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Abstract

We show that scalar unparticles coupled to the Standard Model Higgs at the renormal-

izable level can have a dramatic impact in the breaking of the electroweak symmetry

already at tree level. In particular one can get the proper electroweak scale without

the need of a Higgs mass term in the Lagrangian. By studying the mixed unparticle-

Higgs propagator and spectral function we also show how unparticles can shift the

Higgs mass away from its Standard Model value, 2λv2, and influence other Higgs

boson properties. Conversely, we study in some detail how electroweak symmetry

breaking affects the unparticle sector by breaking its conformal symmetry and gener-

ating a mass gap. We also show that, for Higgs masses above that gap, unparticles

can increase quite significantly the Higgs width.
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1 Introduction

In two recent papers [1], Georgi has proposed to look seriously at the possibility that a

conformal sector with a non-trivial fixed point might be realized in nature and couple to our

standard world of particles. He has shown how such sector would have very unconventional

features and, at least in the appropriate energy range, will behave unlike a common particle

sector. These two seminal papers have been followed by a deluge of work [2, 3] in all sorts

of phenomenological implications that such an unparticle sector could have.

In this paper we consider how unparticles could affect one of the central issues of

contemporary particle physics: the breaking of the electroweak symmetry and the nature

of the Higgs sector. After a brief reminder of some aspects of unparticles relevant for

this discussion we show in section 2 how unparticles, if coupled to the Higgs operator

|H|2 as recently considered in [4], can have a dramatic impact on electroweak symmetry

breaking already at tree-level. In section 3 we study the mixed unparticle-Higgs propagator

and spectral function and show: i) How unparticles can shift the Higgs mass away from

its Standard Model (SM) value, 2λv2, and, conversely; ii) How electroweak symmetry

breaking affects the unparticle sector by breaking its conformal symmetry and generating

a mass gap. For Higgs masses above that gap we also show that unparticles can also affect

significantly the Higgs width.

We will consider the ultraviolet (UV) coupling of an operator of dimension dUV in the

unparticle sector to the SM dimension-two operator |H|2 as

L = − 1

MdUV −2
U

|H|2OUV , (1.1)

which flows in the infrared (IR) to

L = −CU

(

ΛU

MU

)dUV −2

Λ2−dU

U |H|2OU ≡ −κU |H|2OU , (1.2)

where dU is the scaling dimension of the unparticle operator OU (usually considered in

the interval 1 < dU < 2), CU is a dimensionless constant (whose value can be absorbed in

the definition of the scales ΛU and MU and so it will be fixed to one) and κU has mass

dimension 2 − dU .

We take the tree-level Higgs potential

V0 = m2|H|2 + λ|H|4 , (1.3)

where the squared mass parameter can have either sign or even vanish and the quartic

coupling λ is related in the SM to the Higgs mass at tree level by m2
h0 = 2λv2 (for m2 < 0).

We write the Higgs real direction as Re(H0) = (h0 + v)/
√

2, with v = 246 GeV.

The unparticle operator OU coupled to |H|2 in Eq. (1.2) has spin zero and its propa-

gator is [1, 2]

PU (p2) =
AdU

2 sin(πdU )

i

(−p2 − iǫ)2−dU
, AdU

≡ 16π5/2

(2π)2dU

Γ(dU + 1/2)

Γ(dU − 1)Γ(2dU )
. (1.4)

2



The spectral function representation for this propagator

− iPU (p2) =

∫

∞

0

ρU (s)

p2 − s + iǫ
ds , (1.5)

gives

ρU (s) =
AdU

2π
sdU−2 , (1.6)

with no poles and an essential singularity at s = 0.

2 Electroweak Breaking

We are interested in the possible effects of the unparticle sector on the Higgs sector through

the coupling (1.2) and, in particular, in examining the possible impact of unparticle ef-

fects on electroweak symmetry breaking, in the spirit of [5], which analyzed this issue for

standard hidden sectors.

The first observation, to which this paper is devoted, is that important effects of the

unparticle sector on the Higgs physics already appear at tree level. When the Higgs

field develops a non zero vacuum expectation value (VEV) the conformal symmetry of

the unparticle sector is broken [4]. From (1.2) we immediately see that in this non-zero

Higgs background the physical Higgs field will mix with the unparticle operator OU and

moreover, a tadpole will appear for the operator OU itself which will therefore develop a

non-zero VEV also.

