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Abstract: In this work we study the Lepton Flavour Violating semileptonic τ decays: 1)

τ → µPP with PP = π+π−, π0π0,K+K−,K0K̄0; 2) τ → µP with P = π0, η, η′ and 3)

τ → µV with V = ρ0, φ. We work within the context of two constrained MSSM scenarios:

the CMSSM-seesaw and NUHM-seesaw, with a MSSM spectrum extended by three νR

and their SUSY partners and where the seesaw mechanism for neutrino mass generation

is implemented. A full SUSY one-loop computation is presented and the importance of

the various contributions, the γ-, Z-, and Higgs bosons mediated ones, are analysed. The

hadronisation of quark bilinears is performed within the chiral framework. Some discrepan-

cies in the predicted rates for BR(τ → µη), BR(τ → µη′) and BR(τ → µK+K−) are found

with respect to previous estimates, which will be commented here. These three channels

will be shown to be the most competitive ones to test simultaneously the Lepton Flavour

Violation and the Higgs sector. We further present here a set of approximate formulas for

all the semileptonic channels which we believe can be useful for further comparison with

present and future data.
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1. Introduction

Lepton Flavour Violating (LFV) processes provide one of the most challenging tests of

supersymmetric (SUSY) extensions of the Standard Model (SM) of Particle Physics [1 – 4].

One of the most popular ones among these extensions is the Minimal Supersymmetric Stan-

dard Model (MSSM) enlarged with three right handed neutrinos and their corresponding

SUSY partners, and where the physical neutrino masses are generated via a seesaw mech-

anism [5, 6]. Within this SUSY-seesaw context, the light neutrino masses and neutrino

mixing angles can be easily accommodated in agreement with present data [7] by setting

appropriate input values for the heavy right handed neutrino masses, within the range

MR ∼ (1010 − 1015) GeV, and appropriate Yukawa couplings, Yν . The hypothesis of Ma-

jorana neutrinos is crucial in this concern, because it is only for them that large Yukawa

couplings, say Yν ∼ O(1), can be set. An interesting connection between neutrino and

LFV physics then follows, because the large Yukawa couplings induce, via loops of SUSY
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particles [8], important contributions to the rare LFV processes. In fact, these contribu-

tions are in some cases, already at the reach of their present experimental sensitivity. So

far, the most sensitive LFV process to the Yukawa couplings in the SUSY-seesaw context

is µ → eγ, where the present experimental sensitivity is at 1.2 × 10−11 [9, 10]. In the

future, if the announced improvement in the sensitivity of µ − e conversion in nuclei of

up to 10−18 is finally reached [11], this process will be by far the most competitive one.

Regarding the tests of Lepton Flavour Violation (LFV) in the τ −µ sector, the most com-

petitive one at present is τ → µγ, whose upper bound is now set to 1.6 × 10−8 [12 – 15].

Furthermore, the sensitivity to LFV in τ → 3µ has also improved notably in the last years.

The present upper bounds from BELLE and BABAR collaborations are 3.2×10−8 [16] and

5.3 × 10−8 [17], respectively. This leptonic channel has the advantage over the radiative

τ → µγ decay that provides a test not only of SUSY but also of the Higgs sector. It is

remarkable that both τ → 3µ decay [18 – 22] and µ − e conversion [23, 24] in nuclei can

get important contributions from Higgs mediated diagrams in SUSY scenarios with large

tan β and light MSSM Higgs bosons.

In the present work, we study the LFV semileptonic tau decay channels which are also

of interest because of the recently reported sensitivity by BELLE and BABAR collabora-

tions [25 – 28] that are, for some channels, already competitive with the LFV tau leptonic

ones. In particular we analyse here the following semileptonic tau decays: 1) τ → µPP

with PP = π+π−, π0π0,K+K−,K0K̄0; 2) τ → µP with P = π0, η, η′ and 3) τ → µV

with V = ρ0, φ. Their present upper experimental bounds (90% CL) are summarised

in table 1. We perform a full one-loop computation of the rates for all these processes

within the context of two constrained SUSY-seesaw scenarios which are of particular inter-

est: The usual constrained MSSM-seesaw (CMSSM-seesaw) scenario [29], with universal

soft SUSY masses at the gauge coupling unification scale, and the so-called Non-Universal

Higgs Mass (NUHM) scenario [30], with all those soft masses being universal except for the

Higgs sector ones. In this later case the predicted Higgs particle masses can be low, indeed

close to their present experimental lower bounds (for the SM Higgs the present bound is

mH > 114.4 GeV 95% C.L. [7]), and the corresponding Higgs-mediated contribution to the

previous LFV processes can be relevant, even for large soft SUSY masses.

In the previous related literature there are, to our knowledge, just a few theoretical

computations of some of these LFV semileptonic τ decays induced by SUSY loops. In

particular, τ → µη was first computed in [31] within the context of the unconstrained

MSSM and in the approximation of large tanβ. A more refined analysis of this channel, τ →
µη′, τ → µπ, and τ → µρ was done in [32] for the unconstrained MSSM scenario and large

tan β approximation as well, but they used an effective lagrangian framework for the LFV

operators. An estimate of τ → µη with the use of the mass insertion (MI) approximation

for the relevant lepton flavour mixing parameter between the τ and µ sectors, δ32, has

been performed in [33]. The decay mode τ → µK+K− has been estimated in [34] within

the mass insertion and leading logarithmic (LLog) approximations for δ32, and taking into

account only the Higgs-mediated contribution in the large tan β limit. In all these previous

works no connection with the neutrino sector was considered and the hadronisation of

quark bilinears in the final state is simply parameterised in terms of the proper meson
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decay constants and meson masses. Other estimates of some of these LFV semileptonic

τ decays in different contexts, like SO(10)-SUSY-GUT model with universal soft breaking

terms [35] and Littlest Higgs model [36], have also been performed in the literature.

Our analysis presented here is more complete in several aspects. First, we include both

Z-boson and A0-boson mediated contributions to τ → µP (P = η, η′, π0), and both γ and

H0, h0-bosons mediated contributions to τ → µK+K−. The other channels, τ → µK0K̄0

and τ → µπ0π0 have not been estimated previously. We include γ and H0, h0-bosons

mediated contributions in τ → µK0K̄0. The case τ → µπ0π0 can only be mediated by

H0, h0-bosons. Second, we do not use either the mass insertion nor the LLog approximation

and our analytical computation is valid for all tanβ values. Third, we make a connection

with neutrino physics by requiring compatibility through all this work with the neutrino

data for masses and mixing angles. Fourth, we perform the hadronisation of quark bilinears

with close attention to the chiral constraints, guided by the resonance chiral theory [37] that

has proven to be a robust framework for the analyses of hadrodynamics when resonances are

involved. The γ amplitude, due to its pole at q2 = 0, is most sensitive to the hadronisation

procedure. Hence the hadronisation of the electromagnetic current, that drives the γ

contributions, has been carried out by a careful construction of the vector form factor that

matches both the chiral low-energy limit and the asymptotic smoothing at high q2 [38].

Those final states driven by heavy intermediate bosons like the Z0 or Higgses, on the other

side, do not require such an involved scheme. In these cases we have used the leading

chiral approximation of Chiral Perturbation Theory that we know, for sure, it has to be

fulfilled by the hadronisation. The advantage of our approach is that it provides the most

successful description up to date of the hadronic tau decays and it can be systematically

improved by further developments of the appropriate form factors, whether axial-vector,

scalar or pseudoscalar cases.

The rest of this paper is organised as follows. The theoretical framework for the

computation of LFV semileptonic τ decays is described in section 2. This includes a short

review of the SUSY-seesaw scenarios that we work within, CMSSM and NUHM, and a

description of our procedure for hadronisation of quark bilinears within the context of

Chiral Perturbation Theory (χPT) and Resonance Chiral Theory (RχT). In section 3,

the analytical results of the full one-loop branching ratios BR(τ → µPP ), BR(τ → µP ),

BR(τ → µρ) and BR(τ → µφ) are presented. Section 4 is devoted to the numerical

results and discussion. It includes, in addition a comparison between the full one-loop

and approximate results. A set of useful approximate formulas for the semileptonic tau

decay rates that are valid at large tan β are derived. A critical comparison with previous

predictions in the literature is also included in this section 4. Finally, section 5 summarises

the conclusions.

2. Framework for LFV semileptonic τ decays

In this section we describe the theoretical framework for the computation of the LFV

semileptonic τ decay rates. First we present the scenario for the generation of LFV in the
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LFV semilep. τ decays BABAR Belle BABAR & Belle

BR(τ → µη) 1.5 × 10−7 [27] 6.5 × 10−8 [26] 5.1 × 10−8 [15]

BR(τ → µη′) 1.4 × 10−7 [27] 1.3 × 10−7 [26] 5.3 × 10−8 [15]

BR(τ → µπ) 1.1 × 10−7 [27] 1.2 × 10−7 [26] 5.8 × 10−8 [15]

BR(τ → µρ) — 2.0 × 10−7 [25] —

BR(τ → µφ) — 1.3 × 10−7 [39] —

BR(τ → µπ+π−) — 4.8 × 10−7 [25] —

BR(τ → µπ0π0) — — —

BR(τ → µK+K−) — 8.0 × 10−7 [25] —

BR(τ → µK0K̄0) — — —

Table 1: Present upper bounds for LFV semileptonic τ decays.

τ -µ sector, then we summarise the main ingredients to perform the hadronisation of quark

bilinears within the context of χPT and RχT.

2.1 LFV in the SUSY-seesaw scenario

The SUSY-seesaw scenario that we work within contains the full MSSM spectra and, in

addition, the three right handed neutrinos and their SUSY partners. It is defined in terms

of both the SUSY and neutrino sector parameters which are summarised in the following.

Regarding the SUSY sector we choose to work in two different constrained MSSM

scenarios: The usual Constrained MSSM (CMSSM) with similar input parameters as in

mSUGRA models, and the so-called Non-Universal Higgs Mass (NUHM) scenarios with

two additional parameters defining the non-universal soft Higgs masses. The corresponding

sets of input parameters in these two scenarios are:

CMSSM : M0 ,M1/2 , A0 , tan β , sign(µ) ,

NUHM : M0 ,M1/2 , A0 , tan β , sign(µ) ,MH1
,MH2

, (2.1)

where M0, M1/2 and A0 are the universal soft SUSY breaking scalar masses, gaugino

masses and trilinear couplings at the gauge coupling unification scale, MX = 2×1016 GeV.

Notice that M0 and A0 define also the soft parameters in the sneutrino sector. The other

CMSSM parameters are, as usual, the ratio of the two Higgs vacuum expectation values,

tan β = v2/v1, and the sign of the µ parameter, sign(µ). The departure from universality

in the soft Higgs masses of the NUHM is parameterised in terms of two parameters δ1 and

δ2 by,

M2
H1

= M2
0 (1 + δ1) , M2

H2
= M2

0 (1 + δ2) . (2.2)

Notice that with the choice δ1,2 = 0 one recovers the universal case defined by the CMSSM

scenario. For simplicity, and to further reduce the number of input parameters, in all

the numerical estimates of this work we will take M0 = M1/2 ≡ MSUSY, A0 = 0 and

sign(µ) = +1.
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To evaluate these two sets of parameters at low energies (taken here as the Z gauge

boson mass mZ) we solve the full one-loop Renormalisation Group Equations (RGEs)

including the extended neutrino and sneutrino sectors. For this and the computation of

the full spectra at the low energy we use here the public FORTRAN code SPheno [40].

Regarding the neutrino sector, we use the seesaw mechanism for neutrino mass gen-

eration which is implemented here to the case of three right handed neutrinos. The usual

input parameters in this case are the three right handed Majorana masses, MR1,2,3 and

the neutrino Yukawa coupling 3x3 matrix, Yν . The Dirac neutrino mass matrix is then

related to the Yukawa couplings by mD = Yν v2, where v2 = v sin β and v = 174 GeV.

