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Abstract. A new geometrical setting for classical field theories is introduced. This descrip-

tion is strongly inspired in the one due to Skinner and Rusk for singular lagrangians systems.

For a singular field theory a constraint algorithm is developed that gives a final constraint sub-

manifold where a well-defined dynamics exists. The main advantage of this algorithm is that the

second order condition is automatically included.

1. Introduction. The search of a convenient setting for classical field theories has

been an strong motivation for geometers and physicists in the last forty years. In the end

of the sixties it was developed the so-called multisymplectic formalism, which is a natural

extension of the symplectic framework for mechanics.
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The multisymplectic approach was developed by the Polish school led by W. Tulczyjew

(see [3] for more details), and independently by P.L Garćıa and A. Pérez-Rendón [11, 12],

and Goldschmidt and Sternberg [13]. This approach leads to a geometric definition of

multisymplectic form in [16, 17], and more recently in [4, 5] where a careful study of

these structures is developed (see also [26, 27] for previous results, and [2, 24, 28, 29] for

recent developments).

There are two different ways to present the evolution equations in a geometric form.

One uses the notion of Ehresmann connections [22, 23] which is widely employed along

the present paper. The other one uses the notion of multivector field (see [7, 8, 9, 10]).

Of course, both are equivalent, and permit to develop a convenient constraint algorithm

when we are dealing with singular lagrangians.

Alternative geometric approaches based on the so-called n-symplectic geometry (see

[19] for a recent survey), and polysymplectic geometry (see [30, 31]) are also available.

The aim of the present paper is to give a new geometric setting, based in that devel-

oped by Skinner and Rusk [32, 33]. In order to treat with singular lagrangian systems,

Skinner and Rusk have constructed a hamiltonian system on the Withney sum T ∗Q⊕TQ

over the configuration manifold Q. The advantage of their approach lies on the fact that

the second order condition of the dynamics is automatically satisfied. This does not hap-

pen in the Gotay and Nester formulation, where the second order condition problem has

to be considered after the implementation of the constraint algorithm (see [14, 15, 20]).

Here, we start with a lagrangian function defined on Z, where πXZ : Z −→ X

is the 1-jet prolongation of a fibration πXY : Y −→ X . We consider the fibration

πXW0 : W0 −→ X , where W0 = Λn
2Y ×Y Z is the fibered product. On W0 we construct

a multisymplectic form by pulling back the canonical multisymplectic form on Λn
2Y , and

define a convenient hamiltonian. The solutions of the field equations are viewed as inte-

gral sections of Ehresmann connections in the fibration πXZ : Z −→ X . The resultant

algorithm is compared with the ones developed in the lagrangian and hamiltonian sides.

The scheme is applied to an example, the bosonic string. The case of time-dependent

mechanics is recovered as a particular case. The paper also contains three appendices

exhibiting some notions and properties of Ehresmann connections.

2. Lagrangian formalism. A classical field theory consists of a fibration πXY :

Y −→ X (that is, πXY is a surjective submersion) over an orientable n-dimensional

manifold X and an n-form Λ (the lagrangian form) defined on the 1-jet prolongation

πXZ : J1πXY −→ X along the projection πXY . We will use the notation Z = J1πXY . In

addition, if η is a fixed volume form on X we have Λ = Lη, where L is a function on Z. An

additional fiber bundle πY Z : Z −→ Y is also obtained. Here X represents the space-time

manifold, and the fields are viewed as sections of πXY . (See [3, 16, 17, 18, 30, 31]).

Definition 2.1. A lagrangian L : Z −→ R is said to be regular if the hessian matrix
(

∂2L

∂zi
µ∂z

j
ν

)

is regular. Otherwise, L is said to be singular.
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Along this paper we will choose fibered coordinates (xµ, yi, zi
µ) on Z such that η =

dnx = dx1 ∧ . . . ∧ dxn. Here µ runs from 1 to n, and i runs from 1 to m, so that Y has

dimension n+m. A useful notation will be dn−1xµ = i ∂
∂xµ

η.

The volume form η permits to construct a tensor field of type (1, n) on Z:

Sη = (dyi − zi
µdx

µ) ∧ dn−1xν ⊗
∂

∂zi
ν

.

Next, the Poincaré-Cartan n-form and (n+ 1)-form are defined as follows:

ΘL = Λ + S∗
η(dL) , ΩL = −dΘL,

where S∗
η is the adjoint operator of Sη. In coordinates, we have

ΘL = (L− zi
µ

∂L

∂zi
µ

)dnx+
∂L

∂zi
µ

dyi ∧ dn−1xµ

ΩL = −d(L− zi
µ

∂L

∂zi
µ

) ∧ dnx− d(
∂L

∂zi
µ

) ∧ dyi ∧ dn−1xµ.

An extremal of L is a section φ of πXY such that, for any vector ξZ on Z,

(j1φ)∗(iξZ
ΩL) = 0(1)

where j1φ is the first jet prolongation of φ.

As is well-known, φ is an extremal of L if and only if it satisfies the Euler-Lagrange

equations:

(j1φ)∗
(
∂L

∂yi
−

d

dxµ

(
∂L

∂zi
µ

))
= 0, 1 ≤ i ≤ n.(2)

We can consider a more general kind of solutions, those sections ψ of the fiber bundle

πXZ : Z −→ X such that

ψ∗(iξZ
ΩL) = 0 ,(3)

for any vector ξZ on Z. Equation (3) is referred as the de Donder equations.

Looking at (3) we have an alternative characterization. Let Γ be an Ehresmann con-

nection in πXZ : Z −→ X , with horizontal projector h. Consider the equation

ihΩL = (n− 1)ΩL.(4)

The horizontal sections (if they exist) of Γ are just the solutions of the de Donder problem.

Indeed, if

h(
∂

∂xµ
) =

∂

∂xµ
+ Γi

µ

∂

∂yi
+ Γi

νµ

∂

∂zi
ν

then a direct computation shows that equation (4) holds if and only if

(Γj
ν − zj

ν)

(
∂2L

∂zi
µ∂z

j
ν

)
= 0(5)

∂L

∂yi
−

∂2L

∂xµ∂zi
µ

− Γj
µ

∂2L

∂yj∂zi
µ

− Γj
µν

∂2L

∂zj
ν∂zi

µ

+ (Γj
ν − zj

ν)
∂2L

∂yi∂zj
ν

= 0(6)

(see [22]).
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If the lagrangian L is regular, then Eq. (5) implies that Γi
µ = zi

µ and therefore (6)

becomes
∂L

∂yi
−

∂2L

∂xµ∂zi
µ

− zj
µ

∂2L

∂yj∂zi
µ

− Γj
µν

∂2L

∂zj
ν∂zi

µ

= 0.(7)

Now, if τ(xµ) = (xµ, τ i(x), τ i
µ(x)) is an integral section of Γ we would have

zi
µ =

∂τ i

∂xµ
Γi

µν =
∂τ i

µ

∂xν

which proves that Eq. (7) is nothing but the Euler-Lagrange equations for L.