In order to study these issues it is convenient to use a deconstructed version of the

unparticle sector, as discussed in [6]. One considers an infinite tower of scalars ϕn, (n =

1, ...,∞), with masses squared M2
n = ∆2n. The mass parameter ∆ is small and eventually

taken to zero, limit in which one recovers a (conformal) continuous mass spectrum. It can

be shown [6] that the deconstructed form of the operator OU is

O ≡
∑

n

Fnϕn , (2.1)

where

F 2
n =

AdU

2π
∆2(M2

n)dU−2 , (2.2)

so that the two-point correlator of O matches that of OU in the ∆ → 0 limit. In the

deconstructed theory then, the unparticle scalar potential, including the coupling (1.2) to

the Higgs field, reads

δV =
1

2

∑

n

M2
nϕ2

n + κU |H|2
∑

n

Fnϕn . (2.3)

A non-zero VEV, 〈|H|2〉 = v2/2, would trigger then a VEV for the fields ϕn:

vn ≡ 〈ϕn〉 = −κUv2

2M2
n

Fn , (2.4)
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thus implying

〈O〉 =

〈

∑

n

Fnϕn

〉

= −κUv2

2

∑

n

F 2
n

M2
n

. (2.5)

In the continuum limit this gives

〈OU 〉 = −κUv2

2

∫

∞

0

F 2(M2)

M2
dM2 , (2.6)

where

F 2(M2) =
AdU

2π
(M2)dU−2 , (2.7)

is the continuum equivalent of (2.2). We immediately see that 〈OU 〉 has an IR divergence.

This is due to the fact that for M → 0 the tadpole diverges while the mass itself, that

should stabilize the unparticle VEV, goes to zero.

As a possible cure for this divergence problem one can envisage several possibilities.

One might try to introduce quartic couplings (1/4)λnϕ4
n. A finite non-zero continuum limit

requires that λn scales with ∆ as λn ∼ µ2
λ/∆2, where µλ is some mass parameter. Scale

invariance requires in fact that µ2
λ ∝ M2 and this again does not solve the IR problem

of 〈OU 〉. Other alternatives, like introducing an O2
U term, also fail in this respect. In

this paper we consider instead introducing an IR-regulator related to the breaking of the

conformal symmetry by the Higgs VEV. We show below that this indeed stabilizes 〈OU 〉.
One can easily get an IR regulator in (2.7) by including a coupling 1

δV = ζ|H|2
∑

n

ϕ2
n , (2.8)

in the deconstructed theory. This coupling respects the conformal symmetry but will

break it when H takes a VEV. Now one gets

vn ≡ 〈ϕn〉 = − κUv2

2(M2
n + ζv2)

Fn , (2.9)

leading in the continuum limit to

u(M2) ≡ −κUv2

2

F (M2)

M2 + ζv2
, (2.10)

[where u(M2) is the continuum version of the unparticle VEV, scaled as vn = ∆un], and

then to

〈OU 〉 = −κUv2

2

∫

∞

0

F 2(M2)

M2 + ζv2
dM2 . (2.11)

1Notice that this coupling cannot be expressed in terms of OU in the continuum limit.

4



This integral is obviously finite for 1 < dU < 2 and yields explicitly

〈OU 〉 = −1

2
κU

AdU

2π
ζdU−2v2dU−2Γ(dU − 1)Γ(2 − dU ) . (2.12)

In the presence of (2.8) the minimization condition for the Higgs VEV v is then

m2 + λv2 + κU

∑

n

Fnvn + ζ
∑

n

v2
n = 0 , (2.13)

or, in the continuum limit,

m2 + λv2 +

∫

∞

0
dM2

[

κUF (M2) + ζu(M2)
]

u(M2) = 0 , (2.14)

which, using the VEV (2.10), translates into

m2 + λv2 − λU (µ2
U )2−dU v2(dU−1) = 0 , (2.15)

with

λU ≡ dU

4
ζdU−2Γ(dU − 1)Γ(2 − dU ) , (2.16)

and

(µ2
U )2−dU ≡ κ2

U

AdU

2π
. (2.17)