In this seesaw scenario, the physical Majorana neutrinos consist of three light ones, ν1,2,3,

with predicted masses being typically mν1,2,3 ∼ O(m2
D/MR), and three heavy ones, N1,2,3,

with masses mN1,2,3 ≃ MR1,2,3 . However, instead of this we will use another set of input

parameters which are more convenient to accommodate the experimental data on light

neutrino masses and generational mixing angles. Within this parameterisation, the Dirac

mass matrix and, hence, the Yukawa coupling matrix, are derived in terms of the physical

neutrino masses, neutrino mixings and a generic complex orthogal 3 × 3 matrix, R, as

follows [41],

mD = Yν v2 = i

√

mdiag
N R

√

mdiag
ν U †

MNS , (2.3)

where,

mdiag
N = diag (mN1

,mN2
,mN3

) , (2.4)

mdiag
ν = diag (mν1

,mν2
,mν3

) , (2.5)

and we use the standard parameterisation for the unitary matrix UMNS [42, 43] containing

the three generational mixing angles θ12, θ13 and θ23 and the three CP violating phases, δ,

φ1,2. In turn, the R matrix is parameterised in terms of three complex angles, θi (i = 1, 2, 3)

as [41]

R =







c2 c3 −c1 s3 − s1 s2 c3 s1 s3 − c1 s2 c3
c2 s3 c1 c3 − s1 s2 s3 −s1 c3 − c1 s2 s3
s2 s1 c2 c1 c2






, (2.6)

with ci ≡ cos θi and si ≡ sin θi. One interesting aspect of this matrix is that it encodes the

possible extra neutrino mixings (associated with the right-handed sector) in addition to

the ones in UMNS. Notice also that the previous eq. (2.3) is established at the right-handed

neutrino mass scale MR, so that the quantities appearing in it are indeed the renormalised

ones, namely, mdiag
ν (MR) and UMNS (MR). These latter are obtained here by means of the

RGEs and by starting the running from their corresponding renormalised values at mZ ,

mdiag
ν (mZ) and UMNS (mZ) which are identified respectively with the physical mdiag

ν and

UMNS from neutrino data.

Concerning our choice for the size of the physical neutrino parameters, we shall focus

in this work on scenarios where both light and heavy neutrinos are hierarchical,

mν1
≪ mν2

≪ mν3
,

mN1
≪ mN2

≪ mN3
,
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and set the numerical values for the light neutrino parameters to the following ones which

are compatible with present data [7, 44]

m2
ν1

≃ 0 , m2
ν2

= ∆m2
sol = 8 × 10−5 eV2 , m2

ν3
= ∆m2

atm = 2.5 × 10−3 eV2 ,

θ12 = 30◦ , θ23 = 45◦ , θ13 ≃ 0, δ = φ1 = φ2 = 0 . (2.7)

Notice that, for simplicity, the three CP violating phases, have been set to zero. We have

also set to zero the θ13 mixing angle and the lightest neutrino mass in order to minimise

as much as possible the LFV in the µ − e sector. In fact, we have checked that for the

explored parameters region in this work, this µ − e LFV is below the sensitivity of the

present data from µ→ eγ, µ→ 3e and µ− e conversion in nuclei.

In summary, the input parameters of the neutrino sector for the present work are:

Seesaw : mN1,2,3 , θ1,2,3 . (2.8)

Regarding the generation of LFV in these constrained MSSM scenarios, we remind that

all lepton flavour mixing originates solely from the neutrino Yukawa couplings. These Yν

first induce flavour violation in the slepton sector by the RGE running of the soft SUSY

breaking parameters from MX down to the electroweak scale mZ . It is manifested in the

non-vanishing values of the off-diagonal elements of the slepton squared mass matrix at mZ .

We perform this running by solving the full set of one-loop RGEs including the neutrino

and sneutrino sectors. The resulting slepton mass matrices at mZ are then diagonalised

and the previous flavour mixing is then transmitted to the mass eigen-values and eigen-

states. Therefore, in this work where we deal with physical states, all flavour mixing is

implicit in the resulting physical charged slepton masses, m2
l̃1
, . . . ,m2

l̃6
, sneutrino masses,

m2
ν̃1
, m2

ν̃2
, m2

ν̃3
and the corresponding matrices that rotate from the electroweak to the

slepton and sneutrino mass bases, respectively, Rl and Rν . The LFV in the physical

processes, like lj → liγ, lj → 3li, µ− e conversion in nuclei, and the semileptonic τ decays

studied here, are then generated by the SUSY one-loop contributing diagrams that contain

these slepton physical masses in the internal propagators, and also the previous rotation

matrices in the interaction vertices, which connect between different lepton generations. A

complete set of Feynman rules for the relevant LFV vertices can be found in [21, 24].

Finally, in order to illustrate more quantitatively how important can be the size of

the flavour mixing between the stau and smuon sectors, in the CMSSM-seesaw scenario,

we include next the predictions of the mixing parameter δ32 that is defined in the LLog

approximation as,

δ32 = − 1

8π2

(3M2
0 + A2

0)

M2
SUSY

(

Y †
ν LYν

)

32
, (2.9)

where L is a 3 × 3 diagonal matrix whose elements are, Lii = log(MX/mNi
) and MSUSY

is an average SUSY mass. This phenomenological parameter δ32 measures the amount of

flavour mixing between the second and third slepton generations in the left-handed sector

(LL), which is by far the dominant one. The corresponding mixing in the right-handed

slepton sector is extremely suppressed by the smallness of the lepton masses which appear

as global factors in the definitions of those (RR and RL) mixings (see, for instance, [21]).
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Figure 1: |Y 32
ν | and |δ32|, in the CMSSM-seesaw scenario, as a function of |θ2|, for arg θ2 =

{0, π/8 , π/4 , 3π/8, π/2} (dots, crosses, asterisks, triangles and circles, respectively). Both |θ2|
and arg θ2 are given in radians. The predictions for |Y 33

ν | are practically indistinguishable from

those for |Y 32
ν |.

One can estimate δ32 from the previous parameterisation of the seesaw model in

eq. (2.3) by simply plugging in eq. (2.9) the value of
(

Y †
ν LYν

)

32
from the following ex-

pression,

v2
2

(

Y †
ν LYν

)

32
= L33mN3

[(√
mν3

c∗1c
∗
2c13c23 −

√
mν2

s∗1c
∗
2c12s23

)

(2.10)
(√
mν3

c1c2s23 +
√
mν2

s1c2c12c23
)]

+L22mN2

[(√
mν3

(−s∗1c∗3 − c∗1s
∗
2s

∗
3)c23 +

√
mν2

(s∗1s
∗
2s

∗
3 − c∗1c

∗
3)c12s23

)

(√
mν3

(−s1c3 − c1s2s3)s23 +
√
mν2

(c1c3 − s1s2s3)c12
)]

+L11mN1

[(√
mν3

(s∗1s
∗
3 − c∗1s

∗
2c

∗
3)c23 +

√
mν2

(s∗1s
∗
2c

∗
3 + c∗1s

∗
3)c12s23

)

(√
mν3

(s1s3 − c1s2c3)s23 −
√
mν2

(s1s2c3 + c1s3)c12c23
)]

,

where, sij ≡ sin θij and cij ≡ cos θij, and we have already set mν1
= 0 and θ13 = 0.

The numerical predictions for |Y 32
ν | and |δ32| as a function of θ2 are shown in fig-

ure 1. Here we have set MSUSY = M0 = M1/2 = 250 GeV, A0 = 0, (mN1
,mN2

,mN3
) =

(1010, 1011, 1014)GeV, and the light neutrino parameters are those in eq. (2.7). We see

clearly that |δ32| follows the same pattern as |Y 32
ν | (and |Y 33

ν |) and can reach large values

in the range 0.1-1 for several choices of |θ2| and arg(θ2). Notice also that the predictions

for |δ32| corresponding to Yukawa couplings larger than about 4 are not shown, because

through all this work perturbativity in all the gauge and Yukawa couplings are imposed.

This is set numerically in the Spheno program by the requirement |Yν |2/(4π) < 1.5 and

corresponds to a maximal predicted value of about |δ32| < 0.4. The corresponding predic-

tions with respect to θ1 are very similar to those of θ2 and are not shown for brevity. The

value of |δ32| is practically independent on θ3. For the rest of this work we will set θ1,3 = 0

and use just θ2 as input parameter.

The numerical predictions for |δ32| as a function of the heaviest neutrino mass, mN3

are shown in figure 2. |δ32| values within the range 0.1-1 are obtained for large mN3
values,
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Figure 2: |δ32|, in the CMSSM-seesaw scenario, as a function of mN3
.

say within the interval 1013 − 1015 GeV. Notice that the predictions enter into the above

commented non-perturbative region for values larger than mN3
= 1014 GeV, and for the

particular choice of θ2 = 2.9 ei
π
4 . Concretely, the value |δ32| = 1, which is interesting for

later discussion and comparison with other works, corresponds to mN3
= 3×1014 GeV and

lies clearly in the non-perturbative region. Finally, just to mention that |δ32| is not much

dependent on tanβ nor on mN1,2 . The values of these two heavy neutrino masses will be

set in the following to the reference values mN1,2 = 1010, 1011 GeV.

2.2 Hadronisation of quark bilinear currents

Semileptonic decays of the tau lepton are a relatively clean scenario from the strong in-

teraction point of view. Hadrons in the final state stem from the hadronisation of quark

bilinears, namely ψ Γψ, where ψ is a vector in the SU(3)F flavour space and Γ is, in general,

a matrix both in the spinor and the flavour space.

An appropriate framework to handle the procedure of hadronisation is provided by

the large-NC expansion of SU(NC) QCD [45], being NC the number of colours. In short it

stays that in the NC → ∞ limit any Green function is given by meromorphic expressions

provided by the tree level diagrams of a Lagrangian theory with an infinite spectrum of

zero-width states. Though we do not know how to implement fully this limit, a fruitful [46]

if debatable [47] approach lies in cutting the spectrum, keeping only the lightest multiplets

of resonances. We will attach to this tenet as a guiding principle.

A suitable tool to realise the 1/NC expansion is provided by chiral Lagrangians. In

those processes where hadron resonances do not play a dynamical role, χPT [48, 49] is the

appropriate scheme to describe the strong interaction of Goldstone bosons (π, K and η).

This is the case, for instance, of τ → µP (being P short for a pseudoscalar meson). When

resonances participate in the dynamics of the process, as in τ → µPP , it is necessary to

include them as active degrees of freedom into the Lagrangian as it is properly done in
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the RχT frame [37]. Hence we will make use of RχT, that naturally includes χPT, to

hadronise the relevant currents that appear in the processes under study here.

We consider bilinear light quark operators coupled to external sources and added to

the massles QCD Lagrangian :

LQCD = L0
QCD + q [γµ (vµ + γ5 a

µ) − ( s − i p γ5)] q , (2.11)

where vector (vµ = vµ
i λ

i/2), axial-vector (aµ = aµ
i λ

i/2), scalar (s = siλ
i) and pseudoscalar

(p = piλ
i) fields are matrices in the flavour space, and L0

QCD is the massless QCD La-

grangian.1 This Lagrangian density gives the QCD generating functional ZQCD [v, a, s, p]

as

eiZQCD[v,a,s,p] =

∫

[DGµ ][Dq ][Dq ] ei
R

d4xLQCD[q,q,G,v,a,s,p] . (2.12)

In order to construct the corresponding Lagrangian theory in terms of the lightest

hadron modes we need to specify them. The lightest U(3) nonet of pseudoscalar mesons :

φ(x) =
8
∑

a=0

λa√
2
ϕa (2.13)

=















1√
2
π0 +

1√
6
η8 +

1√
3
η0 π+ K+

π− − 1√
2
π0 +

1√
6
η8 +

1√
3
η0 K0

K− K̄0 − 2√
6
η8 +

1√
3
η0















,

is realised nonlinearly into the unitary matrix in the flavour space :

u(ϕ) = exp

[

i
Φ√
2F

]

. (2.14)

Hence the leading O(p2) χPT SU(3)L ⊗ SU(3)R chiral Lagrangian is:2

L(2)
χ =

F 2

4
〈uµ u

µ + χ+〉 , (2.15)

where

uµ = i[u†(∂µ − irµ)u− u(∂µ − iℓµ)u†] ,

χ+ = u†χu† + uχ†u,

χ = 2B0(s+ ip) , (2.16)

and 〈. . .〉 is short for a trace in the flavour space. Interactions with electroweak bosons can

be accommodated through the vector vµ = (rµ + ℓµ)/2 and axial-vector aµ = (rµ − ℓµ)/2

external fields. The scalar field s incorporates explicit chiral symmetry breaking through

1The Gell-Mann matrices λ
i are normalised as 〈λiλj〉 = 2δij and the gluons are denoted here by Gµ.

2Notice that though we include a U(3) nonet we are not relying on the U(3)L ⊗ U(3)R chiral La-

grangian [50] on grounds of predictability, as the latter introduces unknown functions.
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the quark masses s = M+ · · · and, finally, F ≃ Fπ ≃ 92.4MeV is the pion decay constant

and B0F
2 = −〈0|ψψ|0〉0 in the chiral limit. The chiral tensor χ provides masses to the

Goldstone bosons through the external scalar field, as can be seen in eq. (2.16). Indeed in

the isospin limit we have :

χ = 2B0 M + · · · =







m2
π

m2
π

2m2
K −m2

π






+ . . . . . (2.17)

Hence we identify :

B0mu = B0md =
1

2
m2

π ,

B0ms = m2
K − 1

2
m2

π , (2.18)

that will be useful when considering the Higgs contributions. The mass eigenstates η and

η′ are defined from the octet η8 and singlet η0 states through the rotation :

(

η

η′

)

=

(

cos θ − sin θ

sin θ cos θ

) (

η8

η0

)

, (2.19)

and we input3 a value of θ ≃ −18◦.

