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1 Introduction

The division problem consists of allocating an amount M of a perfectly divisible

good among a group of n agents. A rule maps preference profiles into n shares of

the amount M . Sprumont (1991) shows that, given M , if agents have single-peaked

preferences over their shares, the uniform rule is the unique strategy-proof, efficient,

and anonymous rule. This is a nice example of a large literature that, by restricting

the domain of preferences, investigates the possibility of designing strategy-proof

rules.1 Moreover, in this case, single-peakedness does not only allow strategy-proof

rules but also efficient ones.

Whether or not nontrivial strategy-proof rules exist depends on the domain of

preferences where we want them to operate. However, by restricting sufficiently the

set of preferences it would always be possible to design non-dictatorial strategy-

proof rules for any environment. Therefore, and once a domain restriction has been

identified (as one under which there are non-dictatorial strategy-proof rules), it is

natural andmeaningful to ask howmuch this domain can be enlarged to still allow for

non-dictatorial strategy-proof rules. The Gibbard-Satterthwaite Theorem says that

this maximal domain is strictly smaller than the universal domain of preferences.

Ching and Serizawa (1998) show that, when the rule depends not only on pref-

erences but also on the amount M to be allocated, the maximal domain under

which there exists at least one rule (the extended uniform rule) satisfying strategy-

proofness, efficiency, and symmetry coincides with the set of single-plateaued pref-

erences.

In Massó and Neme (2001) we show that, given M , the set of feebly single-

plateaued preferences is the unique maximal domain of preferences that includes the

set of single-peaked ones for which there exists at least one rule satisfying strategy-

proofness, efficiency, and strong symmetry. This set is strictly larger than the set of

single-plateaued preferences; in particular, preferences might have special intervals of

indifference away from the set of best shares. However, the rule that we exhibit when

showing our maximality result is very complex and hence difficult to be implemented

because it is not “tops-only” (it does not exclusively depend on the n sets of best

shares). Efficiency and strong symmetry force the rule to be sensitive to intervals of

indifference away from the “top”.

In this paper we ask how much the set of single-peaked preferences can be en-

1See Sprumont (1995), Barberà (1996), and Barberà (2001) for three comprehensive surveys of
this literature as well as for three exhaustive bibliographies.

1



larged to still allow for strategy-proof, efficient, and simple rules. In particular, we

identify a maximal domain of preferences (that includes the set of single-peaked

ones) for which there exists at least one rule (the extended uniform rule) satisfying

strategy-proofness, efficiency, tops-onlyness, and continuity. We refer to this domain

as the set of weakly single-plateaued preferences. It turns out that this maximal

domain depends crucially on both M and n, and contains (for each value of M) the

set of single-plateaued preferences. Moreover, the intersection of all sets of weakly

single-plateaued preferences, whenM varies from zero to infinity, coincides with the

set of single-plateaued preferences. Notice that in Ching and Serizawa (1998) M is

treated as a variable of the problem rather than one of its data. We want to em-

phasize though that, in spite of their result, our analysis with a fixed amount M is

meaningful since there are many allocation problems where to assume the contrary

would be senseless. Furthermore, we do not claim that the domain identified here

has economic relevance per se; rather, we understand our result as giving a precise

and definite answer to an interesting and economically relevant question.

The result here differs from our previous one in Massó and Neme (2001) on at

least three grounds. The first difference has to do with the list of properties a rule

is required to satisfy on the maximal domain. Instead of requiring strong symmetry

we demand now that the rule be tops-only and continuous. Any property related

with anonymity is inappropriate when there are asymmetries among the agents that

one wishes to respect (due to repeated relationships, seniority, etc.).2 On the other

hand, tops-onlyness and continuity are two natural properties to ask for if we want

to exclude complex rules that would be difficult to use. Second, while in Massó and

Neme (2001) we identify the unique maximal domain containing the set of single-

peaked preferences here we only identify a maximal domain. The reason why this

difference arises is that on the domain of single-peaked preferences there is only one

rule (the uniform one) satisfying strategy-proofness, efficiency, and strong symmetry

while there are many that satisfy strategy-proofness, efficiency, tops-onlyness, and

continuity; the extension may now be dependent upon the rule, yielding different

maximal domains for different rules (in the last section of the paper we elaborate on

this point by means of an example). Third, the two maximal domains are different;

in particular, the set of feebly single-plateaued preferences strictly contains the set

of weakly single-plateaued preferences.