If the lagrangian L is regular, then every solution ψ of the de Donder equations (3)

is automatically a 1-jet prolongation, say ψ = j1φ and the section φ of πXY is a solution

of equations (1).

In terms of Ehresmann connections, if L is regular, then any solution Γ of equations

(4) is semi-holonomic (see Appendix B).

3. Hamiltonian formulation. Let Λn
rY , 1 ≤ r ≤ m, be the subbundle of the bundle

ΛnY of n-forms on Y consisting of those n-forms which vanish when r of their arguments

are vertical. We have a chain of vector bundles over Y :

0 ⊂ Λn
1Y ⊂ Λn

2Y ⊂ · · · ⊂ ΛnY

The elements of Λn
1Y (resp. Λn

2Y ) are locally expressed as p(x, y)dnx (resp. pdnx +

pµ
i dy

i ∧ dn−1xµ). Thus, we introduce local coordinates (xµ, yi, p) on the manifold Λn
1Y ,

and (xµ, yi, p, pµ
i ) on Λn

2Y .

The manifold ΛnY carries a canonical n-form, Θ0, which is defined as follows:

Θ0(ω)(ξ1, ξ2, . . . , ξn) = ω(ν(ω))(ν∗(ξ1), ν∗(ξ2), . . . , ν∗(ξn))

where ω ∈ ΛnY , ξi ∈ Tω(ΛnY ), and ν : ΛnY −→ Y is the canonical projection.

This form Θ0 induces an n-form on Θr on Λn
rY , for each r, 1 ≤ r ≤ m.

The closed (n+1)-forms Ωr = −dΘr (and of course, Ω0 = −dΘ0) are examples of the

so-called multisymplectic forms according the following definition.

Definition 3.1. A multisymplectic form on a manifold M is a closed k-form Ω on M

such that the linear mapping v ∈ TxM −→ ivΩ ∈ Λk−1T ∗
xM is injective for all x ∈ M .

The manifold M equipped with a multisymplectic form Ω will be called a multisym-

plectic manifold, usually denoted by the pair (M,Ω). Two multisymplectic manifolds

(M,Ω) and (M̄, Ω̄) will be said multisymplectomorphic if there exists a diffeomorphism

φ : M −→ M̄ preserving the multisymplectic forms, say φ∗Ω̄ = Ω; φ will be called a

multisymplectomorphism.

Remark 3.2. It will be useful to write the local expressions of the canonical multi-

symplectic forms on Λn
2Y :

Θ2 = pdnx+ pµ
i dy

i ∧ dn−1xµ, Ω2 = −dp ∧ dnx− dpµ
i ∧ dyi ∧ dn−1xµ.

A direct computation shows the following.

Proposition 3.3. Assume that n ≥ 2. Then, a lagrangian L is regular if and only if

the pair (Z,ΩL) is a multisymplectic manifold.
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Since Λn
1Y is a vector subbundle of Λn

2Y we can construct the quotient vector bundle

Λn
2Y/Λ

n
1Y which will we denoted by Z∗. The projection Λn

2Y −→ Z∗ will we denoted by

λ. We also have a fibration πXZ∗ : Z∗ −→ X .

In this context, a hamiltonian h is a section of λ. Using this hamiltonian we define

an n-form Θh on Z∗ by pulling back the canonical n-form Θ2, i.e. Θh = h∗Θ2. We put

Ωh = −dΘh so that Ωh = h∗Ω2.

A section σ of πXZ∗ : Z∗ −→ X is said to satisfy the Hamilton equations for a given

hamiltonian h if

σ∗(iξZ∗ Ωh) = 0 ,(8)

for all vector fields ξZ∗ on Z∗.

In local coordinates (xµ, yi, pµ
i ) for Z∗, the section h may be represented by a local

function H :

p = −H(xµ, yi, pµ
i )

then

Θh = −Hdnx+ pµ
i dy

i ∧ dn−1xµ, Ωh = dH ∧ dnx− dpµ
i ∧ dyi ∧ dn−1xµ,(9)

and the Hamilton equations for a section σ become:

∂yi

∂xµ
=
∂H

∂pµ
i

,
∂pµ

i

∂xµ
= −

∂H

∂yi
.(10)

As in the precedent section, we can consider a connection Γ̃ in πXZ∗ : Z∗ −→ X , with

horizontal projector h̃. An intrinsic version of equations (10) is then the following:

i
h̃
Ωh = (n− 1)Ωh.(11)

Indeed, if Γ̃ is flat, then its integral sections are solutions of the Hamilton equations.

Remark 3.4. If n ≥ 2 then, from (9), it follows that Ωh is a multisymplectic form

on Z∗.

4. The Legendre transformation. Let L be a lagrangian function. We define a

fiber preserving map

legL : Z −→ Λn
2Y

as follows:

legL(j1xφ)(X1, . . . , Xn) = (ΘL)j1
xφ(X̃1, . . . , X̃n)

for all j1xφ ∈ Z and Xi ∈ Tφ(x)Y , where X̃i ∈ Tj1
xφZ are such that (πY Z)∗(X̃i) = Xi.

In local coordinates, we have

legL(xµ, yi, zi
µ) = (xµ, yi, p = L− zi

µ

∂L

∂zi
µ

, pµ
i =

∂L

∂zi
µ

).

The Legendre transformation LegL : Z −→ Z∗ is defined as the composition LegL =

λ ◦ legL, and it is locally expressed as

LegL(xµ, yi, zi
µ) = (xµ, yi,

∂L

∂zi
µ

).(12)

¿From the definitions, we deduce that (legL)∗Θ2 = ΘL and (LegL)∗Ω2 = ΩL.
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Proposition 4.1. The lagrangian L is regular if and only if the Legendre transfor-

mation LegL : Z −→ Z∗ is a local diffeomorphism.

The Legendre transformation permits to connect the lagrangian and hamiltonian de-

scriptions as follows.

Assume the lagrangian L be hyper-regular, that is, LegL : Z −→ Z∗ is a global

diffeomorphism. We define a hamiltonian section h : Z∗ −→ Λn
2Y by setting

h = legL ◦ (LegL)−1.

Then, from (12) it follows that

Leg∗LΘh = ΘL, Leg∗LΩh = ΩL.