The hadronisation of a final state of two pseudoscalars is driven by vector and scalar

resonances though the latter, because their higher masses, play a lesser role and we will

not include them in the following. We will introduce the vector resonances in the antisym-

metric formalism; hence the nonet of resonance fields Vµν [37] is defined by analogy with

eq. (2.13) with the same flavour structure. By demanding the chiral symmetry invariance

the resonance Lagrangian reads :

LV = LV
kin + LV

(2) , (2.20)

where

LV
kin = −1

2
〈∇λVλµ∇νV

νµ 〉 +
M2

V

4
〈VµνV

µν 〉 ,

LV
(2) =

FV

2
√

2
〈Vµνf

µν
+ 〉 + i

GV√
2
〈Vµνu

µuν〉 , (2.21)

and in the latter the subscript (2) indicates the chiral order of the tensor accompanying

Vµν . In eq. (2.21) we have used the definitions :

∇µX ≡ ∂µX + [Γµ,X] , (2.22)

Γµ =
1

2
[u†(∂µ − irµ)u+ u(∂µ − iℓµ)u† ] ,

fµν
+ = uFµν

L u† + u†Fµν
R u ,

3The values of θ in the literature range between θ ∼ −12◦ up to θ ∼ −20◦ [51].
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being Fµν
L,R the field strength tensors associated with the external right and left fields. The

couplings FV and GV are real.

Accordingly our RχT framework is provided by :

LRχT = L(2)
χ + LV , (2.23)

and the contribution of the low modes to the QCD functional is formally given by :

eiZQCD[v,a,s,p]

∣

∣

∣

∣

∣

low modes

=

∫

[Du][DV ] ei
R

d4xLRχT[u,V,v,a,s,p] . (2.24)

With this identification we can already carry out the hadronisation of the bilinear quark

currents included in eq. (2.11) by taking the appropriate partial derivatives, with respect

to the external auxiliary fields, of the functional action,

V i
µ = q γµ

λi

2
q =

∂ LRχT

∂ vµ
i

∣

∣

∣

∣

∣

j=0

, Ai
µ = q γµ γ5

λi

2
q =

∂ LRχT

∂ aµ
i

∣

∣

∣

∣

∣

j=0

,

Si = − q λi q =
∂ LRχT

∂ si

∣

∣

∣

∣

∣

j=0

, P i = q iγ5λ
i q =

∂ LRχT

∂ pi

∣

∣

∣

∣

∣

j=0

, (2.25)

where j = 0 indicates that all external currents are set to zero. This gives :

V i
µ =

F 2

4
〈λi

(

uuµ u
† − u† uµ u

)

〉 − FV

2
√

2
〈λi ∂ν

(

u† Vνµ u + uVνµ u
†
)

〉 ,

Ai
µ =

F 2

4
〈λi

(

uuµ u
† + u† uµ u

)

〉 ,

Si =
1

2
B0F

2 〈λi
(

u†u† + uu
)

〉 ,

P i =
i

2
B0F

2 〈λi
(

u†u† − uu
)

〉 . (2.26)

With these expressions we are able to hadronise the final states in τ → µPP and τ → µP

processes as we explain now :

γ contribution. The photon contribution to the decay into two pseudoscalar mesons is

driven by the electromagnetic current :

V em

µ =

u,d,s
∑

q

Qq q γµ q = V 3
µ +

1√
3
V 8

µ , (2.27)

where Qq is the electric charge of the q quark in units of the positron charge e. The

electromagnetic form factor is then defined as :

〈P1(p1)P2(p2) |V em
µ | 0 〉 = (p1 − p2)µ F

P1P2

V (s) , (2.28)

where FP1P2

V (s) is steered by both I = 1 and I = 0 vector resonances, in particular the

ρ(770) that is the lightest of resonances. Due to the q2 = 0 pole of the photon propagator
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this is, by far, the dominant contribution to this hadronic final state. Hence the result

is more sensitive to the construction of this form factor. Accordingly we will elaborate a

more complete expression than the one provided by the vector current in eq. (2.26) though

it will reduce to this one in the NC → ∞ limit, including only one multiplet of resonances

and at q2 ≪M2
ρ . A proper construction of FP1P2

V (s) is given in appendix B.

Z0 contribution. Here both vector and axial-vector currents do contribute. In terms of

the quark fields these are :

JZ
µ = V Z

µ + AZ
µ ,

V Z
µ =

g

2 cos θW
q γµ

[

2 sin2 θWQ− T
(q)
3

]

q ,

AZ
µ =

g

2 cos θW
q γµ γ5 T

(q)
3 q , (2.29)

with Q = diag(2,−1,−1)/3 and T
(q)
3 = diag(1,−1,−1)/2 the electric charge and weak

hypercharges, respectively, g is the SU(2) gauge coupling and θW is the weak angle.

In order to proceed to the hadronisation of these currents one has to write the currents

in eq. (2.29) in terms of V i
µ and Ai

µ defined in eq. (2.26). This gives

V Z
µ =

g

2 cos θW

F 2

2

[

2 sin2 θW 〈Q
(

uuµu
† − u†uµu

)

〉 − 〈T (q)
3

(

uuµu
† − u†uµu

)

〉
]

,

AZ
µ =

g

2 cos θW

F 2

2
〈T (q)

3

(

uuµu
† + u†uµu

)

〉 . (2.30)

Notice that the vector current contributes to an even number of pseudoscalar mesons while

the axial-vector current provides 1,3,. . . mesons.

Higgs bosons contribution. Hadronisation of scalar Higgs bosons like h0 and H0 into

two pseudoscalar mesons proceeds through the scalar current while the pseudoscalar A0

Higgs boson hadronises through the pseudoscalar current into one pseudoscalar meson. As

Higgses are rather massive the hadronisation is not so sensitive to resonances as in the case

of the photon contribution. Hence we will not elaborate on scalar of pseudoscalar form

factors (analogous to the vector case defined by eq. (2.28)) that, moreover, are not so well

known. We will rely in the following scalar and pseudoscalar currents,

uΓu =
1

2
J3 +

1

2
√

3
J8 +

1√
6
J0 ,

dΓ d = −1

2
J3 +

1

2
√

3
J8 +

1√
6
J0 ,

sΓ s = − 1√
3
J8 +

1√
6
J0 , (2.31)

where Γ = −1 for J i ≡ Si, Γ = iγ5 for J i ≡ P i and the Si and P i currents are given in

eq. (2.26).
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γ, Z0
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P

τ
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h0, H0
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P

τ

µ
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P

τ

µ

A0

P

Figure 3: Contributions to LFV semileptonic τ decays into one and two pseudoscalar mesons.

3. Analytical results of the LFV semileptonic τ decays

In this section we present the analytical results of the branching ratios for the LFV semilep-

tonic τ decays: τ → µPP , with PP = π+π− ,π0π0, K+K−, K0K̄0 and τ → µP , with P

= π, η and η′. The predictions for the τ → µρ0 and τ → µφ channels, which are related

to τ → µπ+π− and τ → µK+K−, µK0K̄0 respectively, will also be included.

3.1 Predictions for τ → µPP

The semileptonic τ → µPP channels can be mediated by a photon, a Z gauge boson

and a CP even Higgs boson, h0 and H0. The various contributing diagrams are depicted

in figure 3. In these diagrams, the LFV vertex is represented by a black circle and the

hadronic vertex by a white box. The Z-mediated contribution is expected to be much

smaller than the γ-mediated contribution due to the O(1/m2
Z) suppression factor in the

amplitude from the Z propagator. This has been shown to happen in the leptonic channels

like τ → 3µ, where the Z-mediated contribution to its branching ratio has been estimated

to be a factor 10−3−10−5 smaller than the γ-mediated contribution, for tan β = 5−50 [21].

Consequently, we have neglected here the Z contribution to the τ → µPP decays. By using

again this comparison with τ → 3µ, the γ contribution to τ → µPP is expected to be the

dominant one, and the h0 and H0-mediated contributions are expected to be relevant only

at large tanβ. Therefore, we have included these three γ, h0 and H0 contributions in the

computation.

The total amplitude for the τ → µPP process can be written as,

T = Tγ + TH , (3.1)
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where Tγ and TH = Th0 + TH0 are the amplitudes of the γ-mediated and H-mediated

contributions respectively. First we present the result of Tγ and TH in terms of the final

state quarks, that is for τ → µqq, and in terms of the corresponding τ -µ LFV form factors:

Tγ = µ
[

k2γµ

(

AL
1 PL +AR

1 PR

)

+ imτσµνk
ν
(

AL
2PL +AR

2 PR

)]

τ × e2Qq

k2
qγµq , (3.2)

TH =
∑

h0,H0

1

m2
Hp

{

H
(p)
L S

(p)
L,q [µPLτ ] [qPLq] + H

(p)
R S

(p)
R,q [µPRτ ] [qPRq]

+ H
(p)
L S

(p)
R,q [µPLτ ] [qPRq] + H

(p)
R S

(p)
L,q [µPRτ ] [qPLq]

}

, (3.3)

where, k is the photon momentum, Qq the electric charge of the quark q in units of the

positron charge e, PL,R = (1∓γ5)/2, mτ is the τ lepton mass, and mh0, mH0 are the Higgs

boson masses. Notice that the momentum of the Higgs propagators has been neglected

against the Higgs boson mass. The Higgs boson couplings to quarks are correspondingly

given by,

S
(p)
L,u =

g

2mW

(

−σ(p)∗
2

sin β

)

mu, S
(p)
L,(d,s) =

g

2mW

(

σ
(p)∗
1

cos β

)

md,s, S
(p)
R,q = S

(p)∗
L,q , (3.4)

where mq is the q quark mass, mW the W gauge boson mass, g the SU(2) gauge coupling,

and

σ
(p)
1 =







sinα

− cosα

i sin β






, σ

(p)
2 =







cosα

sinα

−i cos β






. (3.5)

The three entries for the index (p) in the previous expressions and in the following ones

correspond to Hp = h0,H0, A0, respectively. The angle α rotates, as usual, from the

electroweak neutral Higgs basis to the mass eigenstate basis.

The LFV form factors AL,R
1,2 in eq. (3.2) describe the effective γτµ vertex and get

contributions from the SUSY one-loop diagrams depicted in figure 16. The full results for

these form factors can be found in the literature [2, 21] and are collected in appendix A.1 for

completeness. Notice that we are presenting all the results in the physical mass eigenstate

basis for all the particles involved. Therefore the LFV is encoded in the physical slepton

and sneutrino masses and in the corresponding slepton and sneutrino rotation matrices.

The later appear in the chargino-sneutrino-lepton and neutralino-slepton-lepton couplings.

Similarly, the LFV form factors H
(p)
L,R in eq. (3.3) describe the effective Hpτµ vertex and get

contributions from the SUSY one-loop diagrams shown in figure 18. These set of diagrams

where computed in [52] and the results are collected in appendix A.3. Again the LFV is

encoded in the slepton and sneutrino masses and in the rotation matrices.

The next step is to hadronise the quark bilinears appearing in eqs. (3.2) and (3.3).

For this, we proceed as explained in section 2.2. The quark bilinears in Tγ , [qγµq], are

hadronised via the electromagnetic current in eq. (2.27) which, for the final state with two

mesons P1(p1)P2(p2), is then written in terms of the corresponding electromagnetic form
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factor, FP1P2

V , by means of eq. (2.28). Thus, one gets the photon amplitude in terms of the

final state hadrons:

Tγ =
e2

k2
FP1P2

V (k2)µ
[

k2(p1/ − p2/ )
(

AL
1 PL +AR

1 PR

)

+ 2 imτ p
µ
1σµν p

ν
2

(

AL
2PL +AR

2 PR

)]

τ.

(3.6)

The expressions of the FP1P2

V form factors for each of the final states, P1P2 =π+π−, K+K−

and K0K̄0 are collected in appendix B. Obviously, the π0π0 final state does not get photon-

mediated contributions since γ does not couple to π0π0. Hence we set F π0π0

V = 0.

The quark bilinears in TH , [qPL,Rq], when hadronised in a final state of two mesons,

get contributions just from scalar currents, Si, but not from pseudoscalar currents, P i.

