions

might be found for a reduced subset of the experimental database. A characteristic for

the global solution is that it it is independent w.r.t different choices for the subset SN .

This kind of procedure constitutes a list of structures converging to the ”global” one,

where the starting points do not need to be chosen at random, but are already partial

solutions to the global problem. The SO algorithm has been designed to evolve and

validate solutions obtained with RP from reduced database subsets.

We find that in most cases, these restricted subsets already contain the relevant

topographic features of RP , although they might also display features not related to

the global hypersurface. Obviously, these solutions constitute far better trial structures

than simple random moves on the RP hypersurface. However, dealing with experimental

or noisy data makes RP �= 0 at the global minimum. Therefore, the global solution is

not necessarily a solution of every partial subset, and determining the global solution

can be more difficult, in particular the algorithm could be trapped oscillating around

different local minima. It is possible to damp and minimize these oscillations by using

overdetermined systems, because by increasing the size of the system of equations the

local topography becomes more and more similar to the global one. We have found that

for overdetermined systems of the order of ND = 2N or ND = 3N , the computing effort

at the inner shell remains reasonable, while the efficiency increases considerably.

Having in mind that our goal is to find the global minimum in RP , we first define

a database subset, S̃ ∈ S, such that it includes intensities where ∂I(E;�g)
∂E

≈ 0 for at least

one of the experimental curves (let us call the cardinal of this subset ÑD ≥ N). This

choice of S̃ is arbitrary, but justified by the fact that those are the points contributing

more to Pendry’s RP .

A system of Neq equations and N unknowns is constructed with Neq intensities

chosen at random inside S̃. We denote this subset by: SNeq ∈ S̃ (ÑD ≥ Neq ≥ N). Thus,(
ÑD

Neq

)
different choices of systems of equations are available. We define the following

function:

fi(�x; Ei) =
∑

�g

|Y th
�g (Ei; �x) − Y exp

�g (Ei)| = 0 ; i = 1, . . . , Neq (3)
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where (E1, . . . , ENeq) is a set of Neq different experimental points taken from S̃ at

random. Summation over beams is performed to gather as much information as possible,

and because it results in a smoother function than the one corresponding to the �g value

associated to the extreme in the curve. This is relevant, since derivatives need to be

calculated in the inner shell (see Sec. 2.2).

2.1. The outer shell: the Markov chain

The global search starts with a structure chosen at random inside the physical accesible

region. These will be validated in the outer shell by an iterative process. The k-th

iteration in the outer shell starts by calling the inner shell with a structural candidate,

�x(k), and a subset of experimental datapoints, SNeq , chosen at random in S̃. The inner

shell returns as output a structure, �x′k. Before computing RP for the global database,

which is more expensive from a computational point of view than invoking the inner

shell, it is worth to check that (i) the new structure, �x′k, is also a solution for a different

choice of SNeq , and (ii) whether the new solution stays within a given convergence radius

from the old one. NPC ∼ N inner shell calls are made inside the k-th iteration on the

outer shell to reduce the number of times RP needs to be computed.

The k + 1-th iteration begins with a structure, �x(k+1), incorporating small random

modifications over the solution in the k-th iteration. Unlike SA, the modifications

are always accepted, which is known in the literature as blind random search iterative

improvement, and it is a global search method[25]. Following the RSA idea[19], �x(k+1)

is obtained by considering a gaussian probability distribution centred at the solution in

the k-th iteration, where the width of the gaussian, σ, depends on the value of RP (�x′k),
computed at the end of the k-th iteration. Therefore, uphill moves are guaranteed

and the search space size is reduced for small values of RP , where long jumps are not

necessary.

The partial problem tackled in the inner shell is highly non-linear; it might happen

that the system solver does not find the right solution. However, wrong trial structures

coming from the inner shell usually have already a few useful components, making better

candidates than a pure random blind choice made by conventional algorithms based in

the ergodic theorem. Non-gaussian probability distributions, such as Cauchy-Lorentz,

have been used in the literature to generate a Markov chain of structures[21]. In our

case, we have seen that the distribution shape is not crucial since the system solver

method in the inner shell is already quasi-global, and it overcomes RP hypersurface

simple barriers.