A number of papers have also identified maximal domains of preferences allowing

2See Barberà, Jackson, and Neme (1997) for many justifications of the use of non-anonymous

rules.
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for strategy-proof social choice functions in voting environments. Barberà, Sonnen-

schein, and Zhou (1991) show that the set of separable preferences is the maximal

domain that preserves strategy-proofness of voting by committees without dummies

and vetoers. Serizawa (1995), Berga (1997), Barberà, Massó, and Neme (1999),

Berga and Serizawa (2000), and Berga (2002) improve upon this result in several

directions; for instance, either by looking at a more general voting model and/or by

admitting larger classes of social choice functions.

In all papers mentioned above either the assumption of anonymity (or any other

related property like symmetry, strong symmetry, or equal treatment of equals)

and/or the assumption that the domain contains the set of single-peaked prefer-

ences guarantee that, on a subdomain of preferences, the outcome of the rule is

unambiguously determined (by the uniform rule in the division problem and by a

generalized median voter scheme in voting environments).3 And this supports very

much the process of identifying the maximal domain of preferences. In contrast, we

do not require here that the rule satisfy any property related to anonymity;4 there-

fore, even for single-peaked preference profiles, we do not know their associated

vectors of shares since there are many rules satisfying the required properties yield-

ing different outcomes. This is precisely one of our main difficulties here, which we

overcome using an anonymity like property established by Lemma 2 in the proof of

our Theorem. At the end of the paper we will comment on this apparent anonymity

implied by Lemma 2.

The paper is organized as follows. Section 2, which closely follows Massó and

Neme (2001), contains preliminary notation and definitions. The set of weakly

single-plateaued preferences and the result are presented in Section 3. Section 4

contains the proof of the result. Section 5 concludes with some final remarks.

2 Preliminary Notation and Definitions

Agents are indexed by the elements of a finite set N = {1, ..., n} where n ≥ 2. They
have to share the amount M ∈ IR++ of a perfectly divisible good. An allocation
is a vector x = (x1, ..., xn) ∈ IRn+ such that

P
xi = M . We denote by Z the set

3Theorem 1 in Berga and Serizawa (2000) assumes only that the domain of preferences contains
a “minimally rich domain” in the sense that for each alternative a, there is at least one preference
whose top is a.

4See Barberà, Jackson, and Neme (1997) to understand the difficulties of characterizing, in the
division problem, non-anonymous rules on the domain of single-peaked preferences.
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of allocations. Each agent has a complete preorder R over [0,M ], his preference

relation. Let P be the strict preference relation associated with R and let I be the

corresponding indifference relation. We assume that preferences are continuous in

the sense that for each x ∈ [0,M ] the sets {y ∈ [0,M ] | xRy} and {y ∈ [0,M ] | yRx}
are closed. We denote by R the set of continuous preferences on [0,M ] and by V a
generic subset ofR. Given a preference relationR ∈ R we denote the set of preferred
shares according to R as t (R) = {x ∈ [0,M ] | xRy for all y ∈ [0,M ]}. Let t(R) =
min{x ∈ [0,M ] | x ∈ t(R)} and t(R) = max{x ∈ [0,M ] | x ∈ t(R)}. Abusing
notation, we also denote by t (R) the unique element of the set t (R) whenever

t(R) = t(R). We call it the top of the preference relation R.

Preference profiles are n-tuples of continuous preference relations over [0,M ] and

they are denoted by R = (R1, ..., Rn) ∈ Rn. When we want to stress the role of

agent i’s preference we will represent a preference profile R by (Ri,R−i). Given
a preference profile R and a preference relation R 6= Ri we will write (R,R−i) to
represent the preference profile where Ri in R is replaced by R.

A rule on Vn ⊆ Rn is a function Φ : Vn −→ Z; that is,
P

Φi(R) = M for all

R ∈ Vn.
Rules require each agent to report a preference. A rule is strategy-proof if it is

always in the best interest of an agent to reveal his preferences truthfully. Formally,

Definition 1 A rule on Vn, Φ, is strategy-proof if for all R = (R1, ..., Rn) ∈ Vn,
all i ∈ N , and all R ∈ V, we have Φi (Ri,R−i)RiΦi (R,R−i).