Then, one substitutes [qPL,Rq] by [(−1/2)(−qq)], where (−qq) is given in eq. (2.31), and

the relevant scalar currents, S0, S3 and S8, are written in terms of two mesons by using

eq. (2.26). This gives:

S3 = −B0

[

2√
3

(

cos θ −
√

2 sin θ
)

π0η +
2√
3

(√
2 cos θ + sin θ

)

π0η′ +K+K− −K0K̄0

]

,

S8 =
B0√

3

[

K+K− +K0K̄0 − 2π+π− − π0π0 +
(

cos2 θ + 2
√

2 sin θ cos θ
)

ηη

+ 2
(√

2 sin2 θ + sin θ cos θ −
√

2 cos2 θ
)

ηη′
]

,

S0 = −B0

√

2

3

[

2π+π− + 2K+K− + 2K0K̄0 + π0π0 + ηη
]

. (3.7)

Thus, one gets the Higgs boson amplitude in terms of the final state hadrons:

TH =
∑

p=h0,H0

µ
[

c
(p)
PP + d

(p)
PP γ5

]

τ , (3.8)

where

c
(p)
PP =

g

2mW

1

2m2
Hp

(

J
(p)
L (PP ) + J

(p)
R (PP )

)(

H
(p)
R +H

(p)
L

)

,

d
(p)
PP =

g

2mW

1

2m2
Hp

(

J
(p)
L (PP ) + J

(p)
R (PP )

)(

H
(p)
R −H

(p)
L

)

, (3.9)

and

J
(p)
L (π+π−) = J

(p)
L (π0π0) =

1

4

((

−σ(p)∗
2

sin β

)

m2
π +

(

σ
(p)∗
1

cos β

)

m2
π

)

,

J
(p)
L (K+K−) =

1

4

((

−σ(p)∗
2

sinβ

)

m2
π +

(

σ
(p)∗
1

cos β

)

(2m2
K −m2

π)

)

,

J
(p)
L (K0K̄0) =

1

2

(

σ
(p)∗
1

cos β

)

m2
K ,

J
(p)
R (PP ) = J

(p)∗
L (PP ) . (3.10)
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Notice that in eq. (3.10) we have already used the relations between the quark and the

meson masses of χPT given in eq. (2.18).

Finally, we get the following result for the branching ratio:

BR(τ → µPP ) =
κPP

64π3m2
τ Γτ

∫ smax

smin

ds

∫ tmax

tmin

dt
1

2

∑

i,f

|T |2 , (3.11)

where Γτ is the total τ decay width, and the coefficient κPP is 1 for PP = π+π−, K+K−,

K0K̄0 and 1/2 for PP = π0π0. In addition

tmax
min =

1

4s

[

(

m2
τ −m2

µ

)2 −
(

λ1/2
(

s,m2
P ,m

2
P

)

∓ λ1/2
(

m2
τ , s,m

2
µ

)

)2
]

,

smin = 4m2
P ,

smax = (mτ −mµ)2 ,

λ(x, y, z) = (x+ y − z)2 − 4xy . (3.12)

The averaged squared amplitude is,

1

2

∑

i,f

|T |2 =
1

8mτ

[

g1(s) + g2(s) t + g3(s) t
2
]

. (3.13)

where

g1(s) = h0 + h1 s + h2 s
2 + h3 s

3 ,

g2(s) = j1 s + j2 s
2 + j3 s

3 ,

g3(s) = k1 s + k2 s
2 , (3.14)

with

h0 = −8M2
Pm

2
τ

(

m2
µ −m2

τ

)2 (
A−

2 A
−∗
2 +A+

2 A
+∗
2

)

+ 2 (mµ +mτ )
2 cHc

∗
H + 2 (mµ −mτ )

2 dHd
∗
H ,

h1 = −8m2
τ

(

mτmµ +M2
P

)2
A−

2 A
−∗
2 − 8m2

τ

(

mτmµ −M2
P

)2
A+

2 A
+∗
2

+8 (mµ −mτ )mτ (mµ +mτ )
2M2

P

(

A−∗
1 A−

2 +A−
1 A

−∗
2

)

+8 (mµ −mτ )
2mτ (mµ +mτ )M

2
P

(

A+∗
1 A+

2 +A+
1 A

+∗
2

)

−2 (mµ +mτ )
(

m2
µ +m2

τ + 2M2
P

) (

cHA
+∗
1 + c∗HA

+
1

)

+2mτ

(

m2
µ +m2

τ + 2M2
P

) (

cHA
+∗
2 + c∗HA

+
2

)

−2 (mµ −mτ )
(

m2
µ +m2

τ + 2M2
P

) (

dHA
−∗
1 + d∗HA

−
1

)

+2mτ

(

m2
µ +m2

τ + 2M2
P

) (

dHA
−∗
2 + d∗HA

−
2

)

−2cHc
∗
H − 2dHd

∗
H ,

h2 = 2
[

(

m2
µ +m2

τ

)2
+ 4M4

P + 8mµmτM
2
P

]

A+
1 A

+∗
1

+2
[

(

m2
µ +m2

τ

)2
+ 4M4

P − 8mµmτM
2
P

]

A−
1 A

−∗
1

+ 2m2
τ

[

(mµ −mτ )
2 + 4M2

P

]

A+
2 A

+∗
2 + 2m2

τ

[

(mµ +mτ )
2 + 4M2

P

]

A−
2 A

−∗
2
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− 2mτ (mµ −mτ )
[

(mµ +mτ )
2 + 4M2

P

]

(

A−∗
1 A−

2 +A−
1 A

−∗
2

)

− 2mτ (mµ +mτ )
[

(mµ −mτ )
2 + 4M2

P

]

(

A+∗
1 A+

2 +A+
1 A

+∗
2

)

+ 2 (mµ +mτ )
(

cHA
+∗
1 + c∗HA

+
1

)

+ 2 (mµ −mτ )
(

dHA
−∗
1 + d∗HA

−
1

)

− 2mτ

[

cHA
+∗
2 + c∗HA

+
2 + dHA

−∗
2 + d∗HA

−
2

]

,

h3 = −2 (mµ −mτ )
2 A−

1 A
−∗
1 − 2 (mµ +mτ )

2 A+
1 A

+∗
1 − 2m2

τ

[

A−
2 A

−∗
2 +A+

2 A
+∗
2

]

+ 2mτ (mµ −mτ )
[

A−
1 A

−∗
2 +A−∗

1 A−
2

]

+ 2mτ (mµ +mτ )
[

A+
1 A

+∗
2 +A+∗

1 A+
2

]

,

j1 = 8m2
τ

(

m2
µ +m2

τ + 2M2
P

) (

A−
2 A

−∗
2 +A+

2 A
+∗
2

)

− 4mτ

[

cHA
+∗
2 + c∗HA

+
2 + dHA

−∗
2 + d∗HA

−
2

]

+ 4 (mµ +mτ )
(

cHA
+∗
1 + c∗HA

+
1

)

+ 4 (mµ −mτ )
(

dHA
−∗
1 + d∗HA

−
1

)

,

j2 = −8
(

m2
µ +m2

τ + 2M2
P

) [

A+
1 A

+∗
1 +A−

1 A
−∗
1

]

− 8m2
τ

[

A+
2 A

+∗
2 +A−

2 A
−∗
2

]

,

j3 = 8
(

A−
1 A

−∗
1 +A+

1 A
+∗
1

)

,

k1 = −8m2
τ

(

A−
2 A

−∗
2 +A+

2 A
+∗
2

)

,

k2 = 8
(

A−
1 A

−∗
1 +A+

1 A
+∗
1

)

, (3.15)

and

A±
i =

e2

2 s
FPP

V (s)(AR
i ±AL

i ) , cH = c
(h0)
PP + c

(H0)
PP , dH = d

(h0)
PP + d

(H0)
PP . (3.16)

3.2 Predictions for τ → µP

The semileptonic τ → µP channel can be mediated by a Z gauge boson and a CP odd A0

Higgs boson, as represented in figure 3. Both contributions are included here. The total

amplitude for this τ → µP decay can then be written as,

T = TZ + TA0 , (3.17)

where TZ and TA0 are the Z and A0 mediated amplitudes respectively. As in the previous

case, these are first evaluated in terms of the final state quarks, that is for τ → µqq, and

in terms of the corresponding τ − µ LFV form factors:

TZ =
1

m2
Z

µ [γµ(FLPL + FRPR)] τ . q
[

γµ
(

Z
(q)
L PL + Z

(q)
R PR

)]

q , (3.18)

TA0 =
1

m2
A0

{

H
(A0)
L S

(A0)
L,q [µPLτ ] [qPLq] + H

(A0)
R S

(A0)
R,q [µPRτ ] [qPRq]

+ H
(A0)
L S

(A0)
R,q [µPLτ ] [qPRq] + H

(A0)
R S

(A0)
L,q [µPRτ ] [qPLq]

}

, (3.19)

where Z
(q)
L = (−g/ cos θW )(T

(q)
3 −Qq sin2 θW ) and Z

(q)
R = (g/ cos θW )Qq sin2 θW are the Z

couplings to quarks, and S
(A0)
L,q and S

(A0)
R,q are the A0 couplings to quarks, which are given

by the third entry in eqs. (3.4) and (3.5). Notice that, as in the previous cases of h0 and

H0, we have neglected the k2 in the Z and A0 propagators.

The LFV form factors FL,R in eq. (3.18) describe the effective Zτµ vertex and receive

contributions from the SUSY one-loop diagrams depicted in figure 17. The results for these

– 17 –



J
H
E
P
0
6
(
2
0
0
8
)
0
7
9

form factors where found in [2] and corrected in [21]. We collect them in appendix A.2,

for completeness. The LFV form factors H
(A0)
L,R in eq. (3.19) describe the effective A0τµ

vertex and, as in the previous Hτµ vertices with H = h0,H0, receive contributions from

the one-loop diagrams in figure 18. The corresponding results are collected in appendix

A.3.

The hadronisation of the quark bilinears in TZ proceeds by means of the vector and

axial-vector currents in eq. (2.29), which in turn are written in terms of one P meson by

means of eq. (2.30). This leads to:

V Z
µ = 0, (3.20)

AZ
µ = − g

2 cos θW
F
{

C(π0) ∂µπ
0 + C(η) ∂µη + C(η′) ∂µη

′
}

, (3.21)

where the C(P ) functions are given by,

C(π0) = 1,

C(η) =
1√
6

(

sin θ +
√

2 cos θ
)

,

C(η′) =
1√
6

(√
2 sin θ − cos θ

)

. (3.22)

The hadronisation into one pseudoscalar meson P of the quark bilinears in TA0 proceed

via the pseudoscalar currents P i. Concretely, P 0, P 3 and P 8, whose expressions in terms

of one P meson can be obtained from eq. (2.26). This leads to:

P 3 = 2B0F π
0 ,

P 8 = 2B0F
(

cos θ η + sin θ η′
)

,

P 0 = 2B0F
(

− sin θ η + cos θ η′
)

. (3.23)

Finally, by putting all together, we get the following result for the branching ratio:

BR(τ → µP ) =
1

4π

λ1/2(m2
τ ,m

2
µ,m

2
P )

m2
τ Γτ

1

2

∑

i,f

|T |2 , (3.24)

where the λ(x, y, z) function is defined in eq. (3.12) and again Γτ is the total decay width

of the τ lepton. The averaged squared amplitude is given by,

1

2

∑

i,f

|T |2 =
1

4mτ

∑

k,m

[

2mµmτ

(

ak
Pa

m ∗
P −bkP bm ∗

P

)

+(m2
τ +m2

µ −m2
P )
(

ak
Pa

m ∗
P +bkP b

m ∗
P

)]

,

(3.25)

with k,m = Z,A0, and

aZ
P = − g

2 cos θW

F

2

C(P )

m2
Z

(mτ −mµ) (FL + FR) ,

bZP =
g

2 cos θW

F

2

C(P )

m2
Z

(mτ +mµ) (FR − FL) ,
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aA0

P =
g

2mW

F

2m2
A0

(

B
(A0)
L (P ) −B

(A0)
R (P )

)(

H
(A0)
L +H

(A0)
R

)

,

bA
0

P =
g

2mW

F

2m2
A0

(

B
(A0)
L (P ) −B

(A0)
R (P )

)(

H
(A0)
R −H

(A0)
L

)

. (3.26)

The B
(A0)
L,R (P ) functions are given, correspondingly, by the third entry of:

B
(p)
L (π) =

m2
π

4

(

−σ(p)∗
2

sin β
− σ

(p)∗
1

cosβ

)

,

B
(p)
L (η) =

1

4
√

3

[−σ(p)∗
2

sin β
m2

π

(

cos θ −
√

2 sin θ
)

(3.27)

+
σ

(p)∗
1

cos β

[

(

3m2
π − 4m2

K

)

cos θ − 2
√

2m2
K sin θ

]

]

,

B
(p)
L (η′) =

1

4
√

3

[−σ(p)∗
2

sin β
m2

π

(

sin θ +
√

2 cos θ
)

(3.28)

+
σ

(p)∗
1

cos β

[

(

3m2
π − 4m2

K

)

sin θ + 2
√

2m2
K cos θ

]

]

,

B
(p)
R (P ) = B

(p)∗
L (P ) , (3.29)

where the σ
(p)
1,2 functions are defined in eq. (3.5). Notice that in this eq. (3.29) the relations

between the quark and meson masses of eq. (2.18) have been used again.