2.2. The inner shell: the system solver

To deal with the problem of solving the highly nonlinear system �f = 0, a globally

convergent algorithm that combines a multidimensional secant method with a descent

strategy is used [26]. The only requirement is that �f is a continuous and differentiable

function w.r.t. �x. The i-th iteration move in a conventional multidimensional secant
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method, δ�x(i) = �x(i+1) − �x(i), is given by:

J̃ (i) · δ�x(i) = − �f (i)

J̃ (i+1) · δ�x(i) = δ �f (i) (4)

where δ �f (i) = �f (i+1) − �f (i) and J
(i)
jk =

∂f
(i)
j

∂x
(i)
k

are the Jacobian matrix elements. In

order to save derivative evaluations, we substitute the exact Jacobian by Broyden’s

approximation [23],

J̃
(i+1)
B = J̃

(i)
B +

(δ �f (i) − J̃
(i)
B · δ�x(i)) ⊗ δ�x(i)

δ �f (i) · δ �f (i)
(5)

rather than the exact Jacobian J̃ (i+1). The procedure is initialised with the exact

Jacobian. When the system �f = 0 is overdetermined, the linear system of equations

Eq. (4) is solved in a least squares sense.

However, this method tends to wander around the parameter space if the starting

point is not close enough to the solution. This can be avoided by embedding the

procedure in a globally convergent strategy that tries to minimise the scalar function

|�f |2. The latter defines a hypersurface that can be seen as a projection of the global

RP onto the data subspace S ′
Neq

. If we use the exact Jacobian J̃ , δ�x(i) yields already a

descent direction for |�f |2, but the whole step may not make |�f |2 smaller. To ensure it,

a line search is performed along this vector,

�x(i+1) = �x(i) + λδ�x(i) (6)

taking the λ value that yields the smallest value of |�f |2. Sophisticated line searches

could be made at this stage [26], but an equispaced sampling along the line is found to

be enough for our purposes. Finally, at the end of each iteration, the exiting criterion

is checked. We use convergence in the modulus of �x as exiting condition:

|�x(i+1) − �x(i)| < xmin (7)

This method is non-local, because, even if the line search takes place along a descent

direction of |�f |2, a longer step can overcome a hypersurface barrier. If J̃
(i+1)
B deviates

from the descent direction, the procedure can be restarted with the exact Jacobian.

Every solution to Eq. (3) minimises |�f |2. However, Eq. (3) may eventually have

multiple solutions, and only one of them coincides with the global minimum of the

R-factor. The others correspond to local minima of the R-factor. In fact, the |�f |2
hypersurface shares topographic features with the R-factor.

However, that is true only for the ideal case of perfect agreement between theory

and experiment at the global minimum, where RP = 0. In a realistic scenario, the

global minimum has RP > 0. This implies that there might exist partial problems that

do not posses a solution at the global minimum. Adding more datapoints to the partial

problem should filter out oscillations near the R-factor minima and reconcile the partial

problem topographies. We define the oversampling factor Nov for the partial problem

such that the systems contain Neq = Nov × N equations and N unknowns, and solve
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linear Eqs. 4 in a least-squares sense. Although Nov should be chosen for each specific

problem according to the fit quality, the condition ND >> Neq must hold in order to

keep the partial problem tractable at a low computational cost.

2.3. Scaling law estimate

By construction, each Broyden approximate Jacobian evaluation requires 2N intensity

evaluations, while the exact Jacobian would need N2. The line search makes a constant

number of evaluations, and RP is evaluated every NPC ∼ N partial problem calls. Thus,

the total scaling exponent is β ≈ 2 before entering the Markov chain. On the other hand,

we can expect the outer shell to have a maximum scaling similar to RSA algorithm,

which has an exponent β ≈ 2.5 [19]. Notice that the present estimate considers the

number of intensity evaluations only, and not other N -dependent operations present in

the algorithm that affect the total computation time, such as matrix inversions. This

analysis gives an upper boundary value for the exponent, β � 4.5. SO yields efficient

scaling laws because the structures entering the Markov chain are by construction partial

solutions to the global problem, i.e. the outer shell is similar to an importance sampling,

rather than to a standard random sampling. In fact, we have already seen in the statistic

results from noiseless simulated LEED I(E) data of the Ir(110)-p(2×1) surface, that SO

yields an exponent β = 4.1± 0.1 [22]. A comparable value, β = 3.5 ± 0.2, was found in

the atomic phase-shifts retrieval from noiseless backscattered intensities from a single

atom[22].