Therefore, the solutions of equations (3) and (8) are LegL-related. In terms of connections,

the solutions of equations (4) and (11) are also LegL-related.

If the lagrangian is regular, the equivalence is only at local level. More precisely, if

n ≥ 2, we have that LegL is a local multisymplectomorphism between the multisymplectic

manifolds (Z,ΩL) and (Z∗,Ωh).

For singular lagrangians, a constraint algorithm was developed in [22] (see Section 6).

5. A new geometric setting. Consider the fibered product W0 = Λn
2Y ×Y Z with

canonical projections pr1 : W0 −→ Λn
2Y and pr2 : W0 −→ Z. We consider fibered

coordinates (xµ, yi, p, pµ
i , z

i
µ) on W0.

Define the n-form Θ = pr∗1Θ2 and the (n+ 1)-form Ω = −dΘ = pr∗1Ω2.

We also define a function Φ : W0 −→ R as follows. Take an element (ωφ(x), j
1
xφ) ∈W0,

then Φ((ωφ(x), j
1
xφ)) = a(x), where

φ∗(ωφ(x)) = a(x)η(x).

Locally, we have

Φ(xµ, yi, p, pµ
i , z

i
µ) = p+ pµ

i z
i
µ.

Define also the function H0 : W0 −→ R by setting

H0 = Φ − pr∗2L.

The function H0 locally reads as

H0(x
µ, yi, p, pµ

i , z
i
µ) = p+ pµ

i z
i
µ − L(xµ, yi, zi

µ).

Put

ΩH0 = Ω + dH0 ∧ η.

In local coordinates we have

ΩH0 = −dp ∧ dnx− dpµ
i ∧ dyi ∧ dn−1xµ + dH0 ∧ d

nx.

Let Γ̄ be an Ehresmann connection in the fibered bundle πXW0 : W0 −→ X , with hori-

zontal projector h̄.

We search for a solution of the equation:

i ¯hΩH0 = (n− 1)ΩH0 .(13)
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Define

W1 = {u ∈ W0 / ∃h̄u : TuW0 −→ TuW0 linear such that h̄
2
u = h̄u,

ker h̄u = (V πXW0 )u, i ¯hu
ΩH0(u) = (n− 1)ΩH0(u)}.

Suppose that the local expression of h̄ is

h̄(
∂

∂xµ
) =

∂

∂xµ
+Ai

µ

∂

∂yi
+Bµ

∂

∂p
+ Cν

µi

∂

∂pν
i

+Di
µν

∂

∂zi
ν

h̄(
∂

∂yi
) = 0, h̄(

∂

∂p
) = 0

h̄(
∂

∂pµ
i

) = 0, h̄(
∂

∂zi
µ

) = 0

We then obtain

i ¯hΩH0 = i ¯h

(
−dp ∧ dnx− dpµ

i ∧ dyi ∧ dn−1xµ + dH0 ∧ d
nx
)

= (n− 1)ΩH0 +

(
Cµ

µi −
∂L

∂yi

)
dyi ∧ dnx

+
(
zi

µ −Ai
µ

)
dpµ

i ∧ dnx+

(
pµ

i −
∂L

∂zi
µ

)
dzi

µ ∧ dnx

Therefore, the submanifoldW1 ofW0 is determined by the vanishing of the constraints:

pµ
i −

∂L

∂zi
µ

= 0,

and the components of the connection h̄ would verify the following relations:

Ai
µ = zi

µ(14)

Cµ
µi =

∂L

∂yi
(15)

¿From the definition of W1 we know that for each point u ∈ W1 there exists a “hor-

izontal projector” h̄u : TuW0 −→ TuW0 satisfying equation (13). However, we can not

ensure that such h̄u, for each u ∈W1 will take values in TuW1.

But notice that the condition h̄u(TuW0) ⊂ TuW1, ∀u ∈ W1 is equivalent to have

h̄(
∂

∂xµ
)

(
pκ

j −
∂L

∂zj
κ

)
= 0

or, equivalently,

Cκ
µj =

∂2L

∂zj
κ∂xµ

+ zi
µ

∂2L

∂zj
κ∂yi

+Di
µν

∂2L

∂zj
κ∂zi

ν

.(16)

We remark that if the lagrangian L is regular, then equations (16) have solutions D’s

for a particular choice of C’s satisfying equations (15). Of course, we can take arbitrary

values for the B’s. A global solution is obtained using partitions of the unity.

In such a case, we obtain by restriction a connection Γ̄ in the fibre bundle πXW1 :

W1 −→ X , which is a solution of equation (13) when it is restricted toW1 (in fact, we have

a family of such solutions). Assume that Γ̄ is flat, and ψ̄ is a horizontal section of Γ̄. First
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of all, notice that ψ̄ takes values in W1 which implies that ψ = pr2◦ψ̄ is a jet prolongation.

Let us explain better this assertion. If ψ̄(xµ) = (xµ, yi(x), p(x), pµ
i (x), zi

µ(x)) then we have

zi
µ(x) =

∂yi

∂xµ
.

Since

Di
µν =

∂zi
ν

∂xµ

we deduce that along ψ we have

∂L

∂yj
−

∂2L

∂zj
µ∂xµ

−
∂yi

∂xµ

∂2L

∂zj
µ∂yi

−
∂zi

ν

∂xµ

∂2L

∂zj
µ∂zi

ν

= 0

that is,

∂L

∂yj
−

d

dxµ

(
∂L

∂zj
µ

)
= 0

which are the Euler-Lagrange equations for L.

Up to now, we have no assigned any meaning to the coordinate p. Consider the

submanifold W̄1 of W1 defined by the equation H0 = 0. In other words, W̄1 is locally

characterized by the equation

p = −(pµ
i z

i
µ − L),

which defines a local energy.

We can ask when a solution exists on W̄1. Indeed, it is possible to construct a family

of connections in the fibre bundle πXW̄1
: W̄1 −→ X which solve equation (13) as follows.

We have to choose coefficients Bµ, Cν
µi, and Di

µν verifying (15) and (16), and in

addition,

h̄(
∂

∂xµ
)(H0) = 0.(17)

A direct computation shows that (17) is equivalent to the following local conditions

Bµ + Cν
µiz

i
ν =

∂L

∂xµ
+ zi

µ

∂L

∂yi
.(18)

Now, if we choose appropriate values for Cν
µi satisfying (15) and (16), then we can take the

values for Bµ given by equation (18). A global solution is finally obtained using partitions

of the unity.

Denote by ΩW̄1
the restriction of ΩH0 to W̄1.

Proposition 5.1. If n ≥ 2 and the Lagrangian L is regular then ΩW̄1
is a multisym-

plectic form.