3.3 Predictions for τ → µρ and τ → µφ

The τ → µρ0 decay is related to the τ → µπ+π− channel since the ρ decay proceeds mainly

to π+π−. Indeed a ρ0 is not an asymptotic state : the experiment reconstructs its structure

from the two observed pions. In addition, from the chiral point of view, two pions in a

J = I = 1 state are indistinguishable from a ρ. Therefore one has to define the branching

ratio of τ → µρ0 in close relation to that of τ → µπ+π− as follows:

BR(τ → µρ0) =
1

64π3 m2
τ Γτ

∫ smax

smin

ds





∫ tmax

tmin

dt
1

2

∑

i,f

|Tγ |2




π+π−

, (3.30)

where Tγ is defined in eq. (3.6) and all functions and form factors involved are as those of

τ → µπ+π− decay, with the exception of the integration limits in s which are now:

smin = M2
ρ − 1

2
MρΓρ , smax = M2

ρ +
1

2
MρΓρ . (3.31)

Similarly, the τ → µφ decay is related to the τ → µK+K− and τ → µK0K̄0 decays since

the φ decays proceeds mainly to K+K− and to K0K̄0. Therefore, we define:

BR(τ → µφ) =
1

64π3 m2
τ Γτ







∫ smax

smin

ds





∫ tmax

tmin

dt
1

2

∑

i,f

|Tγ |2




K+K−

(3.32)

+

∫ smax

smin

ds





∫ tmax

tmin

dt
1

2

∑

i,f

|Tγ |2




K0K̄0







,

– 19 –



J
H
E
P
0
6
(
2
0
0
8
)
0
7
9

where again Tγ is defined in eq. (3.6) and all functions and form factors involved are as

those of τ → µK+K− and τ → µK0K̄0 correspondingly, except for the integration limits

in s which are now:

smin = M2
φ − 1

2
MφΓφ , smax = M2

φ +
1

2
MφΓφ . (3.33)

In eqs. (3.31), (3.33), Γρ = Γρ(M
2
ρ ) and Γφ = Γφ(M2

φ).

4. Numerical results and discussion

In this section we present the numerical results of the LFV semileptonic τ → µPP and

τ → µP decay rates within the constrained MSSM-seesaw scenarios described in section 2.

Since our main goal is to explore if the predicted rates can or cannot reach the present

experimental sensitivities we will focus mainly on choices of the input parameter values

that lead to large δ32 and therefore to large LFV semileptonic τ decay rates. As we have

seen in the previous section 2, within the scenario with hierarchical heavy neutrinos and

for θ1,3 = 0, this means large values of θ2 and large values of mN3
. On the other hand, since

all these rates grow with tan β, in the following numerical analysis we will focus mainly on

large tan β values. In the first subsection we will present the numerical results, from our

full computation of the LFV semileptonic tau decay rates and will explore the dependence

with the most relevant parameters in the constrained MSSM scenarios. In the second

subsection we will include a comparison between our full and some approximate results in

the large tanβ region. Moreover, we will also analyse to what extent the Higgs dominance

hypothesis holds for these LFV semileptonic τ decays and compare our predictions with

other results in the literature. We will conclude this section by showing that for some

particular choices of the input parameters, the rates for some channels indeed reach the

present experimental sensitivity.

4.1 LFV semileptonic tau decay rates

Firstly, we present the results for the simplest case of θ2 = 0 and study the relative

importance of the various contributions to the decay rates that have been presented in the

previous section. Then we explore the increase in the rates for larger values of θ2. Since

we are setting in the whole numerical analysis A0 = 0 and sign (µ) = +1, the relevant

SUSY parameter will be MSUSY = M0 = M1/2. In the study of the behaviour of the rates

with MSUSY we pay special attention to the decoupling or non-decoupling behaviour of the

SUSY particles at large MSUSY.

In figure 4 we display the prediction of BR(τ → µPP ), with PP = π+π−, K+K−,

K0K̄0, π0π0, as a function of MSUSY and for the particular choice of θi = 0 (i = 1, 2, 3).

We consider both CMSSM (left panel) and NUHM (right panel) scenarios. We set here

tan β = 50 and our “reference” values of mN1,2,3 = (1010, 1011, 1014)GeV. For the NUHM

case we set in addition δ1 = −1.8 and δ2 = 0, which have been shown in [24] to lead to

low Higgs boson mass values. Concretely, for θi = 0 and 250 GeV < MSUSY < 900 GeV the

predicted masses are within the range 110 GeV < mA0,mH0 < 180 GeV, which are indeed

very close to their present experimental bounds.
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Figure 4: BR(τ → µPP ) for PP = π+π−,K+K−,K0K̄0, π0π0 as a function of MSUSY = M0 =

M1/2 in the contrained MSSM-seesaw scenarios: CMSSM (left panel) and NUHM (right panel).
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Figure 5: Rates of the various contributions to BR(τ → µK+K−) (upper left panel), BR(τ →
µK0K̄0) (upper right panel), BR(τ → µπ+π−) (lower left panel) and BR(τ → µη) (lower right

panel) as a function of MSUSY = M0 = M1/2 in the NUHM scenario.

The first obvious conclusion from figure 4 is that the rates of the different channels ex-

hibit the following hierarchy, BR(τ → µπ+π−) > BR(τ → µK+K−) & BR(τ → µK0K̄0)

≫ BR(τ → µπ0π0). This hierarchy can be understood in terms of the dominant elec-

tromagnetic contribution and the relative phase space suppression. We also see that the
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decoupling behaviour for large MSUSY is clearly manifest in the universal case, where all the

rates decrease as MSUSY grows. In contrast, it turns out that, in the NUHM case, the de-

coupling behaviour is only manifest in the τ → µπ+π− channel, whereas the τ → µK+K−,

τ → µK0K̄0 and τ → µπ0π0 rates do not decrease with MSUSY in the large MSUSY re-

gion. This behaviour can be better comprehended by analysing separately the different

contributions to these channels, as shown in figure 5.

The results displayed in Fig 5 for the τ → µπ+π− channel show the dominance of the

photon-mediated contribution in this case, which is in fact indistinguishable from the total

rate in this plot, for all the explored parameter values. The Higgs-mediated contribution is

subdominant by far due to the highly suppressed couplings of the Higgs to the light u and d

quarks, which after the hadronisation of the corresponding quark bilinears result in Hπ+π−

couplings proportional to m2
π (see eq. (3.10)). This plot also exhibits the non-decoupling

behaviour of the SUSY particles in the Higgs-mediated contribution. The particular pattern

of this contribution as a function of MSUSY is a consequence of two facts. First, the well

known constant behaviour with MSUSY of the LFV Hτµ form factor at large MSUSY.

Second, the encountered Higgs mass behaviour with MSUSY, analysed in [24], which, for

this choice of δ1,2 and for the studied MSUSY interval, first grows softly, reaches a maximum

and then decreases softly.

The τ → µπ0π0 channel is only mediated by the Higgs bosons and a similar suppression

ofHπ0π0 couplings as in theHπ+π− case occurs, leading to very low predicted rates. These

low rates and the non-decoupling behaviour of this channel can be clearly seen in figure 4.

The results for the τ → µK+K− channel that are depicted in Fig 5 are interesting be-

cause the photon- and the Higgs-mediated contributions compete in this decay. In fact the

Higgs-mediated contribution can equalise, or even exceed that of the photon, dominating

the total rate in the large MSUSY region. Both photon- and Higgs-mediated contributions

are similar around MSUSY = 750 GeV. The reason for this larger Higgs contributions than

in the previously studied ππ case is because of the larger Higgs couplings to the strange

quarks which result in HKK couplings proportional to m2
K (see eq. (3.10)).

The results for the τ → µK0K̄0 channel in Fig 5 are very similar to those for

τ → µK+K−. One difference is the point where the Higgs-mediated contribution crosses

the photon one, which for τ → µK0K̄0 is around MSUSY = 700 GeV. Another interesting

difference is that this rate is always slightly smaller than τ → µK+K− due to the fact that

the photon-mediated contribution to τ → µK0K̄0 occurs just by the meson resonances,

whereas the τ → µK+K− channel can also be mediated via pure electromagnetic interac-

tion. This difference is clearly summarised in the several contributions to the FK+K−

V and

FK0K̄0

V form factors in eq. (B.3) of appendix B.

The predictions of BR(τ → µP ), with P being here a pseudoscalar meson π, η, η′ or a

vector resonance ρ, φ, as a function of MSUSY are displayed in figure 6. We also consider

CMSSM (left panel) and NUHM (right panel) scenarios. In the universal case we find

the following hierarchy, BR(τ → µρ) > BR(τ → µφ) > BR(τ → µη′) & BR(τ → µη) >

BR(τ → µπ). We obtain again the expected decoupling behaviour for large MSUSY in this

universal scenario, while in the NUHM scenario the non-decoupling behaviour is clearly

manifest for τ → µη, τ → µη′ and τ → µπ. The τ → µρ rates in the NUHM scenario are
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Figure 6: BR(τ → µP ) for P = π, η, η′, ρ, φ as a function ofMSUSY = M0 = M1/2 in the contrained

MSSM-seesaw scenarios: CMSSM (left panel) and NUHM (right panel).
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Figure 7: Light mA0 predictions as a function of non-universal parameters δ1 and δ2 in the NUHM

scenario. The predictions for mH0 are indistinguisable from those of mA0 in this figure.

the largest ones, except in the large MSUSY region, where τ → µη and τ → µη′ rates exceed

them. These two channels are by far dominated by the Higgs-mediated contributions in

the full MSUSY explored interval, as can be seen for the η case in Fig 5. The reason for

this Higgs dominance is because of the large Higgs couplings to the strange components of

the η and η′ mesons, which result in large A0 − η and A0 − η′ “mixings” proportional to

m2
K as explicitely given in eq. (3.29).

One of the most important outcomes from the previous analysis, corresponding to

the θi = 0 choice, is that for both scenarios and for the chosen input parameters, the

predicted rates for both τ → µPP and τ → µP channels do no reach their corresponding

experimental bounds, and even in the best cases of τ → µπ+π− and τ → µρ they are still

two orders of magnitude below their present experimental sensitivities. In the following,

we will therefore focus on larger values of θ2.

In order to reach the larger rates as possible in the θi 6= 0 case, one needs to explore

first the optimal values of δ1 and δ2 which lead to light Higgs bosons. We summarise the
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Figure 8: Light mA0 predictions as a function of MSUSY = M0 = M1/2 in the NUHM scenario.

The predictions for mH0 are indistinguisable from those of mA0 in this figure. The predictions for

the CMSSM scenario (δ1 = δ2 = 0) are also included for comparison.

predictions for the relevant Higgs boson mass, mA0 (and mH0), as a function of δ1 and δ2
in figure 7 for the extreme value of θ2 = 2.9eiπ/4. The reason for this particular choice

of θ2 is due to the fact that it leads to the maximum value of |δ32| which is compatible

with our hypothesis of perturbativity, as shown in figure 1 and discussed in section 2. We

have chosen here tan β = 50 and two representative values of MSUSY = 250 and 750 GeV

for moderate and heavy SUSY spectra, respectively. The other parameters are set to the

values of mNi
= (1010, 1011, 1014)GeV, θ1 = θ3 = 0, A0 = 0 and sign(µ) = +1. To

ensure that our results are indeed experimentally viable, we have included in this, and

in the following figures, only the solutions where the three neutral Higgs boson masses

are above the experimental bound for the lightest MSSM Higgs boson, which at present

is 110 GeV for tan β > 5 (99.7% C.L.) [7]. The most interesting solutions with important

phenomenological implications are found for negative δ1 within the range (−3,−2) and very

small and positive δ2, the choices selected for figure 7. In this figure, for all the explored

values of δ1 and δ2, we find a value of mA0 that is significantly smaller than what one would

encounter in the universal case (here represented by the choice δ1 = δ2 = 0). This is truly

remarkable in the case of large soft breaking masses, as can be seen, for instance, in the

panel with MSUSY = 750 GeV, where low values of mA0 ∼ 150 GeV are still found.

The behaviour of the predicted mA0 as a function of MSUSY is depicted in figure 8.