From the arguments above, it is expected that the use of overdetermined nonlinear

systems will affect the scaling exponent only slightly, though the total computation effort

will increase. This has been observed in the problem of atomic phase shifts retrieval

from single atom noisy backscattered intensities[22]. In that example, a convincing

success rate could be obtained at low values of Nov. Adding 5% of gaussian noise in the

intensities and applying oversampled SO resulted in a scaling law exponent β = 4.4±0.3,

this value slightly increased to β = 4.8±0.4 when noise was 10%. For both noise values,

success rate above 90% could be routinely obtained using Nov = 2 when searching for

lmax < 5 phase shifts, and Nov = 4 for lmax ≥ 5.

The main quantity used to describe the efficiency of SO is the computing effort,

defined as the expected value

〈t〉 =
〈Ncall〉

Ne
(8)

where Ncall is the number of individual intensity evaluations and Ne is the number

of energy points per I(E) curve. In those previously published theory-theory

benchmarks[22], it was found that for each value of N the probability distribution

function (PDF) of a number Nstat of independent searches shows a peak at low t values

and is exponentially decreasing. Interestingly, it can be fitted to a one-event Poisson-like

distribution:

p(t) = w2te−wt. (9)
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This is the PDF of a single random event taking place in a predetermined time interval

between t and t + dt, the event being that SO finds the global minimum. The area

under p(t),

P (t) =

∫ t

0

p(t′)dt′ = 1 − (1 + wt)e−wt (10)

gives the success rate of a search that uses a computing effort t.

3. Results with experimental data

3.1. Clean Cu(100) surface

SO performance has been benchmarked using experimental normal-incidence LEED I(E)

curves from a clean Cu(100) surface. Pendry’s R-factor, RP , is used to quantify the

agreement between experimental and calculated spectra. The experimental data were

taken at a low temperature (90 K) in order to reduce thermal diffuse scattering (details

can be found elsewhere [27]). The Sample quality was good (common impurities, such as

C, O and S, were below the Auger detection limit) and the I(E) curves were reproducible

with RP < 0.02. RP values among symmetry related beams lie below 0.04, ensuring

a correct sample alignment. Previous dynamical analyses of this surface have been

reported in Refs. [27] and [28]. It was found that it is necessary to introduce an energy

dependent inner potential (Vor(E)) in order to accurately reproduce the correct lattice

parameter, a0 = 2.55 Å [28]. A theoretical model for Vor(E) can be parametrised from

first principles [29]. When a constant Vor is used, the I(E) fit yields a contracted in-plane

lattice parameter value of a0 = 2.53 Å [27]. This deviation of cents of Å lies beyond

the RP variance limit due to the systematic error caused by neglecting Vor(E). To

discuss the efficiency of the SO algorithm when fitting geometrical data, for simplicity,

we will restrict ourselves to a constant Vor, use the smaller a0 = 2.53 Å and keep Debye

parameters fixed at their optimum values. The database used in this work consists of

four beams, namely (10), (11), (20) and (21), measured in the energy range 55-410 eV

and producing a total data base width of ΔE = 940 eV. The maximum energy has been

chosen to be smaller than the 500 eV used in the original calculations[27], so as to make

the Vor(E) dependence less relevant for the fit. A maximum angular momentum number

lmax = 11 achieves convergence such that differences in RP are smaller than 0.001 .

An energy-averaged value of Vor is also to be fitted. Conventional directed

algorithms act upon the whole I(E) curve, so that it is usually enough to apply a

rigid shift to the I(E) curve to make peaks coincide and obtain a good estimate of

Vor. The straight-forward way of introducing Vor in a SO search would be to use it

only in the outer shell of the algorithm. In the first iterations, when calculated and

experimental I(E) curves are poorly correlated, the estimated value of Vor will be, in

general, in disagreement with the actual value. If this incorrect Vor is kept fixed during

inner shell iterations, it will prevent the algorithm from approaching the solution. A

better strategy consists in considering Vor as an extra unknown in the inner shell, thus
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adding another equation to the system. We have used this second procedure in the

forecoming calculations.