Proof.

The result follows from a direct computation taking into account that on W1 we have

pµ
i =

∂L

∂zi
µ
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and that the hessian matrix (
∂2L

∂zi
µ∂z

j
ν

)

is regular.

Next, we shall relate the above construction with the precedent ones on the lagrangian

and the hamiltonian sides.

First of all, the following results are quite obvious:

• The submanifold W̄1 is diffeomorphic to Z.

• If n ≥ 2 and L is (hyper)regular, then the multisymplectic manifolds (W̄1,ΩW̄1
),

(Z,ΩL) and (Z∗,Ωh) are (globally) locally multisymplectomorphic. Indeed, the cor-

responding multisymplectomorphisms are the following ones:

(pr2)|W̄1
: W̄1 −→ Z

LegL : Z −→ Z∗

LegL ◦ (pr2)|W̄1
: W̄1 −→ Z∗

(Note that λ ◦ (pr1)|W̄1
= LegL ◦ (pr2)|W̄1

).

• As a consequence, one can choose connections h, h̃ and h̄ in the fibrations πXZ :

Z −→ X , πXZ∗ : Z∗ −→ X , and πXW̄1
: W̄1 −→ X , respectively, such that they

are solutions of equations (4), (11) and (13), respectively, and, in addition, they are

related by the above multisymplectomorphisms.

The following diagram summarizes the above discussion:

W0 = Λn
2Y ×Y Z

�������)

PPPPPPPq
Z Λn

2Y

pr2 pr1

W1

W̄1

Y

X

�
�>

HHHHY

XXXXXXXXXXy

�
��/

?

HHHHHHHHj Z∗

Q
Q

Q
Qs�������9

@
@

@
@

@
@

@
@@R

����������

πXZ

?
πXY πXZ∗

6. Singular lagrangians. For a singular lagrangian L, we usually have to go further

in the constraint algorithm. Therefore, we will consider a subset W̄2 defined in order to

satisfy the tangency condition:

W̄2 = {u ∈ W̄1 / ∃h̄u : TuW0 −→ TuW̄1 linear such that h̄
2
u = h̄u,

ker h̄u = (V πXW0 )u, i ¯hu
ΩH0(u) = (n− 1)ΩH0(u)}.
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Assume that W̄2 is a submanifold of W̄1. If h̄u(TuW0) is not contained in TuW̄2, we go

to the third step, and so on.

At the end, and if the system has solutions, we will find a final constraint submanifold

W̄f , fibered over X (or over some open subset of X) (see Appendix C) and a connection

Γ̄f in this fibration such that Γ̄f is a solution of equation (13) restricted to W̄f .

Similar constraint algorithms can be developed using equations (4) and (11). Our

purpose in the following is to relate these three algorithms.

Indeed, we can consider the subset

Z2 = {z ∈ Z / ∃hz : TzZ −→ TzZ linear such that h2
z = hz,

kerhz = (V πXZ)z , ihz
ΩL(z) = (n− 1)ΩL(z)}.

If Z2 is a submanifold, then there are solutions but we have to include the tangency

condition, and consider a new step:

Z3 = {z ∈ Z2 / ∃hz : TzZ −→ TzZ2 linear such that h2
z = hz,

kerhz = (V πXZ)z, ihz
ΩL(z) = (n− 1)ΩL(z)}.

If Z3 is a submanifold of Z2, but hz(TzZ) is not contained in TzZ3, we go to the third step,

and so on. Finally, we will obtain (in the favorable cases) a final constraint submanifold

Zf and a connection in the fibration πXZ : Z −→ X along the submanifold Zf (in fact,

a family of connections) with horizontal projector h which is a solution of equation (4).

There is an additional problem, since our connection would be a solution of the de

Donder problem, but not a solution of the Euler-Lagrange equations. This problem is

solved constructing a submanifold of Zf where such a solution exists (see [22, 23] and

below for more details).

To develop a hamiltonian counterpart, we need some weak regularity of the lagrangian

L.

Definition 6. 1. A lagrangian L : Z −→ R is said to be almost regular if legL(Z) = Z̃

is a submanifold of Λn
2Y , and legL : Z −→ Z̃ is a submersion with connected fibers.

If L is almost regular, one has:

• Z̃1 = LegL(Z) is a submanifold of Z∗, and in addition, a fibration over X .

• The restriction λ1 : Z̃ −→ Z̃1 of λ is a diffeomorphism.

• The mapping Leg1 : Z −→ Z̃1 is a submersion with connected fibers.

Define a mapping h1 = (λ1)
−1 : Z̃1 −→ Z̃, and a (n + 1)-form Ω̃1 on Z̃1 by Ω̃1 =

h∗1((Ω2)|
Z̃
). Obviously, we have Leg∗1Ω̃1 = ΩL.

The hamiltonian description is now based in the equation

i ˜h
Ω̃1 = (n− 1)Ω̃1(19)

where h̃ is a connection in the fibration πXZ̃1
: Z̃1 −→ X .

Proceeding as above, we construct a constraint algorithm as follows.

First, we define

Z̃2 = {z̃ ∈ Z̃1 / ∃h̃z̃ : Tz̃Z̃1 −→ Tz̃Z̃1 linear such that h̃
2

z̃ = h̃z̃,



A NEW GEOMETRIC SETTING FOR CLASSICAL FIELD THEORIES 11

ker h̃z̃ = (V πXZ̃1
)z̃, i ˜hz̃

Ω̃1(z̃) = (n− 1)Ω̃1(z̃)}.

If Z̃2 is a submanifold, then there are solutions but we have to include the tangency

condition, and consider a new step:

Z̃3 = {z̃ ∈ Z̃2 / ∃h̃z̃ : Tz̃Z̃1 −→ Tz̃Z̃2 linear such that h̃
2

z̃ = h̃z̃,

ker h̃z̃ = (V πXZ̃1
)z̃, i ˜hz̃

Ω̃1(z̃) = (n− 1)Ω̃1(z̃)}.

If Z̃3 is a submanifold of Z̃2, but h̃z̃(Tz̃Z̃1) is not contained in Tz̃Z̃3, we go to the third step,

and so on. Finally, we will obtain (in the favorable cases) a final constraint submanifold

Z̃f and a connection in the fibration πXZ̃1
: Z̃1 −→ X along the submanifold Z̃f (in fact,

a family of connections) with horizontal projector h̃ which is a solution of equation (11).

The important facts are the following:

• The mapping Leg1 : Z −→ Z̃1 preserves the constraint algorithms, that is, we have

Leg1(Zr) = Z̃r for each integer r ≥ 2.

