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Abstract

Macroscopic systems of hydrogen molecules exhibit a rich thermodynamic phase behavior. Due

to the simplicity of the molecular constituents a detailed exploration of the thermal properties of

these boson systems at low temperatures is of fundamental interest. Here,we report theoretical

and experimental results on various spatial correlation functions and corresponding distributions in

momentum space of liquid para-hydrogen close to the triple point. They characterize the structure

of the correlated liquid and provide information on quantum effects present in this Bose fluid.

Numerical calculations employ Correlated Density-Matrix(CDM)theory and Path-Integral Monte-

Carlo(PIMC)simulations. A comparison of these theoretical results demonstrates the accuracy

of CDM theory. This algorithm therefore permits a fast and efficient quantitative analysis of the

normal phase of liquid para-hydrogen.We compare and discuss the theoretical results with available

experimental data.
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I. INTRODUCTION

Microscopic, mesoscopic, and macroscopic systems of hydrogen atoms or molecules are of

fundamental importance in quantum many-body theory. The properties of a single hydrogen

atom led the basis for the atomic shell model. A single hydrogen molecule is the simplest

compound and has been an early laboratory for studying chemical binding. Its spectrum

exhibits the effects of internal degrees of freedom leading to different levels of excitations and

the existence of ortho- and para-hydrogen. The molecule therefore shares common features

with nuclei where internal degrees are important and cause violation of the so-called Y-

symmetry1,2. Atomic hydrogen gas in a strong magnetic field remains a Bose fluid even at

zero temperature and can condense into a Bose-Einstein phase under certain conditions3 like

the alkali gases4.

Liquid and solid phases of molecular hydrogen and deuterium have been extensively

studied, experimentally as well as theoretically. These many-body systems are of continuing

interest for a variety of reasons. Hydrogen molecules are the dominant constituents of giant

planets5. The physics of metallic hydrogen is explored by many researchers to achieve the

insulator-metal cross-over6.

The hydrogen liquid, close to the triple point, is the object of current research. In this

paper we concentrate on a theoretical and experimental analysis of its quantum properties

close to the triple point. There are many other open and interesting questions, such as

properties of mesoscopic clusters and films, molecular hydrogen in confined geometries, Bose-

Einstein condensation in solid and supercooled liquid hydrogen, etc.

We investigate the properties of the one- and two-body reduced density-matrix elements of

liquid para-hydrogen in its normal boson phase at low temperatures.The associated Fourier

transverse of these quantities reveal the spatial structure of the correlated system. Detailed

numerical calculations are performed at the temperature T = 16 K and a particle number

density ρ = 0.021 Å−3. The experimental measurements for the liquid structure function7

and the dispersion law of the collective excitations8 have been done at the temperature

T = 15.2 K. Quantitative information on single-particle properties have been gained by

precision neutron-scattering experiments at T = 15.7 K and various pressures that permits

to extract the momentum distribution of a molecule in the hydrogen liquid9.

The present theoretical analysis is based on the parameter-free microscopic CDM
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theory10,11,12 and PIMC calculations13 with the central Silvera-Goldman potential as input14.

Section 2 begins with a quantitative study of the spatial distribution function g(r) and the

static structure function S(k) comparing the CDM results with the corresponding PIMC re-

sults. Theoretical results on the excitation energies and quasiparticle energies within CDM

theory are discussed and compared with the measured dispersion laws in Section 3. The

theoretical momentum distribution n(k) is analysed in Section 4. Its study is based on

a structural factorization of the one-body reduced density-matrix elements n(r) reported

earlier15 that permits a clean separation of particle exchange properties from spatial phase-

phase correlations caused by the intermolecular interactions. A short summary is given in

Section 5.