As a reference, we will use the structure determined full-dynamically by Müller et

al [27], with a0 = 2.53 ± 0.01 Å for the lattice parameter, and the following interlayer

distances (ordered from vacuum to bulk): d1 = 1.765 ± 0.005 Å, d2 = 1.805 ± 0.010 Å,

d3 = 1.80 ± 0.01 Å, d4 = 1.79 ± 0.02 Å, d5 = 1.80 ± 0.03 Å, d6 = 1.79 ± 0.04 Å, and

bulk interlayer distance db = 1.79 ± 0.07 Å. Deeper vertical distances have larger error

bars because of electron attenuation. Other non-structural parameters are Voi = 4.68

eV, and isotropic thermal vibration amplitudes v1 = 0.12 Å for the topmost layer atoms

and vb = 0.07 Å for subsurface atoms, determined within a Debye-Waller-like approach.

These values yield a minimum RPmin
= 0.085± 0.013 for a database of size ΔE = 1600

eV, where the R-factor variance is var(RP,min) = RP,min

√
8Voi

ΔE
[11]. If the reduced

database (ΔE = 940 eV) is used, the same structure yields RP,min = 0.15 ± 0.03. We

shall use this value to define the lowest boundary for exiting conditions of the statistical

searches as RP < RP,min +var(RP,min). Thus, for N = 6 interlayer distances, the search

is finished when RP < 0.18. For smaller values of N , best fit structures yield larger

RP,min values: RP,min(N = 2) = 0.18, RP,min(N = 3) = 0.17, RP,min(N = 4) = 0.16 and

RP,min(N = 5) = 0.16. The corresponding variance is ∼ 0.03. Therefore, the following

search exiting RP values are used: 0.21 for N = 2, 0.20 for N = 3 and 0.19 for N = 4, 5.

In order to examine the behaviour of SO when handling real experimental data,

we perform Nstat equivalent statistical searches using random starting points inside the

search space, that will be used to evaluate averages. The search space consists of the

topmost N inter-layer spacings of the Cu(100) surface, plus a constant value of Vor in the

range 2-10 eV. Intensities are calculated in the energy range 55-410 eV with a step of 3

eV. Thus, the nonlinear systems of equations in the inner shell contain N +1 unknowns.

Size effects have been modelled using two different search spaces of hypervolume 1 ÅN

and (0.4 Å)N . The latter corresponds to the usual Tensor LEED applicability range.

Fig. 1 shows the RP map for N = 2 in the 1 Å2 space. The global minimum is

located (d1, d2) = (1.75, 1.81) Å with RP = 0.18, and also a few secondary deep wells

with RP � 0.5 are found. The surface shows a strong corrugation, and several local

shallow minima with RP ∼ 0.8. As pointed out by Rous et al [16], this topological

feature is independent of the surface structure. Secondary deep minima are due to

Bragg coincidences with the actual structure and shallow minima are due to random

correlation between experimental and theoretical spectra. The (0.4 Å)2 area boundaries

are 1.57 Å and 1.97 Å, respectively. This search space contains several local minima but

no secondary deep minima. Due to these differences in the RP hypersurface topography,

differences in the scaling law between both search spaces appear.

The effect of different degrees of overdetermination in the inner shell has been

benchmarked for N = 3. Fig. 2 shows the PDF of the computing effort t at values

Nov = 1, 2, 3 on both search volumes. Nstat = 100 and 50 on 1 Å3 and (0.4 Å)3,

respectively. In both cases, Nov = 2 appears to be a well converged value, and further



Quantitative LEED analysis using a simultaneous optimisation algorithm. 11

overdetermination does not cause significant improvements in the efficiency.

For (0.4 Å)3, the PDF’s are non-symmetric, show a peak at low values of t and

decay exponentially. The histograms can be fitted by least-squares to Eq. 9. If plain SO

is used, i.e. Nov = 1, decay is clearly slower. However, in the 1 Å3 volume the Nov = 1, 3

histograms do not show a peak, and are better fitted by an exponential function λe−λt.