Here the specific values of δ1 = {−2.45, −2.4, −2.35,−2, −1, 0} and δ2 = 0, 0.2 have

been considered. This figure illustrates again the interesting departure in NUHM scenarios

from the linear behaviour of mA0 with MSUSY, which is generic in the universal case

(δ1 = δ2 = 0). The same pattern with MSUSY was also found for the θi = 0 case in [24],

but obviously for different choices of δ1 and δ2.

The corresponding predictions for θ2 = 2.9eiπ/4 of the nine LFV semileptonic τ decays

studied in this work as a function of MSUSY are shown in figure 9. In this case, we work

with δ1 = −2.4 and δ2 = 0.2, that drive us to Higgs boson masses around 150 GeV even

for heavy SUSY spectra, as can be seen in figures 7 and 8. In this figure 9 we can see that,
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Figure 9: Predictions of BR(τ → µPP ) and BR(τ → µP ) as a function of MSUSY in the NUHM

scenario for a large τ − µ mixing driven by θ2 = 2.9eiπ/4. The horizontal lines are the present

experimental bounds given in table 1.

compared to predictions in figures 4 and 6, the new choice of θ2 increase all the rates about

two orders of magnitude. All the rates exhibit the same hierarchy as in the previous plots,

being BR(τ → µπ+π−) and BR(τ → µρ) the largest ones. Indeed, the predictions of these

two latter channels reach their present experimental sensitivities at the low MSUSY region,

below 200 GeV and 250 GeV respectively, for this particular choice of input parameters.

4.2 Comparison between the full and approximate results

It is interesting and useful to provide simple formulas that can approximate reasonably well

our full predictions. The most popular approximation when predicting LFV rates is to work

with expressions that are valid only in the large tanβ region. The justification for this is

obvious since all these LFV rates are known to grow with tanβ. It is specially important in

scenarios where the LFV rates are dominated by the Higgs mediated diagrams, since these

latter grow much faster with tan β than the photon or Z boson mediated ones. Accordingly,

we will pay more attention to the semileptonic τ → µP and τ → µPP channels that can

be dominated by the Higgs bosons and whose present experimental sensitivities are the

best ones. This leads us mainly to the τ → µη and τ → µK+K− channels. The other

approximation which is used frequently in the literature, due to its simplicity, is the mass

insertion approximation, where the tau-muon LFV is encoded in the dimesionless parameter

δ32, already introduced in section 2, and whose expression in the LLog approximation is

given in eqs. (2.9) and (2.10).

We start by considering the large tanβ limit of the tau-muon-Higgs form factors that

are the relevant ones for the LFV Higgs-mediated processes. The full one-loop Higgs form

factors were computed in [52] (see also [21]) and are collected in appendix A.2. At large

tan β, HL dominates HR by about a factor mτ/mµ. Moreover, HA0

L and HH0

L are by far

the largest form factors in this limit, and one can safely neglect Hh0

L . More specifically, by

using the mass insertion approximation, their chargino and neutralino contributions in the
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large tanβ limit give, correspondingly, the following results [52],

H
(A0)
L,c = iH

(H0)
L,c = i

g3

16π2

mτ

12mW
δ32 tan2 β , (4.1)

H
(A0)
L,n = iH

(H0)
L,n = i

g3

16π2

mτ

24mW
(1 − 3 tan2 θW ) δ32 tan2 β . (4.2)

One can further verify that Hc dominates Hn by about a factor 20, so that in the following

we will take HL ≃ HL,c.

On the other hand, we also consider the large tan β limit of the functions that define the

Higgs couplings to one meson, B(P ) in eq. (3.29), and to two mesons, J(PP ) in eq. (3.10).

It leads to the following results:

B
(A0)
L (η) = −B(A0)

R (η) = −i 1

4
√

3
tan β

[

(3m2
π − 4m2

K) cos θ − 2
√

2m2
K sin θ

]

,

B
(A0)
L (η′) = −B(A0)

R (η′) = −i 1

4
√

3
tan β

[

(3m2
π − 4m2

K) sin θ + 2
√

2m2
K cos θ

]

,

B
(A0)
L (π) = −B(A0)

R (π) = i
1

4
tan βm2

π ,

J
(H0)
L (K+K−) = J

(H0)
R (K+K−) = −1

4
tan β (2m2

K −m2
π) ,

J
(H0)
L (K0K̄0) = J

(H0)
R (K0K̄0) = −1

2
tan βm2

π ,

J
(H0)
L (π+π−) = J

(H0)
R (π+π−) = J

(H0)
L (π0π0) = J

(H0)
R (π0π0) = −1

4
tan βm2

π . (4.3)

By using the above sequence of approximations and by neglecting the muon mass, we finally

get the following simple results,

BR(τ → µη)Happrox =
1

8πm3
τ

(

m2
τ −m2

η

)2
∣

∣

∣

∣

g

2mW

F

m2
A0

B
(A0)
L (η)H

(A0)
L,c

∣

∣

∣

∣

2 1

Γτ

= 1.2 × 10−7 |δ32|2
(

100

mA0(GeV)

)4(tan β

60

)6

, (4.4)

and

BR(τ → µK+K−)Happrox =
1

128mτπ3

∣

∣

∣

∣

g

2mW

1

m2
H0

J
(H0)
L (K+K−)H

(H0)
L,c

∣

∣

∣

∣

2 1

Γτ

×
∫ smax

smin

ds (tmax − tmin)

(

1 − s

m2
τ

)

= 2.8 × 10−8 |δ32|2
(

100

mH0(GeV)

)4(tan β

60

)6

, (4.5)

where smax, smin, tmax and tmin are given in eq. (3.12). The results for the other channels

can be similarly obtained by using the corresponding B(P ) or J(PP ) functions and the

corresponding meson masses (with an additional 1/2 factor in the case of BR(τ → µπ0π0)
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Figure 10: Comparison between the predicted rates of BR(τ → µη) in the NUHM from our full

1-loop computation and from the approximate result of eq. (4.4) as a function of tanβ (left panel)

and MSUSY = M0 = M1/2 (right panel). The horizontal lines are the present experimental bounds

given in table 1.

to account for identical final state particles). We get,

BR(τ → µη′)Happrox = 1.5 × 10−7 |δ32|2
(

100

mA0(GeV)

)4(tan β

60

)6

, (4.6)

BR(τ → µπ)Happrox = 3.6 × 10−10 |δ32|2
(

100

mA0(GeV)

)4(tan β

60

)6

, (4.7)

BR(τ → µK0K̄0)Happrox = 3.0 × 10−8 |δ32|2
(

100

mH0(GeV)

)4(tan β

60

)6

, (4.8)

BR(τ → µπ+π−)Happrox = 2.6 × 10−10 |δ32|2
(

100

mH0(GeV)

)4(tan β

60

)6

, (4.9)

BR(τ → µπ0π0)Happrox = 1.3 × 10−10 |δ32|2
(

100

mH0(GeV)

)4(tan β

60

)6

. (4.10)

In all the above approximate results of the LFV semileptonic tau decay rates we see ex-

plicitely the strong dependence with both tan β and the corresponding Higgs boson mass,

being (tan β)6 and (1/mH)4, respectively, which are characteristic of the Higgs mediated

processes.

Regarding the comparison with other works, first, we notice that our numerical pre-

diction for BR(τ → µη) in eq. (4.4) does not agree with the original estimate in [31] that

gives a decay rate a factor 7 larger than ours. We believe that the discrepancy comes from

our different approaches to describe the hadronisation of quark bilinears. Our numerical

result is closer to that in [32] whose prediction is larger than ours in a factor of 2. Notice,

that the comparison with this latter work must be done by switching off the bottom-loop

induced contributions and the higher order loop-effects enhanced by tan β factors which

were taken into account in [32] but we are not including here. This means setting their ξq
parameters to ξb = 0 and ξs = 1 in their formulas. We believe that this small discrepancy

is mainly due to the different approaches for hadronisation. In particular, they neglect the
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mu,d masses whereas we are taking into account chiral symmetry breaking effects via the

explicit m2
π and m2

K dependences, which are well determined in the χPT approach. On the

other hand, our prediction for BR(τ → µη′) is slightly above BR(τ → µη), due basically

to the larger Higgs coupling to η′, |BL(η′)(A0)| > |BL(η)(A0)|. The prediction in [32] of

BR(τ → µη′) is, however, a factor 100 smaller than ours. The prediction for BR(τ → µπ)

here and in [32] agree within a factor of 2. Finally, the prediction for BR(τ → µK+K−)

in [34] is larger than our result in about a factor 50.

The goodness of the above approximate result for τ → µη in eq. (4.4) can be seen in

figure 10, where it is compared with the full result as a function of tan β and MSUSY. It is

clear that, for tan β values larger than about 30 the approximation is quite good, providing

rates that are at most a factor of 2 above the full predictions. Moreover, the behaviour

with tan β of the full result at this region is well described by the (tan β)6 behaviour of the

approximate one. Regarding the behaviour with MSUSY, we see again that the approximate

and full results differ by less than a factor of 2 and they both follow the same pattern.

The displayed dependence with MSUSY can be easily understood from the dependence of

mA0 with this parameter, as was shown in figure 8. For the studied range in this plot,

250 < MSUSY (GeV) < 650, this leads to a relatively small variation in the rates of about

BRmax/BRmin ∼ 5.

The Higgs dominance approach, however, is not so good for other LFV tau decay

channels. In particular, it is clearly not a good approximation for τ → 3µ because, in

this case, there are other contributions from γ-mediated, Z-mediated and box diagrams

that enter into the full computation [2, 21]. In the NUHM scenarios that are considered

here with small Higgs masses, one may guess that the Higgs mediated contribution could

dominate the rates at large tan β, but it is not so as will be shown next. By performing a

similar analysis as we have done before, that is, by using the tau-muon-Higgs form factors

in eq. 4.1 and plugging it into the exact formula for the Higgs-contribution [21], we get in

the large tanβ limit,

BR(τ → 3µ)Happrox =
G2

F

2048π3

m7
τm

2
µ

Γτ

(

1

m4
H0

+
1

m4
A0

+
2

3m2
H0m

2
A0

) ∣

∣

∣

∣

g2δ32
96π2

∣

∣

∣

∣

2

(tan β)6 (4.11)

= 1.2 × 10−7 |δ32|2
(

100

mA0(GeV)

)4(tan β

60

)6

, (4.12)

which is in good agreement with the original result in [18] and also with posterior esti-

mates [19, 32].

The comparison between the full (i.e. including one-loop SUSY diagrams mediated by

γ, Z, h0, H0, A0 and box diagrams which are taken from [21]) and the approximate nu-

merical results for this channel is shown in figure 11. We see that the formula in eq. (4.11)

predicts rates that are about a factor of 2 larger than the exact Higgs-mediated contri-

bution. Therefore, for large tan β values, it provides a good estimate of the Higgs con-

tribution. However, the total rates are much larger than the Higgs contribution, since

the photon-mediated diagrams give by far the dominant contribution in this channel. For

instance, we see in figure 11 that the total and Higgs rates differ in about two orders of

magnitude for MSUSY ∼ 250 GeV and in more than a factor 5 for MSUSY ∼ 750 GeV. It
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Figure 11: Comparison between the full and approximate results for τ → 3µ as a function of

mA0 in the NUHM scenario, for MSUSY = M0 = M1/2 = 250GeV (left panel) and for MSUSY =

M0 = M1/2 = 750GeV (right panel). The dashed horizontal line is the present experimental upper

bound [16].

is remarkable that, in this channel, the photon dominance holds largely even in scenarios

with very heavy SUSY spectra, as for MSUSY ∼ 750 GeV, and Higgs bosons as light as

mH = 160 GeV. Therefore, the total rates for this channel can be better approximated by

the simplified formula of the photon-mediated contribution,

BR(τ → 3µ)γapprox =
α

3π

(

log
m2

τ

m2
µ

− 11

4

)

BR(τ → µγ)

= 2.3 × 10−3 BR(τ → µγ)

= 3.4 × 10−5 |δ32|2
(

100

MSUSY(GeV)

)4(tan β

60

)2

, (4.13)

where the last line has been obtained by using the result of BR(τ → µγ) in the mass

insertion approximation for equal SUSY mass scales and in the large tan β limit. It is also

interesting to compare this estimate with the present experimental upper bound for this

channel which is 3.2 × 10−8 [17, 16]. We see in figure 11 that, for the chosen parameters

in this plot, the predicted rates are above the present experimental bound for MSUSY <

300 GeV.

Similarly to the τ → 3µ channel, the semileptonic τ → µPP decays (with the exception

of τ → µπ0π0) are clearly dominated by the photon contribution and therefore they can

be better approximated by the corresponding simplified formulas of this contribution. By

neglecting the µ mass we have found the following approximate result,

BR(τ → µPP )γapprox =

∫ m2
τ

4m2
P

ds

(

1 − s

m2
τ

)2(

1 +
2m2

τ

s

)(

1 − 4m2
P

s

)3/2

|FPP
V (s)|2

× α

24m2
τ

BR(τ → µγ). (4.14)
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Figure 12: Comparison between the full rates and the approximate results in the NUHM sce-

nario by considering just the photon-mediated contributions for τ → µπ+π− (left panel) and

τ → µK+K− (right panel) as a function of MSUSY = M0 = M1/2. The dashed horizontal lines are

the present experimental upper bounds [25].