• In consequence, both algorithms have the same behavior; in particular, if one of

them stabilizes, the same happens with the other, and at the same step, so we have

Leg1(Zf ) = Z̃f .

• In the latter case, the restriction Legf : Zf −→ Z̃f is a surjective submersion (that

is, a fibration) and Leg−1
f (Legf(z)) = Leg−1

1 (Leg1(z)), for all z ∈ Zf .

Therefore, the lagrangian and hamiltonian sides can be compared through the fibra-

tion Legf : Zf −→ Z̃f . Indeed, if we have a connection in the fibration πXZ : Z −→ X

along the submanifold Zf with horizontal projector h which is a solution of equation (4)

(the de Donder equation) and, in addition, the connection is projectable via Legf to a

connection in the fibration πXZ̃ : Z̃ −→ X along the submanifold Z̃f , then the horizon-

tal projector of the projected connection is a solution of equation (11) (the Hamilton

equations). Conversely, given a connection in the fibration πXZ̃ : Z̃ −→ X along the

submanifold Z̃f , with horizontal projector h̃ which is a solution of equation (11), then

every connection in the fibration πXZ : Z −→ X along the submanifold Zf that projects

onto h̃ is a solution of the de Donder equation (4).

Assume that L is almost regular and construct the above algorithms. Take a Legf -

projectable connection Γ in the fibration πXZ : Z −→ X along the submanifold Zf with

horizontal projector h which is a solution of equation (4), and denote by Γ̃ its projection.

As we have shown, the horizontal projector h̃ is a solution of equation (11).

In general, Γ is not semi-holonomic, that is, Sη(h, . . . ,h) 6≡ 0 along Zf . However, we

can define a section β of the fibration LegL : Zf −→ Z̃f such that

(Sη(h, . . . ,h))|β(Z̃f )
= 0.

The construction of β is based in the following interpretation of the elements of Z.

Take z ∈ Z, that is, z is a 1-jet of a section φ of the fibration πXY : Y −→ X . Since

Hφ(x) = Tφ(x)(TxX) is a horizontal subspace of Tφ(x)Y , for every x ∈ X (in fact, in the

domain of φ) we can identify z with this horizontal subspace, which in local coordinates

means that if z = (xµ, yi, zi
µ), then Hφ(x) is spanned by the tangent vectors

∂

∂xµ
+ zi

µ

∂

∂yi
.
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With the above notations and the obvious identifications, we define

β(z̃) = TπY Z(h(Tz0Z)),(20)

where z0 ∈ Zf is an arbitrary point projecting onto z̃ through the projection Legf :

Zf −→ Z̃f .

We have:

• β(z̃) is independent of the choice of z0. This is a consequence of the following two

facts: h projects onto h̃, and the relation πXZ∗ ◦ Legf = πXZ .

• The point β(z̃) belongs to Zf . Indeed, consider the following local vector field

U = (Γi
µ − zi

µ)
∂

∂zi
µ

,

where Γi
µ are the Christoffel components of Γ, that is

h(
∂

∂xµ
) =

∂

∂xµ
+ Γi

µ

∂

∂yi
+ Γi

µν

∂

∂zi
ν

.

Since Γ is Legf -projectable, then Γi
µ is constant along the fibre over z̃.

¿From (5) and (12), we deduce that U is a vertical vector field with respect to the

fibration Legf : Zf −→ Z̃f , and in consequence it is tangent to the fibre over z̃.

Consider the curve

α(t) = ((xµ)0, (y
i)0, (Γ

i
µ)0 − exp(−t)((Γi

µ)0 − (zi
µ)0)),

where ((xµ)0, (y
i)0, (z

i
µ)0) are the coordinates of z0, and (Γi

µ)0 are the values of

Γi
µ at the point z0 (in fact, along all the fibre). α(t) is an integral curve of U

passing through z0 and totally contained in the fibre over z̃. Thus, the limit point

limt→+∞ α(t) is in this fibre, and a direct computation shows that limt→+∞ α(t) =

β(z̃).

• Now, it is obvious that Γ is semiholonomic at the point β(z̃).

Since β is a section, we deduce that β(Z̃f ) is a submanifold of Zf and hence of Z. In

addition, (Legf)|β(Z̃f )
: β(Z̃f ) −→ Z̃f is a diffeomorphism.

Next, we define a connection Γs in the fibration πXZ : Z −→ X along β(Z̃f ) as

follows.

Its horizontal projector is given by

(hs)z : TzZ −→ Tzβ(Z̃f ), (hs)z = (T (Legf)|β(Z̃f )
(z))−1 ◦ h̃z̃ ◦ TLegf(z),

for all z ∈ β(Z̃f ), where z = β(z̃). A straightforward computation shows that Γs is a

solution of (4) and, in addition, is transported onto Γ̃ via the diffeomorphism (LegL)|β(Z̃f )
:

β(Z̃f ) −→ Z̃f . Thus, since Γ is semiholonomic along β(Z̃f ), we deduce that Γs is also

semiholonomic along β(Z̃f ).

Next, we will relate the above constructions with the algorithm developed from equa-

tion (13).

To do that, we first develop an alternative constraint algorithm based in the following

equation
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i ˆh
ΩW̄1

= (n− 1)ΩW̄1
,(21)

where ΩW̄1
is the restriction of ΩH0 to W̄1, and ĥ is the horizontal projector of a connec-

tion Γ̂ in the fibration πXW̄1
= (πXW0 )|W̄1

: W̄1 −→ X .

The algorithm proceed now as in the above cases, and it produces a chain of subman-

ifolds (in the favorable cases). Indeed, we define

Ŵ2 = {u ∈ W̄1 / ∃ĥu : TuW̄1 −→ TuW̄1 linear such that ĥ
2

u = ĥu,

ker ĥu = (V πXW̄1
)u, i ˆhu

ΩW̄1
(u) = (n− 1)ΩW̄1

(u)}.

If we assume that Ŵ2 is a submanifold of W̄1, since in general ĥu(TuW̄1) is not contained

in TuŴ2, we go to the third step, and so on.

At the end, and if the system has solutions, we will find a final constraint submanifold

Ŵf , fibered over X (or over some open subset of X) (see Appendix C) and a connection

Γ̂f in this fibration such that Γ̂f is a solution of equation (21) restricted to Ŵf .

It should be noticed that W̄r ⊂ Ŵr, for all integer r ≥ 2. Indeed, any pointwise solution

of equation (13) is a solution of equation (21). As a consequence, both algorithms have

the same behavior.