Table 1 contains some average values obtained from those PDF’s.

Fig. 3 shows a log-log plot of the scaling law, represented in terms of the average

computing effort 〈t〉 as a function of N . In both cases, the scaling law can be fitted to a

polynomial law, 〈t〉 ∝ Nβ, where β = 3.45±0.02 for 1ÅN and β = 2.3±0.2 for (0.4Å)N .

Averages are calculated upon Nstat = 20 and 40 for each N value, respectively. Fig. 4

shows the average the number of RP evaluations, 〈tRP
〉, at different N . Least-squares

fits to 〈tRP
〉 ∝ NβRP yield exponents βRP

= 1.93 ± 0.07 for 1 ÅN and βRP
= 1.0 ± 0.2

for 0.4 ÅN .

3.2. Fe0.53Al0.47(100)-1 × 1

Annealing of alloy surfaces may result in deviations of chemical composition in the

surface region w.r.t. that of the bulk. Segregation in alloy surfaces is a well-known

phenomenon that has been investigated in a number of binary alloys (see, for example,

Ref. [30] and references therein). In the present section, we use experimental LEED I(E)

data from a Fe0.53Al0.47(100)-1 × 1 surface to benchmark the ability of SO to fit non-

geometrical data, namely impurity concentration and/or thermal vibration amplitudes.

FeAl crystal structure is of CsCl type, and the stoichiometric (100) surface consists of

alternating Al and Fe layers. FeAl crystals exhibit a rich phase diagram, and the surface

structure strongly depends on both the bulk stoichiometry and annealing temperature.

Annealing of a Fe0.53Al0.47(100) surface at 650 K results in a c(2 × 2) reconstruction,

whilst annealing at temperatures above 880 K produces a sharp 1 × 1 LEED pattern.

We shall focus on the latter. Experimental details on surface preparation and spectra

measurements can be found elsewhere [31, 19]. Early quantitative LEED calculations

on this sample determined that the (100) face is Al-terminated, yielding a satisfactory

RP = 0.12 and the following interlayer distances: d1 = 1.24 ± 0.02 Å, d2 = 1.49 ± 0.02

Å, d3 = 1.47 ± 0.02 Å (the lattice parameter is a0 = 2.894 Å[31]). The same analysis

yields a ∼ 20% Al impurity concentration in the second layer. Since interstitial site

formation is energetically unfavourable in FeAl, this result can be attributed to the

strong contraction of the outermost Fe plane.

Another possible explanation is found in the coupling between chemical and

vibrational parameters, which occur in LEED intensities via the Debye-Waller factor,

if the average t-matrix approximation is used [32]. Blum et al [33] revisited this surface

and found that the best structure fit can be achieved by either: (i) fitting the second Fe

layer concentration of Al impurities, c2 and the topmost Al atomic vibration amplitude

v1, or (ii) fitting two different vibration amplitudes v1 and v2 for the first Al and second

Fe layers, respectively. Considering Vor(E), too, these fits yielded improved R-factors,
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RP = 0.091 and RP = 0.081, respectively. Both fits are equally favourable, as they lie

within the systematic error limits of the LEED analysis.

The experimental database consists of eight beams measured at T = 120 K in

the energy range 40-500 eV with a step of 3 eV, producing a total data base width

ΔE = 1880 eV. The beam list is { (10), (11), (20), (21), (22), (30), (31), (32) }. In

the I(E) evaluations, lmax = 10 provides convergence, and the imaginary part of the

inner potential is kept fixed at Voi = 6 eV. We use RP ≤ 0.12 as exiting condition for

SO. Independent searches have been made for N = 6 parameters: Vor, three structural

and two non-structural parameters. Vor lies in the range 6-14 eV. Structural parameters

are the three topmost interlayer distances, d1, d2, d3, in the ranges d1 = 1.16 − 1.46

Å, d2 = 1.30 − 1.60 Å and d3 = 1.36 − 1.56 Å. The two non-structural parameters

are, according to Blum et al [33], (i) c2 and v1, or (ii) v1 and v2. c2 lies in the range

0-50 % and the vibration amplitudes lie in the range 0.087 - 0.15 Å. Other vibrations

are kept fixed at their bulk values, namely: vb(Fe) = 0.09 Å and vb(Al) = 0.12 Å.