And from this we get,

BR(τ → µπ+π−)γapprox = 2.5 × 10−3 BR(τ → µγ)

= 3.7 × 10−5 |δ32|2
(

100

MSUSY(GeV)

)4(tan β

60

)2

, (4.15)

BR(τ → µK+K−)γapprox = 2.0 × 10−4 BR(τ → µγ)

= 3.0 × 10−6 |δ32|2
(

100

MSUSY(GeV)

)4(tan β

60

)2

, (4.16)

BR(τ → µK0K̄0)γapprox = 1.2 × 10−4 BR(τ → µγ)

= 1.8 × 10−6 |δ32|2
(

100

MSUSY(GeV)

)4(tan β

60

)2

, (4.17)

BR(τ → µρ)γapprox = 2.3 × 10−3 BR(τ → µγ)

= 3.4 × 10−5 |δ32|2
(

100

MSUSY(GeV)

)4(tan β

60

)2

, (4.18)

BR(τ → µφ)γapprox = 8.4 × 10−5 BR(τ → µγ)

= 1.3 × 10−6 |δ32|2
(

100

MSUSY(GeV)

)4(tan β

60

)2

. (4.19)

As can be clearly seen in figure 12 these results approach pretty well the full rates for

most of the MSUSY studied region. For BR(τ → µπ+π−), they are indeed indistinguishable

in this plot. It is only at very large MSUSY ≥ 750 GeV that the approximate result of

BR(τ → µK+K−) separates slightly from the full result, due to the Higgs contribution

which competes with the photon one in this region.

For completeness and comparison, we also include here the predictions for the lead-

ing LFV tau decay channel, τ → µγ. Figure 13 displays the predictions of the full and

approximate rates for this τ → µγ channel. The full rates are taken from [21] and the
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Figure 13: Comparison between the full 1-loop prediction [2] and approximate results of eq. ( 4.20)

for τ → µγ as a function of MSUSY = M0 = M1/2 in the NUHM scenario. The horizontal line is

the present experimental upper bound [15].

approximate ones are given by the result of the MI approach [33, 3], which at large tan β

and for equal SUSY mass scales is,

BR(τ → µγ)approx =
α3

14400π2

m5
τ

Γτ sin4 θW

|δ32|2
M4

SUSY

(tan β)2

= 1.5 × 10−2 |δ32|2
(

100

MSUSY(GeV)

)4(tan β

60

)2

. (4.20)

In this case, and for the chosen parameters in this plot, the approximate and the full

results agree to better than a factor 2. We have verified, however, that for other choices

of δ1,2 the difference between them can be larger. Regarding this difference, we emphasise

that in using the MI approach and LLog approximation one has to be carefull because they

are known to fail in some regions of the CMSSM parameter space. For instance, in [53],

the departure of the MI from the exact result is estimated to be up to 50% for |δ32| ∼ 1.

In [22] it has been found that the use of the MI and LLog for large trilinear couplings,

A0 ∼ O (1TeV), can fail in several orders of magnitude.

The most evident conclusion from figure 13 is that for the chosen parameters in this

plot and for MSUSY < 1600 GeV, the τ → µγ rates are above the present experimental

sensitivity, therefore this tau decay channel is at present the most competitive one in

setting bounds on the tau-muon LFV. However, besides experimental issues, the limitation

of this channel is that it is not sensitive at all to the Higgs sector. In this sense, the

semileptonic channels are more interesting, and can be clearly competitive in the large

MSUSY ∼ O(1 − 2TeV) region.

In figures 14 and 15 we plot finally the predictions for BR(τ → µK+K−) and BR(τ →
µη) as a function of one the most relevant parameters for these Higgs-mediated processes

which is the corresponding Higgs boson mass.
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Figure 14: Predictions for BR(τ → µK+K−) as a function of mH0 in the NUHM scenario. A

comparison between the full 1-loop computation and the approximation given by eq. ( 4.5) for

various choices of large tanβ and mN3
is included. The horizontal line is the present experimental

upper bound [25].

Firstly, we see again that the approximate and exact results of the Higgs contribution

agree within a factor of two for both channels, but the agreement of the full result with

respect to the Higgs contribution is clearly worse in the case of τ → µK+K− than in

τ → µη. In the latter, the agreement is quite good because the Z-mediated contribution is

negligible, and this holds for all MSUSY values in the studied interval, 250 GeV < MSUSY <

750 GeV . In the first, it is only for largeMSUSY that theH-mediated contribution competes

with the γ-mediated one and the Higgs rates approach the total rates. For instance,

figure 14 shows that for MSUSY = 750 GeV and mH0 = 160 GeV the total rate is about a

factor 2 above the Higgs rate, but for mH0 = 240 GeV it is already more than a factor 5

above.

In these figures we have also explored larger values of mN3
and tan β, by using in those

cases the approximate formula, and in order to conclude about the values that predict

rates comparable with the present experimental sensitivity. We can conclude then that, at

present, it is certainly τ → µη the most competitive LFV semileptonic tau decay channel.

The parameter values that provide rates being comparable to the present sensitivities in

this channel are tanβ = 60 andmN3
= 1015 GeV which correspond to |δ32| ≃ 2. These large

rates, however, should be taken with care and be considered just as an order of magnitude
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Figure 15: Predictions for BR(τ → µη) as a function of mA0 in the NUHM scenario. A comparison

between the full 1-loop computation and the approximation given by eq. ( 4.5) for various choices of

large tanβ and mN3
is included. The horizontal line is the present experimental upper bound [15].

estimate since, as we have explained in section 2.1, they correspond to neutrino Yukawa

couplings which are clearly in the non-perturbative regime. This is why we do not provide

the corresponding full rates for them.

5. Conclusions

In this paper we have presented a complete one-loop computation of the branching ratios

for the LFV semileptonic τ decays within the context of two constrained MSSM-seesaw

scenarios, the CMSSM and the NUHM. We have included both analytical and numerical

results for the particular channels: τ → µPP , with PP = π+π−, π0π0,K+K−,K0K̄0;

τ → µP with P = π, η, η′; and τ → µρ, τ → µφ. The analysis of the channels τ → µPP ,

with PP = π+π−, π0π0,K0K̄0, and τ → µρ, τ → µφ are, to our knowledge, the first ones

in the literature within the CMSSM-seesaw context. In addition, we have compared our

predictions for τ → µK+K− and for τ → µP with P = π, η, η′ with previous predictions

in the literature and found some discrepancies.

Our treatment of hadronisation has involved two different procedures : for the γ con-

tribution we have employed state of the art form factors (detailed in appendix B), as this

amplitude is fairly dominated by resonance states; for heavier intermediate contributions
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(Z and Higgses) we have a local (point-like) vertex driven by chiral symmetry. It is difficult

to estimate the errors of this procedure. For the hadronization of the γ, large-NC inspired,

the error should be smaller than 30% [46] (at amplitude level), based on the fact that

subleading terms in the expansion have been included through the widths of resonances.

The hadronization of currents driven by the Z or Higgses, on the other side, is less known

and it is not possible to give a reliable error estimate.

Our results for τ → µπ+π− demonstrate that this channel is clearly dominated by the

photon-mediated contribution in all the studied region of 100 GeV < MSUSY < 1000 GeV.

In fact it is by far, the τ → µPP channel with the highest rates, reaching values close to its

present experimental bound at 4.8 × 10−7 for some input parameter values. Concretely, it

happens for lowMSUSY ∼ 100−200 GeV, large tan β ∼ 50−60, large mN3
∼ 1014−1015 GeV

and large arg(θ2) ∼ π/4−π/2 (these two latter parameters producing a large δ32 ∼ O(1)).

In contrast, τ → µπ0π0 can only be mediated by h0 and H0 Higgs bosons and their

rates are very small. Besides, they are not yet comparable with data, since there is no

bound in this channel. The cases of τ → µK+K− and τ → µK0K̄0 decays, are much

more interesting. In these two channels, the photon-mediated contribution dominates in

most of the studied region of MSUSY, except at large, MSUSY > 750 GeV values, where

the Higgs-mediated and the γ-mediated contributions can compete. This competition

happens in specific constrained scenarios of NUHM type with low mH0 ∼ 100 − 200 GeV

values and very heavy SUSY spectrum with MSUSY > 750 GeV. This peculiar MSSM

spectrum and the fact that Higgs bosons couple stronger to K+K− (and K0K̄0) than to

π+π− (and π0π0) is the reason why the H- and γ-mediated contributions can compete

in τ → µK+K− but not in τ → µπ+π−. Furthermore, due to the fact that the photon

diagram still dominates BR(τ → µK+K−) in a large region of the parameter space with

100 GeV < MSUSY < 750 GeV, the involved hadronic form factors do play a crutial role in

the final rates. Consequently, our results for this channel are in disagreement with those

of [34] where they only included the Higgs-mediated contribution. We have also shown

that the largest predicted rates for BR(τ → µK+K−) are, as in τ → µπ+π−, at the region

with low MSUSY ∼ 100 − 200 GeV, large tanβ ∼ 50 − 60, large mN3
∼ 1014 − 1015 GeV

and large arg(θ2) ∼ π/4 − π/2 values. However, the predicted rates do not reach yet the

present experimental sensitivity, which in this channel is at 8 × 10−7.

Our results for τ → µη and τ → µη′ demonstrate that these two channels are largely

dominated by the A0-mediated contribution and their predicted rates are very competitive

in the case of NUHM scenarios with low mA0 ∼ 100 − 200 GeV values and large tan β ∼
50−60. This is in qualitative agreement with previous estimates in the literature. However,

we have found some important numerical discrepancies with respect to the estimate in [31].

Concretely, the predicted rates in the present work are smaller than those in [31] by a

factor of about 7. We believe that these discrepancies are due to the different procedures

of quark bilinear hadronisation. We claim that our results which are based on the well

defined and more refined hadronisation prescription by χPT provide a better estimate.

The rates for BR(τ → µη) have also been compared with those in [32, 33] which are within

the different context of non-constrained MSSM and with input δ32 not being connected to

neutrino physics nor seesaw mechanism. We have checked, that the predicted rates are in
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reasonable agreement with these two works for, δ32 ∼ O(1) , which in our case is reached

by input seesaw parameters of mN3
∼ 1014 − 1015 GeV and large arg(θ2) ∼ π/4 − π/2.

In addition, we have presented in this work a set of useful approximate formulas for

all the semileptonic τ decays that we have compared with the full-one loop results and

concluded that they give reasonable good estimates, say differing in less than a factor of

two respect to the full result. We have also compared these results with those for the

leptonic channel, τ → 3µ, and the radiative decay, τ → µγ.

Our overall conclusion is that, for the same Constrained MSSM-Seesaw input param-

eters, τ → µγ is the most competitive τ decay channel in testing the values of the LFV

parameter δ32, but it is not sensitive at all to the Higgs sector. Interestingly, the most

competitive channels to explore simultaneously LFV and the Higgs sector are τ → µη,

τ → µη′ and also τ → µK+K−. The τ → µK+K− channel is certainly more efficient than

τ → 3µ as far as the sensitivity to the Higgs sector is concerned. Otherwise, the golden

channels to tackle the Higgs sector are undoubtly τ → µη and τ → µη′. On the other hand,

the rest of the studied semileptonic channels, τ → µπ+π−, etc., will not provide additional

information on LFV with respect to that provided by τ → µγ.
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A. LFV form factors

In this appendix we collect the main analytical formulae containing the full 1-loop results

of the SUSY contributions to the relevant τ − µ LFV form factors for the present work,

corresponding to: γτµ, Zτµ and Hτµ vertices. All the couplings and loop functions

appearing in the following formulae are defined in [21, 24].

A.1 Form factors for the γτµ vertex

Our convention for the form factors AL,R
1,2 defining the γτµ vertex is as follows:

ie
[

q2γα(AL
1 PL +AR

1 PR) + imτσαβq
β(AL

aPL +AR
2 PR)

]

, (A.1)

where q is the off-shell photon momentum, PL,R = (1 ∓ γ5)/2, e is the electromagnetic

positron charge and mτ is the τ lepton mass.

In the SUSY-seesaw context there are one-loop contributions to these form factors that

come from the chargino and neutralino sectors respectively,

AL,R
a = A(n)L.R

a +A(c)L,R
a , a = 1, 2 . (A.2)
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Figure 16: Relevant SUSY one-loop diagrams for the photon-mediated contributions to LFV

semileptonic τ decays.