II. SPATIAL STRUCTURE

The spatial structure of a homogeneous quantum fluid in thermal equilibrium may be

characterized by a set of correlation functions and concomitant Fourier transforms or struc-

ture functions.The radial distribution function g(r) describes the spatial correlations be-

tween two particles in coordinate space and depends on the relative distance between them,

r = |r1 − r2|.The associated static structure function S(k) is the dimensionless Fourier trans-

form of g(r).Its dependence on the relative momentum or wavenumber k can be extracted

from measured neutron scattering cross sections.The quantum-mechanical correlations be-

tween identical particles become apparent in the cyclic or particle-exchange correlation func-

tion Gcc(r) and its Fourier inverse Scc(k). Information on the spatial correlations between

the phase factors associated with the single-particle wave components of the full N-body

density matrix of the thermodynamic state of the quantum fluid is embodied in the phase-

phase correlation function Q(r). This quantity is contained in the off-diagonal elements

n(r), i.e., the one-body reduced density matrix.

This Section deals with a thorough analysis and comparison of theoretical and experi-

mental results on functions g(r) and S(k). CDM theory provides a renormalized Schrödinger

equation with zero eigenvalue for the square root of the radial distribution function,

[

−
h̄2

m
∆ + v(r) + w(r) + vcoll(r) + vqp(r)

]

√

g(r) = 0 . (1)

The potential energy terms appearing in Eq. (1) are the Silvera potential14 v(r), the in-
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FIG. 1: Radial distribution function g(r) of liquid para-hydrogen (T = 16 K, ρ = 0.021 Å−3). Full

line: results of CDM theory, broken line: PIMC simulation results.

duced potential12 w(r), the coupling term vcoll(r) to the collective excitations10, and the

quasiparticle coupling term12 vqp(r). For liquid para-hydrogen close to the triple point the

last coupling term is very small and may be ignored. Without the term vqp(r) it is straight-

forward to solve the Schrödinger equation by following the elementary calculus designed in

Ref. 10. The solution is displayed in Figure 1. We have checked its numerical accuracy by

comparing the CDM results with those of a PIMC calculation for the same temperature and

density16, finding excellent agreement(see Figure 1).

The results on the distribution g(r) show the enormous correlation strength that exists

in the hydrogen liquid. The first maximum at r = 3.7 Å attains a value that is significantly

larger than the maximal strength one finds at the first peak of the radial distribution function

of liquid helium under similar thermal conditions assuming the realistic Aziz potential17 as

input for the theoretical analysis (Figure 2).
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Next, we turn to a detailed study of the associated static structure function S(k). Within

CDM theory as well as in the stochastic PIMC approach this quantity is calculated as the

dimensionless Fourier transform

S(k) = 1 + ρ
∫

[g(r) − 1] eikrdr . (2)

Numerical results on the structure function with CDM and PIMC data for g(r) as input

are displayed in Figure 3. Once more,the Monte-Carlo results confirm the high accuracy of

the results from CDM theory for liquid para-hydrogen close to the triple point. We emphasize

that the integral (2) has been calculated without applying any fitting prescription for the
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FIG. 2: Comparison of radial distribution functions of liquid para-hydrogen and of normal liquid

helium (broken line) under similar thermodynamic conditions (abscissa: relative distance r in units

[Å]).
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distribution g(r) at large relative distances. The oscillations seen in the stochastic results at

wavenumbers k < 1.5 Å−1 are artifacts of the inherently unavoidable small box size used in

the PIMC calculations. In contrast, CDM theory does not suffer from this deficiency since we

can easily solve the Schrödinger equation in a sufficiently large interval of relative distances.

CDM theory provides therefore an efficient tool for accurate calculations of the isothermal

compressibility and isothermal velocity of sound in the limit of vanishing wavenumber.

FIG. 3: Numerical results on the structure function S(k) of liquid para-hydrogen by CDM theory

and from PIMC calculations (dashed line), see text.