Given a preference profile R ∈ Vn, an allocation x ∈ Z is efficient if there is no
z ∈ Z such that for all i ∈ N , ziRixi, and for at least one j ∈ N we have zjPjxj.

Denote by E (R) the set of efficient allocations. A rule is efficient if it selects an

efficient allocation. Formally,

Definition 2 A rule on Vn, Φ, is efficient if for allR ∈ Vn, we have Φ (R) ∈ E (R).

Here, we are specially interested in simple rules satisfying the following two

properties. The first one says that the rule has the informationally nice feature

that it only requires to each agent to reveal his set of best-shares since it depends

only on their top-sets. This is a very common feature of all rules used in the

study of the division problem. In fact, except Massó and Neme (2001) all papers

in this literature have confined to study exclusively tops-only rules, although (a)

tops-onlyness is not explicitly imposed on the rule but derived as a consequence of
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other properties (strategy-proofness and efficiency) and (b) the rule is supposed to

operate on a fixed domain of preferences (single-peaked or single-plateaued ones).

However, as our result in Massó and Neme (2001) points out, when the domain of

the rules is not fixed (rather, the objective is to identify their maximal admissible

domain) non tops-only rules arise because they may still be strategy-proof and

efficient on these domains. Therefore, and again because we find it to be the most

unquestionable property if we want to restrict ourselves to use simple rules, here we

do explicitly require tops-onlyness but we dispense the rule to satisfy any anonymity

like condition. Formally,

Definition 3 A rule on Vn, Φ, is tops-only if for all R,R0 ∈ Vn such that t (Ri) =
t (R0i) for all i ∈ N , we have Φ (R) = Φ (R0).

From now on, we shall abuse notation and identify with a tops-only rule Φ a func-

tion mapping vectors of best-shares to allocations; namely, given (R1, ..., Rn) ∈ Vn,
we write Φ (x1, ..., xn) for Φ (R1, ..., Rn) where xi = t (Ri) for all i ∈ N . Therefore,
a tops-only rule Φ can be seen as a mapping Φ : T n → Z, where T is the family of
non-empty subsets of [0,M ]. Since best-shares sets will be closed intervals (Lemma

3 will establish this fact) we define I = {[a, b] ⊆ [0,M ] | 0 ≤ a ≤ b ≤ M} as the
family of all closed intervals contained in [0,M ].

The second property related to simple rules refers to a weak requirement of

continuity.

Definition 4 A tops-only rule on Vn, Φ, is continuous if it is continuous with the
Hausdorff topology.5

We will identify as a maximal domain of preferences a set of preferences closely

related to the set of single-plateaued preferences.6 A preference is said to be single-

plateaued if the set of best-shares is an interval and at each of its sides the preference

is strictly monotonic. Formally,

Definition 5 A preference R ∈ R is single-plateaued if t (R) =
£
t(R), t(R)

¤
and

for all x, y ∈ [0,M ] we have xPy whenever y < x < t(R) or t(R) < x < y.
5The Hausdorff topology on Vn is the induced topology from the Hausdorff topology on T n.

See page 16 in Hildenbrand (1974) for the definition of the Hausdorff distance between sets.
6See Moulin (1984) and Berga (1998) for characterizations of strategy-proof rules under the

domain of single-plateaued preferences in a public-good context.
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LetRsp be the set of single-plateaued preferences. The subset of single-plateaued

preferences whose top is a singleton is called the set of single-peaked preferences and

it will be denoted by Rs.

The following rule on Vn constitutes a natural extension of the uniform rule

(defined on the set of single-peaked preferences) to a generic domain of preferences.

Ching and Serizawa (1998) used this rule to establish their maximal domain result

in the context of a variable M .

Definition 6 The extended uniform rule on Vn, U , is defined as follows: for all
R ∈ Vn and all i ∈ N ,

Ui (R) =


min {t(Ri),λ (R)} if M ≤P t(Rj),

min
©
t (Ri) , t(Ri) + λ (R)

ª
if
P
t(Rj) ≤M ≤

P
t (Rj),

max
©
t(Ri),λ (R)

ª
if
P
t (Rj) ≤M ,

where λ(R) solves
P
Uj(R) =M.