We have performed Nstat = 40 statistical searches for each type of fit using Nov = 2.

The corresponding computing effort PDF’s are shown in Fig. 5, and average values are

〈t〉 = 570 ± 70 for type (i) search and 〈t〉 = 470 ± 70 for type (ii).

4. Discussion

The Simultaneous Optimisation (SO) algorithm has been successfully applied to

parameter extraction from highly non-linear scattered intensities in ideal scenarios,

namely phase shifts retrieval from single atom electron scattering and surface structure

recovery from simulated LEED I(E). In these examples, SO has performed efficiently,

and works well with minimal data sets in the inner shell, i.e. it uses N datapoints

S ′ = (E1, . . . , EN) to fit N parameters �x = (x1, . . . , xN). The inner shell solves a non-

linear system of equations, a problem which is equivalent to finding the global minimum

of a projected R-factor on the S ′ data subset. The solutions provided by the system

solver must be validated against the whole data base in an outer shell by evaluating

the R-factor. Therefore, SO can explore a large number of meaninful configurations in

the investigated hypervolume at a low computational cost. The configurations provided

by the inner shell have been shown to exhibit local minima of the R-factor at the

worst case (i.e. when the system solver fails to return a solution to the system because

it stagnates at a local minimum of the projected R-factor). However, when dealing

with real experimental databases this is not always the case. We have found that it

is not guaranteed that solutions to the partial problems correspond to local minima of

the R-factor, as spurious peaks in the experimental spectra may be eventually fitted.

Therefore, we generalize the implementation of SO so it can be applied to realistic

situations with the same efficiency or robustness as in the theoretical case. Spurious

peak fitting results in high frequency corrugation of the R-factor hypersurface. By using

overdetermined systems of equations, i.e. taking S ′ = (E1, . . . , ENeq) with Neq > N , SO

can filter out those corrugations, since the projected R-factor topography captures more
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features of the global R-factor. This method has been benchmarked using experimental

LEED I(E) curves in the Cu(100) surface and a search space of hypervolume 1 ÅN .

After determining the optimum oversampling degree, it is found that the computational

effort scales polynomically as Nβ, with exponent β = 3.45 ± 0.02, a value which is of

the same order as the previously found exponent for SO working under ideal noiseless

condition. It is noteworthy that only Neq = 2(N + 1) are needed in the inner shell to

achieve convergence in the search success rate, as shown in Fig. 2 for N = 3. Since

Neq << ND, it is ensured that the number of different system choices is high enough to

ensure ergodicity.

As expected, the search space size affects the scaling behaviour. In particular, if

we restrict the hypervolume sufficiently enough to contain only one minimum inside

(local or not) and if we use gradient-directed methods, we expect an ideal scaling,

β = 2. It is interesting to notice that the best possible scaling law, β = 1, implies

that RP depends linearly on the parameters, and the searching hypervolume is such

that the minimum stays in one of the corners of the simplex. These are too restrictive

conditions, and are not likely to happen for complex problems. On the other hand, the 1

ÅN hypervolume size is big enough to contain in most of the cases several local minima

in the RP hypersurface [20], as we have confirmed in our calculations (Fig. 1). Therefore,

it is not surprising that by reducing the searching hypervolume the exponent decreases

towars the ideal value of 2. Statistical search averages yield an exponent β = 2.3 ± 0.2

for the same system in a (0.4 Å)N hypervolume (see Fig. 3), which is similar to the value

β = 2.5 found for RSA working in a space of the same size [19]. As shown in Fig. 4,

the number of RP evaluations in the outer shell is a linear function of N in the smaller

space, while it is quadratic in 1 ÅN . Therefore, we conclude that the total scaling law of

SO in the former case appears to be dominated by the inner shell, explaining the high

efficiency of the method.

We have also tested the applicability of SO to non-geometrical parameter retrieval.