We see that the effect of the unparticles in the minimization equation (2.15) is akin to

having a Higgs term h2dU in the potential, that is, for 1 < dU < 2, a term somewhere

between h2 and h4! Notice also that condition (2.15) can be easily satisfied since the term

induced by the unparticle VEV is negative. In particular, for m2 = 0 the Higgs VEV is

induced by its coupling to unparticles as

v2 =

(

λU

λ

)
1

(2−dU )

µ2
U , (2.18)

and it is therefore determined by the mass parameter µU . In terms of the fundamental

scales ΛU and MU in (1.2) this mass parameter reads

µ2
U ≡

(

AdU

2π

)
1

2−dU

(

Λ2
U

M2
U

)

dUV −2

2−dU

Λ2
U , (2.19)

and one can easily get µU ∼ v from the scales ΛU ≫ v and MU ≫ ΛU provided that

dUV > 2. For later numerical work we will usually take κU = v2−dU , which corresponds

to µ2
U = µ2

v ≡ v2[AdU
/(2π)]1/(2−dU ).

Electroweak symmetry breaking at tree level requires the condition

m2 ≤ λU (µ2
U )2−dU v2(dU−1) , (2.20)
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in which case the Higgs potential has a Mexican-hat shape. In the particular case of

m2 = 0, condition (2.20) is automatically satisfied. Of course one has to adjust the

parameters in (2.15) to have the minimum at the correct value. This requires that the

Higgs quartic coupling is chosen as

λ = −m2

v2
+ λU (µ2

U )2−dU v2(dU−2) , (2.21)

which shows how unparticles modify the usual Standard Model relation. A plot of λ as a

function of dU is shown in Fig. 1 for the case m = 0, µ2
U = µ2

v and ζ = 1. The scaling of

λ with µU and ζ can be read off from Eq. (2.21).

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

dU

λ

Figure 1: Plot of λ from the minimization condition (2.21) for the case m = 0, ζ = 1 and µ2

U = µ2

v

as a function of dU .

3 Pole Mass and Spectral Function

Having found a way of stabilizing the unparticle (and Higgs) VEVs keeping 〈OU 〉 finite

we can move on to the study of the combined Higgs-unparticle propagator. Perhaps the

simplest way to obtain this propagator is to start with the deconstructed theory. The

neutral component of the Higgs, h0, mixes with the ϕn fields in an infinite scalar mass

matrix, but the secular equation can easily be obtained. Taking its continuum limit one

obtains the corresponding propagator for the coupled Higgs-unparticle system (that re-

sums unparticle corrections):

iP (p2)−1 = p2 − m2
h0 + v2(µ2

U )2−dU

∫

∞

0

(M2)dU−2

M2
U (M2) − p2

r(M2)dM2 , (3.1)
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where M2
U (M2) is the mass distribution of unparticles after conformal symmetry breaking:

M2
U (M2) = M2 + ζv2 , and r(M2) =

(

M2

M2 + ζv2

)2

. (3.2)

In order to understand the interplay between the Higgs and the unparticle sector after

electroweak symmetry breaking it is instructive to examine the spectral representation of

this propagator, which can be obtained easily.

There are two qualitatively different cases, depending on whether the Higgs mass

squared m2
h is larger or smaller than m2

gap ≡ ζv2. Here m2
h is the Higgs mass corrected by

the interactions to unparticles and implicitly given by the pole equation

m2
h = m2

h0 − v2(µ2
U )2−dU

∫

∞

0

(M2)dU−2

M2
U (M2) − m2

h

r(M2)dM2 . (3.3)

1. Let us first consider the case m2
h < ζv2. The analytical equation for m2

h can be

explicitly written as

m2
h = m2

h0
− v2(µ2

U )2−dU

m4
h

Γ(dU − 1)Γ(2 − dU ) ×

×
[

(ζv2 − m2
h)dU + dUm2

h(ζv2)dU−1 − (ζv2)dU

]

. (3.4)

Notice that the last term in (3.4) goes to zero in the (particle) limit dU → 1 and therefore

in this limit the pole mass is the standard one, m2
h = m2

h0
.