This last algorithm can be compared with the lagrangian and hamiltonian ones. In

fact, since

p̃r∗2ΩL = ΩW̄1
, (p̃r1)

∗Ω̃1 = ΩW̄1
,

where p̃r1 = λ1 ◦ (pr1)|W̄1
and p̃r2 = (pr2)|W̄1

, we have

p̃r1(Ŵr) = Z̃r, p̃r2(Ŵr) = Zr,

for all r ≥ 2, and a fortiori we deduce that all the algorithms have the same behavior

and

p̃r1(Ŵf ) = Z̃f , p̃r2(Ŵf ) = Zf .

Thus, the corresponding solutions can be related via the convenient projections. More

precisely, we can construct a connection Γ (resp. Γ̃, Γ̂) in the fibration πXZ : Z −→ X

(resp. πXZ̃1
: Z̃1 −→ X , πXW̄1

: W̄1 −→ X) along the submanifold Zf (resp. Z̃f , Ŵf )

such that they are related by the projections Legf , p̃r1 and p̃r2.

In addition, the connection Γ can be chosen such that its restriction to W̄f is a

solution of equation (13). Making all these selections, and performing the construction

of the section β we conclude that β(Z̃f ) ⊂ W̄f .

The following diagram summarizes the above discussion:
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Remark 6.2. According to Appendix C, one has that all the connections considered

in this section define bona fide connections in the corresponding restricted fibrations

πX0Zf
: Zf −→ X0,

πX0Z̃f
: Z̃f −→ X0,

πX0W̄f
: W̄f −→ X0,

πX0Ŵf
: Ŵf −→ X0,

where X0 is an open submanifold of X .

7. Example: The bosonic string (See [1, 16]) Let X be a 2-dimensional manifold,

and (B, g) a d + 1-dimensional spacetime manifold endowed with a Lorentz metric g of

signature (−,+, . . . ,+). A bosonic string is a map φ : X −→ B.

In the following, we will follow the Polyakov approach to classical bosonic string

theory. Let S1,1
2 (X) be the bundle overX of symmetric 2-covariant tensors with signature

(−,+) or (1, 1). We take the vector bundle π : Y = X×B×S1,1
2 (X) −→ X . Therefore, in

this formulation, a field ψ is a section (φ, h) of the vector bundle Y = X×B×S1,1
2 (X) −→

X , where φ : X −→ Y is the bosonic string and h is a Lorentz metric on X .

Lagrangian description

We have that Z = J1(X × B) ×X J1(S1,1
2 (X)). Taking coordinates (xµ), (yi) and

(xµ, hµη) on X , B and S1,1
2 (X) then the canonical local coordinates on Z are (xµ, yi, hηξ,
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yi
µ, hηξµ). In this system of local coordinates, the Lagrangian density is given by

Λ = −
1

2

√
− det(h)hηξgijy

i
ηy

j
ξd

2x .

The Cartan 3-form is

ΩL = dyi ∧ d
(
−
√
− det(h)hηξgijy

j
ξ

)
∧ d1xη

−d

(
1

2

√
− det(h)hηξgijy

i
ηy

j
ξ

)
∧ d2x

= −
1

2

(
∂
√
− det(h)

∂hρσ

hηξgijy
i
ηy

j
ξ −

√
− det(h)hηρhξσgijy

i
ηy

j
ξ

)
dhρσ ∧ d2x

−
1

2

√
− det(h)hηξ ∂gij

∂yk
yi

ηy
j
ξ dy

k ∧ d2x−
√
− det(h)hηξgijy

i
η dy

j
ξ ∧ d

2x

+

(
∂
√
− det(h)

∂hρσ

hηξgijy
j
ξ −

√
− det(h)hηρhξσgijy

j
ξ

)
dhρσ ∧ dyi ∧ d1xη

+
√
− det(h)hηξ ∂gij

∂yk
yj

ξ dy
k ∧ dyi ∧ d1xη

+
√
− det(h)hηξgij dy

j
ξ ∧ dy

i ∧ d1xη.

If we solve the equation ihΩL = ΩL, where

h = dxµ ⊗

(
∂

∂xµ
+ Γi

µ

∂

∂yi
+ γηξµ

∂

∂hηξ

+ Γi
ηµ

∂

∂yi
η

+ γηξρµ

∂

∂hηξρ

)
,

we obtain that:

Γi
µ = yi

µ

0 =
1

2

√
− det(h)hηξ ∂gij

∂yk
yi

ηy
j
ξ −

√
− det(h)hηξ ∂gkj

∂yi
yi

ηy
j
ξ −

√
− det(h)hηξgkjΓ

j
ξη

−

(
∂
√
− det(h)

∂hρσ

hηξgkjy
j
ξ −

√
− det(h)hηρhξσgkjy

j
ξ

)
γρση ,

and the constraints are given by the equations

∂

∂hρθ

(√
− det(h)hηξ

)
gijy

i
ηy

j
ξ = 0 .

The previous equation corresponds to the three following constraints
[
hη0hξ0(h2

01 − h00h11) +
1

2
hηξh11

]
gijy

i
ηy

j
ξ = 0

[
hη1hξ1(h2

01 − h00h11) +
1

2
hηξh00

]
gijy

i
ηy

j
ξ = 0

[
hη0hξ1(h2

01 − h00h11) − hηξh01

]
gijy

i
ηy

j
ξ = 0

which determine Z2.
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Hamiltonian description

The Legendre transformation is given by

LegL(xµ, yi, hηξ, y
i
µ, hηξµ) = (xµ, yi, hηξ,−

√
− det(h)hµηgijy

j
η, 0)

Therefore, the Lagrangian L is almost-regular and, moreover, Z̃1 = Im LegL
∼= Z̃ =

legL(Z) ∼= J1(X × B) ×X S1,1
2 (X). Take now coordinates (xµ, yi, hηξ, p

µ
i ) on Z̃1 and

consider the mapping h1 : Z̃1 → Z̃ given by

h1(x
µ, yi, hηξ, p

µ
i ) = (xµ, yi, hηξ, p =

1

2
√
− det(h)

hηξg
ijpi

ηp
j
ξ, p

µ
i )

Then, we have

Ω̃1 = −d

(
1

2
√
− det(h)

hηξg
ijpη

i p
ξ
j

)
∧ d2x+ dyi ∧ dpµ

i ∧ d1xµ

and the Hamilton equations are given by i
h̃
Ω̃1 = Ω̃1

h̃ = dxµ ⊗

(
∂

∂xµ
+ Γ̃i

µ

∂

∂yi
+ γ̃ηξµ

∂

∂hηξ

+ Γ̃η
iµ

∂

∂pη
i

)

Solving the above equation, we obtain

Γ̃i
µ = −

1√
− det(h)

hηµg
ijpη

j

Γ̃µ
iµ =

1

2
√
− det(h)

hηξ

∂gij

∂yk
pi

ηp
j
ξ ,

and the secondary constraints

gij

√
− det(h)

(
1

2 det(h)

∂ det(h)

∂hρσ

hηξp
η
i p

ξ
j − pρ

i p
σ
j

)
= 0

determining Z̃2.