Introducing Vor in the search as an additional parameter does not alter significantly

the scaling law in the Cu(100) example. Other non-structural parameters, such as

vibrational and chemical ones, can be optimised by SO. In the studied application,

Fe0.53Al0.47(100), Al intermixing in the second layer and surface vibration amplitude are

satisfactorily characterised by SO using 〈t〉 = 570, which is more than the reported value

for RSA algorithm (345 trial structures) working under equivalent search conditions

[19]. Interestingly, corrugation in the RP topography is mainly due to structural

parameters. Fig. 6 shows RP as a function of chemical and/or vibrational parameters

with structural parameters fixed at their best fit values. Both maps have a deep flat

minimum. Therefore, we expect that statistics in this example are biased by the search

of interlayer spacings.
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5. Conclusions

The Simultaneous Optimisation (SO) algorithm has been applied to experimental LEED

data and characterized in detail so it can be compared with other alternatives in the

literature. The use of noisy experimental LEED data does not imply a reduction of

reliability or efficiency w.r.t. its performance on ideal noiseless databases [22]. SO

brings together two apparently contradictory widespread concepts in structural work by

LEED: while large parts of the database are redundant and promising structures can be

obtained from a reduced number of datapoints [34], one must keep in mind that only

by using large experimental databases high accuracy and reliability can be obtained.

Finally, the use of the ergodic principle confers global character to the search [20].
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Figure 1. RP map for Cu(100) data in a search space of area 1 Å2. Parameters
(d1, d2) are two topmost interlayer spacings. Real part of the inner potential is also
optimised for each structure. The global minimum (RP,min = 0.18) is located at
(d1, d2) = (1.75, 1.81) Å. Secondary deep minima appear at (d1, d2) = (2.14, 1.45) Å
with RP = 0.42, (d1, d2) = (1.75, 1.48) Å with RP = 0.48, and (d1, d2) = (1.30, 2.20)
Å with RP = 0.50.
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Figure 2. Panel (a): Cu(100) data in a search space of size 0.4 Å with Nstat = 100.
Panel (b): Cu(100) data in a search space of size 1 Å with Nstat = 50. Search
parameters are three topmost interlayer spacings. Real part of the inner potential
is also optimised for each structure. Searches are made under different inner shell
oversampling conditions: Nov = 1 (solid line), 2 (dashed) and 3 (dotted).
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Figure 3. Scaling law for Cu(100) data with search spaces of sizes 1 ÅN (squares) and
(0.4 Å)N (circles) together with the corresponding least-squares fits to a polynomial
law.
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Figure 4. Scaling law for the number of R-factor evaluations in Cu(100) data
with search spaces of sizes 1 ÅN (squares) and (0.4 Å)N (circles) together with the
corresponding least-squares fits to a polynomial law.
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Figure 5. PDF’s of the computing effort in FeAl searches using two types of non-
structural parameters. Solid line corresponds to fitting c2 and v1, and dotted line to
fitting v1 and v2. Both histograms are built upon Nstat = 40 independent searches.
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Figure 6. RP map for Fe0.53Al0.47(100) data as a function of (a) (v1, c2) or (b) (v1, v2)
(see text), with structural parameters fixed at their best fit values.
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Table 1. Average t values corresponding to histograms of Fig. 1. 〈t〉 is the histogram
average, 〈t〉E = 2/w is the expected value obtained after a least-squares fit of the
histograms to a function p(t) = w2te−wt and 〈t〉P (P = 0.90, 0.9998) are the average t

values needed to get a successful search with P probability. The values marked by (*)
have been obtained from a fit to p(t) = λe−λt.

0.4 Å3 1 Å3

Nov 〈t〉 〈t〉E 〈t〉0.90 〈t〉0.9998 〈t〉 〈t〉E 〈t〉0.90 〈t〉0.9998

1 160 ± 10 146 ± 6 284 805 1620 ± 150 (*) 1270 ± 160 3729 (*) 13793 (*)

2 100 ± 6 88 ± 4 170 482 1050 ± 120 960 ± 100 1873 5297

3 110 ± 7 97 ± 5 188 532 1550 ± 150 (*) 1600 ± 300 3578 (*) 13235 (*)
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