1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

mh

dU

Figure 2: Plot of the pole Higgs mass mh (lower curve) and unresummed Higgs mass mh0
(upper

curve) as functions of dU for µ2

U = µ2

v and ζ = 1. The straight line is mgap. Masses are in GeV.
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The spectral function is explicitly given by

ρ(s) =
1

K2(m2
h)

δ(s − m2
h) + θ(s − ζv2)

Q2
U (s)

D2(s) + π2Q4
U (s)

, (3.5)

with

Q2
U (s) ≡ v2(µ2

U )2−dU
(s − ζv2)dU

s2
, (3.6)

and

D(s) ≡ P.V.
[

iP (s)−1
]

= s − m2
h0 + v2(µ2

U )2−dU−
∫

∞

0

(M2)dU−2

M2
U (M2) − s

r(M2)dM2 , (3.7)

where the slash in the integral denotes that its principal value should be taken. An explicit

expression for D(s) can also be obtained analytically from (3.4). Finally,

K2(m2
h) ≡ d

ds
D(s)

∣

∣

∣

∣

s=m2
h

, (3.8)

which in this case reads

K2(m2
h) = 1 + v2(µ2

U )2−dU

∫

∞

0

(M2)dU−2

[

M2
U (M2) − m2

h

]2 r(M2)dM2 . (3.9)

We first notice from Eq. (3.4) that the Higgs mass at tree level is no longer simply given

by m2
h0 but it is shifted by a negative amount by the effect of the coupling to unparticles 2.

In Fig. 2 we plot the pole mass mh as a function of dU for µ2
U = µ2

v, ζ = 1 and compare

it with mh0. In this case we observe that m2
h < m2

gap for all values of dU . On the other

hand, the coupling of the unparticle sector to the Higgs sector, that breaks the conformal

symmetry, results in a modification of the “unparticle part” of the spectral function [the

second term in (3.5)]. It still has no poles but now there is a mass gap, mgap. The shape

of the spectral function (3.5) is shown in Fig. 3, where we have chosen µ2
U = µ2

v, ζ = 1 and

dU = 1.2, and the Higgs masses obtained from Fig. 2 are mh = 115 GeV and mh0 = 130

GeV. All dimensional quantities are made dimensionless by scaling them with ζv2. This

result for the spectral function has some similarities with that introduced in Refs. [4, 7]

although it has been obtained through a different approach and differs from theirs.

Due to this mixing with the unparticles, the Higgs properties will also be affected in

a way similar to the usual singlet mixing [8]. It is straightforward to obtain that the

Higgs-composition of the isolated resonance at mh, call it Rh, is simply

Rh =
1

K(mh)
, (3.10)

2It is easy to prove that the function in the square brackets in (3.4) is positive definite for m
2
h < m

2
gap.
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0.002

0.004

0.006

0.008

0.01

0.012

ζv2 ρ

s/ζv2

Figure 3: Spectral function ρ as a function of s for µ2

U = µ2

v, ζ = 1 and dU = 1.2. All dimensions

are scaled with ζv2.

where Rh = 1 would correspond to a pure SM Higgs with no unparticle admixture. Con-

versely, the unparticle continuum gets the Higgs-composition that the Higgs has lost,

distributed through the M2-dependent function

RU (M2) = −θ(M2 − m2
gap)

QU (M2)

(M2 − m2
h)K(m2

h)
. (3.11)

Note that, unlike Rh, the quantity RU (M2) is a Higgs-component density and therefore

has mass dimension -1. One can check that the following sum rule

R2
h +

∫

∞

0
R2

U (M2) dM2 = 1 , (3.12)

holds. The quantities Rh and RU (M2) play a major role in the phenomenology of Higgs

and unparticles after electroweak symmetry breaking.

2. If m2
h > m2

gap, the delta function for the Higgs pole merges with the unparticle

continuum. Before showing this explicitly, we first notice that the integrand in (3.3)

crosses a pole and the principal value of the integral should be taken. This feature is

exhibited in Fig. 4 where we plot the pole mass mh as a function of dU , for µ2
U = µ2

v

and ζ = 0.2, and compare it with mgap. We see that in the region dU
<∼ 1.4 (dU

>∼ 1.4)

m2
h

>∼m2
gap (m2

h
<∼m2

gap). At the value dU ≃ 1.4 there is a kink in the integral (3.3) because
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Figure 4: Plot of the pole Higgs mass mh (lower curve) and unresummed Higgs mass mh0
(upper

curve) as functions of dU for µ2

U = µ2

v and ζ = 0.2. The straight line is mgap. Masses are in GeV.