The new geometrical setting

We have that W0 = Λ2
2Y ×Y Z with fibered coordinates

(xµ, yi, hηξ, p, p
µ
i , q

ηξµ, yi
µ, hηξµ).

Therefore,

H0 = p+ pµ
i y

i
µ + qηξµhηξµ +

1

2

√
− det(h)hηξgijy

i
ηy

j
ξ ,

ΩH0 = −dp ∧ d2x− dpµ
i ∧ dyi ∧ d1xµ − dqηξµ ∧ dhηξ ∧ d

1xµ + dH0 ∧ d
2x.

Consider now an Ehresmann connection in the fibered manifold πXW0 : W0 −→ X with

horizontal projector:

h̄ = dxµ ⊗

(
∂

∂xµ
+Ai

µ

∂

∂yi
+Aηξµ

∂

∂hηξ

+Bµ

∂

∂p
+ Cη

µi

∂

∂pη
i

+ Cηξσµ

∂

∂qηξσ

+Di
ηµ

∂

∂yi
η

+Dηξσµ ∂

∂hηξσ

)



A NEW GEOMETRIC SETTING FOR CLASSICAL FIELD THEORIES 17

Solving ih̄ΩH0 = ΩH0 we obtain that the submanifold W1 is determined by the con-

straints:

pµ
i = −

√
− det(h)hµηgijy

j
η

qηξµ = 0

Let W̄1 be the submanifold of W1 defined by the equation H0 = 0, that is

p =
1

2

√
− det(h)hηξgijy

i
ηy

j
ξ.

W̄1 is locally defined by coordinates (xµ, yi, hηξ, y
i
µ, hηξµ).

In this coordinates, the solutions of equation (21) are exactly the same than the ones

obtained in the lagrangian setting, and Ŵ2, as a submanifold of W0, is determined by

the vanishing of the constraints functions

pµ
i +

√
− det(h)hµηgijy

j
η = 0

qηξµ = 0

p−
1

2

√
− det(h)hηξgijy

i
ηy

j
ξ = 0

∂
√
− det(h)

∂hρσ

hηξgijy
i
ηy

j
ξ −

√
− det(h)hηρhξσgijy

i
ηy

j
ξ = 0

It is easy to show that W̄2 = Ŵ2 and the solutions of equation (13) are the solutions of

equation (21) which, in addition, are semi-holonomic.

8. Time-dependent mechanics. The jet bundle description of time-dependent me-

chanical systems takes X = R and η = dt, where t is the usual coordinate on R (see, for

instance, [21]).

If L : Z −→ R is a lagrangian function, ΩL is the Poincaré-Cartan 2-form on Z and

ηZ is the 1-form on Z defined by ηZ = (π
RZ

)∗(η), then the de Donder equation (4) can

be written as

iξZ
ΩL = 0, iξZ

ηZ = 1,(22)

where ξZ is a vector field on Z. The integral curves of ξZ are the solutions of the de

Donder problem.

The lagrangian function L is regular if and only if the pair (ΩL, ηZ) is a cosymplectic

structure on Z. We recall that a cosymplectic structure on a manifoldM of odd dimension

2n+1 is a pair which consists of a closed 2-form Ω and a closed 1-form η such that η∧Ωn

is a volume form.

If L is regular then there exists a unique vector field ξZ which satisfies (22). In fact,

ξZ is the Reeb vector field of the cosymplectic structure (ΩL, ηZ) and it is a second order

differential equation, that is, SdtξZ = 0. The trajectories of ξZ are the solutions of the

Euler-Lagrange equations.

On the other hand, in this case, Λ1
2Y is the cotangent bundle T ∗Y of the manifold Y

and Ω0 is the canonical symplectic structure of T ∗Y . Moreover, if h : Z∗ −→ Λ1
2Y = T ∗Y

is a hamiltonian and ηZ∗ = (π
RZ∗)

∗(dt), then: i) the pair (Ωh, ηZ∗) is a cosymplectic
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structure on Z∗ and ii) the solutions of the Hamilton equations are just the integral

curves of the Reeb vector field ξh of the cosymplectic structure (Ωh, ηZ∗).

It should be noticed that if the lagrangian L is regular and ηW̄1
=

(π
RW̄1

)∗(dt), we have that the pair (ΩW̄1
, ηW̄1

) is again a cosymplectic structure on

W̄1 and there exists a unique solution of equation (13) restricted to W̄1, namely, the

Reeb vector field of the cosymplectic structure (ΩW̄1
, ηW̄1

). Furthermore, if L is (regu-

lar) hyper-regular then the maps (pr2)|W̄1
: W̄1 −→ Z, LegL : Z −→ Z∗ and LegL ◦

(pr2)|W̄1
: W̄1 −→ Z∗ are (local) cosymplectomorphisms between the cosymplectic man-

ifolds (W̄1,ΩW̄1
, ηW̄1

), (Z,ΩL, ηZ) and (Z∗,Ωh, ηZ∗), where h = legL ◦ (LegL)−1. Thus,

the Reeb vector fields ξW̄1
, ξZ and ξZ∗ are related by the above cosymplectomorphisms.

When the lagrangian L is singular, we can develop the two algorithms using equations

(13) and (21) and we obtain the corresponding constraint submanifolds

W̄i = {u ∈ W̄i−1 / ∃ξ ∈ TuW̄i−1, iξΩH0(u) = 0, ηW̄1
(ξ) = 1},

Ŵi = {u ∈ Ŵi−1 / ∃ξ ∈ TuŴi−1, iξΩW̄1
(u) = 0, ηW̄1

(ξ) = 1},

for all i ≥ 2, with W̄1 = Ŵ1 (see Section 6).

If L is almost regular, then we have that

W̄i ⊂ Ŵi,

p̃r1(Ŵi) = Z̃i = {z̃ ∈ Z̃i−1/∃ξ̃ ∈ Tz̃Z̃i−1, iξ̃Ω̃1(z̃) = 0, ηZ∗(z̃)(ξ̃) = 1},

p̃r2(Ŵi) = Zi = {z ∈ Zi−1/∃ξ ∈ TzZi−1, iξΩL(z) = 0, ηZ(z)(ξ) = 1},

for all i ≥ 2. Moreover, one can construct the section β of Legf : Zf −→ Z̃f and the

submanifold β(Z̃f ) of Zf where a solution of the Euler-Lagrange equations exists.