The theoretical results reported may be compared with experimental data from neutron

scattering experiments7. The data processing yields an experimental structure function

with a much higher first peak than found in the theoretical result on S(k). This discrepancy

between peak values of about 2.8 experimentally and about 1.8 for the theoretical result is not

acceptable. There are theoretical data from molecular dynamics calculations7 which seem to

support the experimental findings (see Figures 3 and 5 of Ref. 7). However, they are evidently
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in disagreement with the present results within CDM theory and of PIMC calculations. This

problem -at least on the theoretical side- awaits a future careful examination.

III. EXCITATIONS

A correlated normal Bose fluid permits at least two different branches of excitations.There

is a collective branch of phonons at small wavenumbers k and possibly roton-like excitations

at atomic wavelengths. A second branch consists of excited quasiparticles that conserves the

total number of constituents.CDM theory enables us to determine the excitation energies of

both branches by solving two Euler-Lagrange equations12,

δFλ

δncc(k)
= 0 , (3)

with subcondition
∑

k

ncc(k) = N (4)

and
δFλ

δncoll(k)
= 0 . (5)

The thermodynamic potential Fλ[S(k), ncc(k), ncoll(k); T, ρ] is a functional of the static

structure function S(k), the momentum distribution ncc(k) of N quasiparticles, and the

occupation-number density ncoll(k) of the collective excitations. An explicit expression for

the functional Fλ can be constructed within CDM theory by following a systematic approx-

imation procedure. At the present level of formal development the functional is generated

from a trial N -body density matrix of Jastrow- type. Future improvements may be de-

rived by a suitable generalization of the Correlated Basis Functions (CBF) formalism for

the ground state of a quantum many-body system18,19.

We have solved the Euler-Lagrange equations using the approximate thermodynamic po-

tential derived from the Jastrow trial N -body density matrix12. At the assumed temperature

T = 16 K and particle-number density ρ = 0.021 Å−3 one finds that the optimal momentum

distribution of the quasiparticles is excellently represented by the Gaussian form

ncc(k) = exp β [µ0 − ǫ0(k)] (6)

with ǫ0(k) = h̄2/2m (molecular mass m of hydrogen) and inverse temperature β = (kBT )−1.

The chemical potential is µ ≃ −7.8 K due to the subcondition (4). The coresponding
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one-body reduced density matrix is therefore given by

ncc(r) = exp

[

−π
(

r

λ

)2
]

(7)

with a thermal wavelength λ ≃ 3.09 Å. A consequence of this result is the absence of

particle-exchange correlations in the hydrogen state considered, explicitly expressed by the

result11,12 Scc(k) = Gcc(r) ≃ 0. The quasiparticles are therefore distinguishable free hydro-

gen molecules obeying classical Boltzmann statistics.

FIG. 4: Energy spectrum of collective excitations in the hydrogen system, in generalized Feynman

approximation.The dashed line indicates the linear phonon spectrum in the limit of vanishing

wavenumber.

Eq. (5) is a generalized Feynman equation12,20 that can be easily solved. The optimal

excitation energies ωcoll(k) are displayed in Figure 4. This energy branch is of the famil-

iar phonon/roton form. The broken line indicates the phonon limit ωcoll(k) ≃ h̄ck as k

approaches zero. Its slope yields the theoretical isothermal sound velocity c ≃ 680 m/s.

8



We may compare these results with the available experimental data8 (cf. Figures 5 and

8 therein). There is good agreement between the theoretical and the experimental results

in the roton region. However, the roton excitations are strongly damped.In contrast,the

excitations in the wavenumber region k < 0.8 Å−1 are stable, yet the theoretical excita-

tion energies become significantly smaller than the experimental energies by increasing the

wavenumber k. The discrepancy requires further investigation.