the principal value has been taken. The analytical equation for m2
h now reads:

m2
h = m2

h0
− v2(µ2

U )2−dU

m4
h

Γ(dU − 1)Γ(2 − dU ) ×

×
[

(m2
h − ζv2)dU cos(πdU ) + dUm2

h(ζv2)dU−1 − (ζv2)dU

]

. (3.13)

One can also show that it is possible to have a positive shift in the Higgs mass, getting

mh > mh0, for sufficiently large mh/mgap and small enough dU . The sign of the Higgs

mass shift is shown in Fig. 5 where the positive sign corresponds to the region connected

with the lower right corner. The spectral function in this case simply reads

ρ(s) = θ(s − ζv2)
Q2

U (s)

D2(s) + π2Q4
U(s)

, (3.14)

with Q2
U (s) as given in (3.6). Near the Higgs pole one can approximate

D(s) ≃ (s − m2
h)K2(m2

h) , (3.15)

where K2(m2
h) is defined in Eq. (3.8). In this case one should be careful about using

the principal value definition of D(s) to calculate properly its derivative at m2
h. In fact

an analytical expression for K2(m2
h) in this case can be simply obtained by taking the

derivative of (3.13).

The shape of this spectral function is shown in Fig. 6 where we have chosen µ2
U = µ2

v,

ζ = 0.2 and dU = 1.2, and the Higgs masses obtained from Fig. 4 are mh = 240 GeV and

mh0 = 245 GeV. The peak in Fig. 6 is due to the merging of the Higgs with unparticles.
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1.2

1.4

1.6

1.8

2

mh/mgap

dU

Figure 5: Plot of the sign of the shift in the pole Higgs mass m2

h with respect to the SM value

m2

h0
= 2λv2 as a function of mh/mgap and dU . This shift is negative above the line shown and

positive below it.

Inserting (3.15) in the spectral function (3.14) we see that the Higgs resonance has a

Breit-Wigner shape of width

Γh = θ(m2
h − m2

gap)
πQ2

U (m2
h)

mhK2(m2
h)

. (3.16)

This width Γh can be extremely wide (∼ 100 GeV) depending on the parameter choices

and it is plotted as a function of dU in Fig. 7. We can see from Fig. 7 that (as expected)

it is different from zero only in the region where mh > mgap. Needless to say this kind of

effect can dramatically modify the expectations for Higgs searches.

4 Conclusions

In this paper we have investigated the possibility of coupling the Higgs boson to a con-

formal sector of unparticles, of the type recently proposed by Georgi. A first consequence

of that coupling is that electroweak symmetry breaking generates a tadpole for the un-

particles. That tadpole would destabilize the theory in the absence of new interaction

terms that keep the unparticle VEV finite. We have introduced for that purpose a new

interaction between the Higgs and the unparticle sector using a deconstructed version of

the latter.

Having stabilized the unparticle VEV we have a consistent framework in which to

study the mutual influence between the Higgs and the unparticle sectors. We find changes
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Figure 6: Spectral function ρ as a function of s for µ2

U = µ2

v, ζ = 0.2 and dU = 1.2. All dimensions

are scaled with ζv2.

in the properties of the Higgs (like its mass and its width) already at tree level, making

the Higgs and the unparticles a mixed sector. Studying the propagator and the spectral

function of this sector we find that there is a single pole, corresponding to the Higgs,

with the pole mass no longer given just by the SM value, 2λv2. We also find a mass gap

in the formerly continuous spectral function for the unparticles, clearly indicating that

the conformal symmetry has been broken. This was expected from previous work in the

literature but we are able to discuss this breaking explicitly.

When the Higgs mass is greater than the unparticle mass gap, the Higgs can decay

into unparticles and acquires a width which can be, in principle, very large. This can have

dramatic consequences for Higgs searches at the LHC since it will mean that the Higgs

will decay invisibly unless these unparticles are also coupled to the SM sector and have a

sufficiently short decay length. As a last comment we can say that this is another example

of how the Higgs can be the window to new sectors which would be completely hidden to

us otherwise.
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