3 Weakly Single-Plateaued Preferences

Our result identifies the set of weakly single-plateaued preferences as a maximal

domain of preferences admitting strategy-proof, efficient, tops-only, and continuous

rules. This set, which depends on M and n, is strictly larger than the set of single-

plateaued preferences.

Before stating the formal definition, it seems useful to give a verbal explanation

of the set of weakly single-plateaued preferences. A preference relation R ∈ R is

weakly single-plateaued if its set of best shares is a closed interval and the following

additional properties are satisfied: (a) If M
n
< t(R), then the preference has to

be “increasing” between M/n and its smallest best share t(R), although it may

have intervals of indifference provided these intervals are above M/2. Moreover,

the egalitarian share M/n has to be strictly preferred to all smaller shares, but all

orderings are possible among them. (b) If t(R) < M
n
, then the preference has to

be “decreasing” between its largest best share t(R) andM/n, although it may have

intervals of indifference provided that n = 2 and these intervals are below M/2.

Moreover, the egalitarian shareM/n has to be strictly preferred to all larger shares,

but also all orderings are possible among them. Finally, if t(R) ≤ M/n ≤ t(R),

then, no additional requirement is imposed.7 Formally,

7The set of feebly single-plateaued preferences identified in Massó and Neme (2001) satisfy the
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Definition 7 A preference relation R ∈ R is weakly single-plateaued if:

(a) t(R) = [t(R), t(R)].

(b) Given x < y ≤ t(R) such that M
n
≤ y, then:

(b.1) yRx, and

(b.2) if xIy then M
2
≤ x < y < t(R).

(c) Given t(R) ≤ y < x such that y ≤ M
n
, then:

(c.1) yRx, and

(c.2) if xIy then n = 2 and x ≤ M
n
.

We denote by Rwsp(n) the set of weakly single-plateaued preferences. Note that

Rsp ( Rwsp(n) for all n ≥ 2. Figure 1 illustrates three possible types of weakly

single-plateaued preferences depending on whether M
n
∈ £t (R) , t (R)¤, M

n
< t (R)

(as well as M
2
< t (R)), and t (R) < M

n
.

Insert Figure 1 about here

Figure 2 illustrates a preference relation with an indifference interval below M/2

that is weakly single-plateaued for n = 2 and n = 4 but it is not for n = 3.8

Insert Figure 2 about here

Following Ching and Serizawa (1998) we can define, given a list of properties

that a rule may satisfy, the concept of “a maximal domain of preferences for this

list”.

Definition 8 A set Rm of preferences is a maximal domain for a list of properties

if: (1) Rm ⊆ R; (2) there exists a rule on Rn
m satisfying the properties; and (3)

there is no rule on Qn satisfying the same properties such that Rm ( Q ⊆ R.
same properties but in (a) the intervals of indifference have to be sufficiently large in relation to
M (the sum of the extremes has to be larger thanM), although they do not have to be necessarily
above M/2; in (b) the intervals of indifference have to be sufficiently small in relation to M (the
sum of the extremes has to be smaller than M) although no condition on n is imposed and the
intervals of indifference do not have to be necessarily below M/2; and moreover M/n, instead of
strictly preferred, has to be at least as good as all smaller shares (in (a)) and all larger shares (in
(b)).

8See Examples 1, 2 and 3 in the last section of the paper to understand first, why the set of

weakly single-plateaued preferences contains preference relations with indifference intervals away
from the top of only a very special kind and second, the special role played by the share M

2 in the
definition of these intervals.
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Now, we can state our result.

Theorem 1 The set of weakly single-plateaued preferences, Rwsp(n), is a maximal

domain for the properties of strategy-proofness, efficiency, tops-onlyness, and conti-

nuity.

Before moving to the proof of Theorem 1, a comment about its content is appro-

priate since the reader should not be surprised by the fact that, on the one hand,

a rule responds only to the information about the top ranking shares of preferences

and, on the other hand, the maximal domain of preferences crucially depends on the

information about other non-top ranking shares. Strategy-proofness and efficiency

excludes only some preferences while others are admitted. To better understand

that this is not contradictory consider the uniform rule defined on any domain of

preferences having a unique top; it is a tops-only rule, and strategy-proof and ef-

ficient on the domain of single-peaked preferences, as well. Yet, if the domain of

single-peaked preferences is enlarged by admitting a non-monotonic ordering (at one

side of the top) then the uniform rule fails to be either strategy-proof or efficient (or

both). That is, the rule does not pay attention to information other than the top

ranked shares and yet its strategy-proofness and efficiency depend on whether or

not the domain admits preferences which order in a particular way non-top ranked

shares.