IV. MOMENTUM DISTRIBUTION

The momentum distribution of a single hydrogen molecule in the liquid is given by the

integral

n(k) = ρ
∫

n(r)eikrdr (8)

where function n(r) is the (unit-normalized) one-body reduced density matrix. This quan-

tity has been analyzed within CDM theory2,15. The formalism yields the structural factor

decomposition

n(r) = ncN0(r) exp [−Q(r)] (9)

with the strength factor nc = exp Q(0). The factor N0(r) = ncc(r) + Nc(r) embodies the

quantum-mechanical effects due to the exchange of identical particles. The function P (r) =

Q(r)/Q(0) can be interpreted as the (unit-normalized) phase-phase correlation function.

Employing the hypernetted-chain (HNC) technique for evaluating the functions15 we

calculated N0(r) and P (r) for liquid hydrogen in HNC/0 approximation. As expected, the

exchange correlations Nc(r) are very small and thus

N0(r) ≃ ncc(r) . (10)

Figure 5 displays theoretical results on function P(r) in HNC/0 approximation. We see that

this distribution is well represented by a Gaussian form

P (r) ≃ PG(r) = exp

[

−π
(

r

λP

)2
]

, (11)

with λP ≃ 3.73 Å at T = 16 K and ρ = 0.021 Å−3. The strength factor nc is related to the

curvature of function P (r) and the total kinetic energy per molecule of the Bose liquid. A
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FIG. 5: Numerical results for the phase-phase correlation function P (r) by CDM theory, in HNC/0

approximation.

PIMC calculation of this energy portion yields 58.6 K at T = 16 K and ρ = 0.021 Å−3. With

these input data the strength factor has the value nc = 0.118.

Straightforward multiplication and integration via Eq. (9) yield the one-body elements

n(r) and the momentum distribution n(k). Figure 6 represents numerical results on the

dependence of the latter function on wavenumber k. We may compare it with the Gaussian

momentum distribution that would hold by assuming that the molecules are free and distin-

guishable but have the same total kinetic energy per particle as the quantum liquid. This

distribution would be characterized by an effective thermal wavelength λ0 ≃ 1.97 Å (Figure

6, broken line). Obviously, the difference

∆N(k) = k2 [n(k) − nG(k)] (12)

measures the deviation of the kinetic energy distribution of the quantum liquid from the

classical Maxwell distribution of distinguishable hydrogen molecules. Its dependence on
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FIG. 6: Theoretical momentum distribution n(k) of a single hydrogen molecule in the liquid. It

is compared to the classical Gauss distribution nG(k) that leads to the same total kinetic energy

per molecule as the correlated hydrogen liquid ( broken line).

wavenumber k is displayed in Figure 7. We see that the quantum-mechanical energy dis-

tribution of the system favors an increase of the number of molecules with low momenta

compared to the classical distribution.

V. SUMMARY

We have presented a theoretical and an experimental analysis of the structure of liquid

para-hydrogen close to the triple point.The system is characterized by very strong dynam-

ical spatial correlations induced by the intermolecular forces. However, the repulsion at

short relative distances suppresses particle-exchange correlations between and among the
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FIG. 7: Deviation of the kinetic energy distribution k2n(k) of liquid para-hydrogen from the

corresponding classical Maxwell energy distribution (cf. Eq. (12)).

hydrogen molecules. For the same reason, the exchange (or cyclic) correlation function and

the associated exchange structure function are almost zero everywhere. Furthermore, the

quasiparticle momentum distribution is very well approximated by the classical Gaussian

distribution of free and distinguishable particles. Similarly,the short-ranged phase-phase

correlation function and corresponding structure function are to a very good approximation

of Gaussian form. The interplay of exchange and phase-phase coupling, however, generates

a significant departure of the single-particle momentum distribution in liquid para-hydrogen

from the classical Maxwell-Gauss distribution.

The present study employed the formalism of CDM theory for a normal Bose fluid.

The results have been compared with PIMC simulation data. The numerical comparison

demonstrates the high accuracy of CDM theory when applied to liquid hydrogen at low

temperatures. CDM theory is therefore expected to be a very fast, efficient, and reliable
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tool for a detailed quantitative analysis of normal Bose fluids under similar thermodynamic

conditions.
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