The neutralino contributions are given by,

A
(n)L
1 =

1

576π2
NR

µAXN
R∗
τAX

1

m2
l̃X

2 − 9xAX + 18x2
AX − 11x3

AX + 6x3
AX log xAX

(1 − xAX)4

A
(n)L
2 =

1

32π2

1

m2
l̃X

[

NL
µAXN

L∗
τAX

1 − 6xAX + 3x2
AX + 2x3

AX − 6x2
AX log xAX

6 (1 − xAX)4

+NR
µAXN

R∗
τAX

mµ

mτ

1 − 6xAX + 3x2
AX + 2x3

AX − 6x2
AX log xAX

6 (1 − xAX)4

+ NL
µAXN

R∗
τAX

mχ̃0
A

mτ

1 − x2
AX + 2xAX log xAX

(1 − xAX)3

]

, (A.3)

A(n)R
a = A(n)L

a

∣

∣

∣

L↔R
, (A.4)

where xAX = m2
χ̃0

A

/m2
l̃X

and the indices are A = 1, . . . , 4, X = 1, . . . , 6.

The chargino contributions are given by

A
(c)L
1 = − 1

576π2
CR

µAXC
R∗
τAX

1

m2
ν̃X

16 − 45xAX + 36x2
AX − 7x3

AX + 6(2 − 3xAX) log xAX

(1 − xAX)4
,

A
(c)L
2 = − 1

32π2

1

m2
ν̃X

[

CL
µAXC

L∗
τAX

2 + 3xAX − 6x2
AX + x3

AX + 6xAX log xAX

6 (1 − xAX)4

+CR
µAXC

R∗
τAX

mµ

mτ

2 + 3xAX − 6x2
AX + x3

AX + 6xAX log xAX

6 (1 − xAX)4

+ CL
µAXC

R∗
τAX

mχ̃−

A

mτ

−3 + 4xAX − x2
AX − 2 log xAX

(1 − xAX)3

]

, (A.5)

A(c)R
a = A(c)L

a

∣

∣

∣

L↔R
, (A.6)
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Figure 17: Relevant SUSY one-loop diagrams for the Z-mediated contributions to LFV semilep-

tonic τ decays.

where in this case xAX = m2
χ̃−

A

/m2
ν̃X

and the indices are A = 1, 2, X = 1, 2, 3. Notice that

in both neutralino and chargino contributions a summation over the indices A and X is

understood.

A.2 Form factors for the Zτµ vertex

Our convention for the form factors FL,R defining the Zτµ vertex is as follows:

−iγµ [FLPL + FRPR] . (A.7)

The Z-boson form factors have also the two kinds of contributions, from neutralinos (n)

and charginos (c),

FL(R) = F
(n)
L(R) + F

(c)
L(R) . (A.8)

The results for the corresponding form factors are the following:

F
(n)
L = − 1

16π2

{

NR
µBXN

R∗
τAX

[

2E
R(n)
BA C24(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)

−EL(n)
BA mχ̃0

A
mχ̃0

B
C0(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)
]

+NR
µAXN

R∗
τAY

[

2Ql̃
XY C24(m

2
χ̃0

A
,m2

l̃X
,m2

l̃Y
)
]

+NR
µAXN

R∗
τAX

[

Z
(l)
L B1(m

2
χ̃0

A
,m2

l̃X
)
]}

,

F
(n)
R = F

(n)
L

∣

∣

∣

L↔R
,

F
(c)
L = − 1

16π2

{

CR
µBXC

R∗
τAX

[

2E
R(c)
BA C24(m

2
ν̃X
,m2

χ̃−

A

,m2
χ̃−

B

)

−EL(c)
BA mχ̃−

A
mχ̃−

B
C0(m

2
ν̃X
,m2

χ̃−

A

,m2
χ̃−

B

)
]
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Figure 18: Relevant SUSY one-loop diagrams for the Higgs-mediated contributions to LFV

semileptonic τ decays.

+CR
µAXC

R∗
τAY

[

2Qν̃
XY C24(m

2
χ̃−

A

,m2
ν̃X
,m2

ν̃Y
)
]

+CR
µAXC

R∗
τAX

[

Z
(l)
L B1(m

2
χ̃−

A

,m2
ν̃X

)
]}

,

F
(c)
R = F

(c)
L

∣

∣

∣

L↔R
, (A.9)

where again the indices are A,B = 1, . . . , 4, X,Y = 1, . . . , 6 in the contributions from the

neutralino sector and A,B = 1, 2, X,Y = 1, 2, 3 in the contributions from the chargino

sector, and a summation over the various indices is understood.

A.3 Form factors for the Hτµ vertex

Our convention for the form factors H
(p)
L,R defining the Hpτµ vertex is as follows:

i
[

H
(p)
L PL +H

(p)
R PR

]

. (A.10)

As in the previous cases, we separate the contributions from the neutralino and

chargino sectors,

H
(p)
L(R) = H

(p)
L(R),n +H

(p)
L(R),c. (A.11)

The results for the form factors are the following,

H
(p)
L,n = − 1

16π2

{[

B0(m
2
χ̃0

A
,m2

χ̃0
B
) +m2

l̃X
C0(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
) +m2

τC12(m
2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)

+ m2
µ(C11 − C12)(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)
]

NL
µAXD

(p)
R,ABN

R∗
τBX

+mµmτ (C11 + C0)(m
2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)NR

µAXD
(p)
L,ABN

L∗
τBX

+mµmχ̃0
B
(C11 − C12 +C0)(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)NR

µAXD
(p)
L,ABN

R∗
τBX
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+mτmχ̃0
B
C12(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)NL

µAXD
(p)
R,ABN

L∗
τBX

+mµmχ̃0
A
(C11 − C12)(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)NR

µAXD
(p)
R,ABN

R∗
τBX

+mτmχ̃0
A
(C12 + C0)(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)NL

µAXD
(p)
L,ABN

L∗
τBX

+mχ̃0
A
mχ̃0

B
C0(m

2
l̃X
,m2

χ̃0
A
,m2

χ̃0
B
)NL

µAXD
(p)
L,ABN

R∗
τBX

+G
(p)l̃
XY

[

−mµ(C11 − C12)(m
2
χ̃0

A
,m2

l̃X
,m2

l̃Y
)NR

µAXN
R∗
τAY

− mτC12(m
2
χ̃0

A
,m2

l̃X
,m2

l̃Y
)NL

µAXN
L∗
τAY +mχ̃0

A
C0(m

2
χ̃0

A
,m2

l̃X
,m2

l̃Y
)NL

µAXN
R∗
τAY

]

+
S

(p)
L,τ

m2
µ −m2

τ

[

−m2
µB1(m

2
χ̃0

A
,m2

l̃X
)NL

µAXN
L∗
τAX +mµmχ̃0

A
B0(m

2
χ̃0

A
,m2

l̃X
)NR

µAXN
L∗
τAX

− mµmτB1(m
2
χ̃0

A
,m2

l̃X
)NR

µAXN
R∗
τAX +mτmχ̃0

A
B0(m

2
χ̃0

A
,m2

l̃X
)NL

µAXN
R∗
τAX

]

+
S

(p)
L,µ

m2
τ −m2

µ

[

−m2
τB1(m

2
χ̃0

A
,m2

l̃X
)NR

µAXN
R∗
τAX +mτmχ̃0

A
B0(m

2
χ̃0

A
,m2

l̃X
)NR

µAXN
L∗
τAX

− mµmτB1(m
2
χ̃0

A
,m2

l̃X
)NL

µAXN
L∗
τAX +mµmχ̃0

A
B0(m

2
χ̃0

A
,m2

l̃X
)NL

µAXN
R∗
τAX

]}

, (A.12)

H
(p)
R,n = H

(p)
L,n

∣

∣

∣

L↔R
p = 1, 2, 3. (A.13)

Correspondingly, the result for the chargino contribution H
(p)
L(R),c can be obtained from the

previous H
(p)
L(R),n by replacing everywhere,

l̃ → ν̃

χ̃0 → χ̃−

NL(R) → CL(R)

DL(R) → WL(R)

In the previous formulae, the index p refers to the each of the Higgs bosons. Concretely,

Hp = h0,H0, A0 for p = 1, 2, 3, respectively. The other indices are again A,B = 1, . . . , 4,

X,Y = 1, . . . , 6 in the contributions from the neutralino sector and A,B = 1, 2 and X,Y =

1, 2, 3 in the contributions from the chargino sector. A summation over all the indices is

also understood.

B. Hadronic form factors

Our construction of the vector form factors FPP
V (s), defined by eq. (2.28), follows the idea

put forward in [54] that lie on two key points :

1/ At s≪M2
R (beingMR a generic resonance mass), the vector form factor should match

the O(p4) result of χPT. Hence our form factors will satisfy the chiral constraint.

2/ Form factors of QCD currents should behave softly at high transfer of momenta [38],

i.e. they should vanish for s≫M2
R. Accordingly we will demand to our form factors

that they satisfy this asymptotic constraint.
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In the NC → ∞ limit resonances have zero-width. However those present in the relevant

form factors in tau decays do indeed resonate due to the available phase space. As a

consequence we need to include energy-dependent widths for the wider resonances ρ(770)

and ρ(1450), or constant for the narrow ones : ω(782) and φ(1020). For the ρ(770) we take

the definition put forward in [55] :

Γρ(s) =
Mρs

96πF 2

[

σ3
π(s) θ( s − 4m2

π) +
1

2
σ3

K(s) θ( s − 4m2
K)

]

, (B.1)

where σP (s) =

√

1 − 4
m2

P

s , while for ρ(1450) we employ a reasonable parameterisation :

Γρ′(s) = Γρ′(M
2
ρ′)

s

M2
ρ′

(

σ3
π(s) + 1

2 σ
3
K(s) θ( s − 4m2

K)

σ3
π(M2

ρ′) + 1
2 σ

3
K(M2

ρ′) θ( s − 4m2
K)

)

θ( s − 4m2
π) . (B.2)

The O(p4) determination of the vector form factors was done in [49]. Requiring that

our expressions match that result at small transfer of momentum we get the following

expressions :

F ππ
V (s) = F (s) exp

[

2Re
(

H̃ππ(s)
)

+ Re
(

H̃KK(s)
)]

(B.3)

F (s) =
M2

ρ

M2
ρ − s− iMρΓρ(s)

[

1 +

(

δ
M2

ω

M2
ρ

− γ
s

M2
ρ

)

s

M2
ω − s− iMωΓω

]

− γ s

M2
ρ′ − s− iMρ′Γρ′(s)

,

FK+K−

V (s) =
1

2

M2
ρ

M2
ρ − s− iMρΓρ(s)

exp
[

2Re
(

H̃ππ(s)
)

+ Re
(

H̃KK(s)
)]

+
1

2

[

sin2 θV
M2

ω

M2
ω − s− iMωΓω

+ cos2 θV

M2
φ

M2
φ − s− iMφΓφ

]

× exp
[

3Re
(

H̃KK(s)
)]

,

FK0K̄0

V (s) = − 1

2

M2
ρ

M2
ρ − s− iMρΓρ(s)

exp
[

2Re
(

H̃ππ(s)
)

+ Re
(

H̃KK(s)
)]

+
1

2

[

sin2 θV
M2

ω

M2
ω − s− iMωΓω

+ cos2 θV

M2
φ

M2
φ − s− iMφΓφ

]

× exp
[

3Re
(

H̃KK(s)
)]

,

where we have used the definitions :

β =
Θρω

3M2
ρ

,

γ =
FV GV

F 2
(1 + β) − 1 ,

δ =
FV GV

F 2
− 1 ,

H̃PP (s) =
s

F 2
MP (s) ,
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MP (s) =
1

12

(

1 − 4
m2

P

s

)

JP (s) − kP (Mρ)

6
+

1

288π2
,

JP (s) =
1

16π2

[

σP (s) ln
σP (s) − 1

σP (s) + 1
+ 2

]

,

kP (µ) =
1

32π2

(

ln
m2

P

µ2
+ 1

)

. (B.4)

Notice that the β parameter includes the contribution of the isospin breaking ρ−ω mixing

through Θρω = −3.3× 10−3 GeV2 [56], and FV and GV are defined in eq. (2.21). Moreover

the asymptotic constraint on the NC → ∞ vector form factor indicates FV GV ≃ F 2 [54].

The mixing between the octet and singlet vector components employed in the construction

of the I = 0 component of the kaon vector form factors is defined by :

(

φ

ω

)

=

(

cos θV − sin θV

sin θV cos θV

) (

v8
v0

)

, (B.5)

and we will use ideal mixing, i.e. θV = 35◦.
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