The constraint algorithms using equations (4) and (11) and the construction of the

corresponding constraint submanifolds Zi and Z̃i and of the submanifold β(Z̃f ) has been

done in [21] (see also [6, 25]). We remark that, in this case, there exists a unique solution

of the Euler-Lagrange equations on the submanifold β(Z̃f ) (for more details, see [21]).

Appendices

A. Projectable connections. A connection Γ in the fibration πXY : Y −→ X is

given by a horizontal distribution H which is complementary to the vertical one V πXY ,

that is

TY = H⊕ V πXY .

Associated to the connection there exist a horizontal projector h : TY −→ H defined in

the obvious manner.

If (xµ, yi) are fibered coordinates, then H is locally spanned by the local vector fields

(
∂

∂xµ
)h =

∂

∂xµ
+ Γi

µ(x, y)
∂

∂yi
;

(
∂

∂xµ
)h is called the horizontal lift of

∂

∂xµ
, and Γi

µ are the Christoffel components of the

connection.

Along the paper we repeatedly use the following construction.
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Assume that πXZ : Z −→ X and πXY : Y −→ X are two fibrations with the same

base manifold X , and that Φ : Z −→ Y is a surjective submersion (in other words, a

fibration as well) preserving the fibrations, say, πXY ◦ Φ = πXZ .

Let Γ be a connection in πXZ : Z −→ X with horizontal projector h.

Definition A.1. Γ is said to be projectable if TΦ(z)(Hz) = TΦ(z′)(Hz′), for all

z, z′ ∈ Z in the same fibre of Φ.

If Γ is projectable, then we define a connection Γ′ in the fibration πXY : Y −→ X as

follows: The horizontal subspace at y ∈ Y is given by

H̄y = TΦ(z)(Hz) ,

for an arbitrary z in the fibre of Φ over y. It is routine to prove that H̄ defines a horizontal

distribution in the fibration πXY : Y −→ X .

We can choose fibered coordinates (xµ, yi, za) on Z such that (xµ, yi) are fibered coor-

dinates on Y . The Christoffel components of Γ are obtained by computing the horizontal

lift

(
∂

∂xµ
)h =

∂

∂xµ
+ Γi

µ(x, y, z)
∂

∂yi
+ Γa

µ(x, y, z)
∂

∂za
.

A simple computation shows that Γ is projectable if and only if the Christoffel components

Γi
µ are constant along the fibres of Φ, say Γi

µ = Γi
µ(x, y). In this case, the horizontal lift

of
∂

∂xµ
with respect to Γ′ is just

(
∂

∂xµ
)h =

∂

∂xµ
+ Γi

µ(x, y)
∂

∂yi
.

As an exercise, the reader can easily check that, conversely, given a connection Γ′

in the fibration πXY : Y −→ X and a surjective submersion Φ : Z −→ Y preserving

the fibrations, one can construct a connection Γ in the fibration πXZ : Z −→ X which

projects onto Γ′.

B. Semiholonomic connections. Let πXY : Y −→ X be a fibration and πXZ :

Z −→ X its 1-jet prolongation, that is, Z = J1πXY . Assume that X is orientable with

volume form η.

Definition B.2. A connection Γ in the fibration πXZ : Z −→ X is said to be

semiholonomic if

Sη(h, . . . ,h) = 0,(23)

where h is the horizontal projector of Γ. If (23) holds at a point z ∈ Z, then Γ is said to

be semiholonomic at z.

Assume that

h(
∂

∂xµ
) =

∂

∂xµ
+ Γi

µ

∂

∂yi
+ Γi

µν

∂

∂zi
ν

in fibered induced coordinates. Then Γ is semiholonomic if and only if we have Γi
µ = zi

µ.
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C. Connections on submanifolds. The notion of connection in a fibration admits

a useful generalization to submanifolds of the total space.

Let πXY : Y −→ X be a fibration and P a submanifold of Y .

Definition C.1. A connection in πXY : Y −→ X along the submanifold P consists

of a family of linear mappings

hy : TyY −→ TyP

for all y ∈ P , satisfying the following properties

h
2
y = hy, ker hy = (V πXY )y,

for all y ∈ P . The connection is said to be differentiable (flat) if the n-dimensional

distribution Imh ⊂ TP is smooth (integrable), where n = dimX .

We have the following.

Proposition C.2. Let h a connection in πXY : Y −→ Xalong a submanifold P of Y .

Then:

(1) πXY (P ) is an open subset of X .

(2) (πXY )|P : P −→ πXY (P ) is a fibration.

(3) The 1-jet prolongation J1(πXY )|P is a submanifold of Z.

(4) There exists an induced true connection ΓP in the fibration (πXY )|P : P −→

πXY (P ) with the same horizontal subspaces.

(5) ΓP is flat if and only if h is flat.

Proof.

(1) and (2) First of all, we shall prove that (πXY )|P : P −→ X is a submersion.

Let y ∈ P such that πXY (y) = x ∈ X . We define a linear mapping

A(y) : TxX −→ TyP

as follows:

A(y)(U) = hy(Ū),

where Ū ∈ TyY and TπXY (Ū) = U . The mapping A(y) is well-defined since if Ū ′ is

another tangent vector in TyY satisfying TπXY (Ū ′) = U , then Ū − Ū ′ ∈ (V πXY )y, and

therefore hy(Ū ′) = hy(Ū).

In addition, A(y) is injective. In fact, if U ∈ TxX is such that A(y)(U) = 0, then

hy(Ū) = 0, that implies Ū ∈ (V πXY )y, and therefore U = TπXY (Ū) = 0.

Finally, A(y) is a section of TπXY (y) : TyP −→ TxX . Indeed, take U ∈ TxX ; we have

A(y)(TπXY (A(y)(U))) = hy(A(y)(U)) = h2
y(Ū) = hy(Ū) = A(y)(U). Thus, we have

proved that TπXY ◦ A(y) = IdTxX . This shows that (πXY )|P : P −→ X is a submersion.

Therefore, πXY (P ) is an open submanifold of X , and (πXY )|P : P −→ πXY (P ) is a

fibration.

(3) is obvious.
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(4) The induced connection ΓP is defined by restricting the horizontal subspaces of

h, that is,

h′
y = (hy)|TyP , for all y ∈ P.

Since Imh′ = Imh then (5) follows.
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[11] P.L. Garćıa-Pérez and A. Pérez-Rendón, Symplectic approach to the theory of

quantized fields, I. Comm. Math. Phys. 13 (1969), 24–44.
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