4 The Proof of Theorem 1

It is easy to check that the extended uniform rule U on (Rwsp(n))
n satisfies the

properties of strategy-proofness, efficiency, tops-onlyness, and continuity. Assume

that V ⊆ R is a maximal domain for these properties and Rwsp(n) ⊆ V. We will
show that V = Rwsp(n), indeed.

Lemma 1 Let Φ : Vn → Z be a tops-only and efficient rule. Then, for all R ∈ Vn
and all i ∈ N :
(a) If

P
t (Rj) ≤M then t (Ri) ≤ Φi(R).

(b) If M ≤P t(Rj) then Φi(R) ≤ t(Ri).
(c) If

P
t(Rj) =

P
t (Rj) =M then Φi(R) = t(Ri) = t (Ri).

(d) If
P
t(Rj) ≤ M ≤ P

t (Rj) and t(Rj) = [t(Rj), t (Rj)] for all j ∈ N then

t(Ri)IiΦi(R)Iit (Ri).
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Proof. (a) Suppose otherwise; that is, there exist R ∈ Vn and i ∈ N such thatP
t (Rj) ≤ M and t (Ri) > Φi(R). Since Rwsp(n) ⊆ V and Φ is tops-only we can

assume that R has the property that for all j ∈ N and all pairs x, y such that

t (Rj) < x < y the condition

t (Rj)PjxPjy (1)

holds. Define N− =
©
j ∈ N | t (Rj) > Φj (R)

ª
, N+ =

©
j ∈ N | t (Rj) ≤ Φj (R)

ª
,

and ω =
P

j∈N−
¡
t (Rj)− Φj (R)

¢
. Note that by assumption both sets are non-

empty and ω is strictly positive. Since
P
t (Rj) ≤ M it is possible to find a vector

of non-negative numbers (zj)j∈N+ such that
P

j∈N+ zj = ω and Φj (R)− zj ≥ t (Rj)
for all j ∈ N+. Therefore, the existence of the vector (α1, ...,αn) ∈ Z, defined by

αj =

(
t (Rj) if j ∈ N−
Φj (R)− zj if j ∈ N+

,

and condition (1) imply Φ (R) /∈ E (R), contradicting the efficiency of Φ.
(b) Its proof is omitted since it follows an argument which is symmetric to the

one used to prove case (a).

(c) It follows immediately from (a) and (b).

(d) Since
P
t(Rj) ≤ M ≤ P

t (Rj), there exists a vector (α1, ...,αn) ∈ Z

such that αj ∈ [t(Rj), t (Rj)] for all j ∈ N. Then, by efficiency of Φ, we have

t(Ri)IiΦi(R)Iit (Ri) for all i ∈ N .
To prove the next lemma we need the following notation. Given [a, b] ⊆ [0,M ], let

R[a,b] be any preference relation in Rwsp(n) with the property that t(R[a,b]) = [a, b].

Again, to stress the role of agent i’s preference relation (or the preference relations

of agents in S) we will represent a profile of preferences, given a vector [a,b] =

([a1, b1] , ..., [an, bn]), as R[a,b] ≡
³
R
[ai,bi]
i ,R

[a,b]
−i
´
=
³
R
[aS ,bS ]
S ,R

[a,b]
−S
´
. Finally, given

[a, b] ⊆ [0,M ], we will represent by R[a,b] any preference profile
³
R
[a,b]
1 , ..., R

[a,b]
n

´
.

Lemma 2 Let Φ : Vn → Z be a strategy-proof, efficient, tops-only, and continuous

rule.

(a) Let (x1, ..., xn) be a vector such that xi ≤ M
n
for all i. Then, Φi(x1, ..., xn) = M

n

for all i.

(b) Let (x1, ..., xn) be a vector such that
P
xj ≤ M and assume that xi ≥ M

n
and

xj ≤ M
n
for every j 6= i. Then Φi(x1, ..., xn) = xi.

(c) Let (x1, ..., xn) be a vector such that xi ≥ M
n
for all i. Then, Φi(x1, ..., xn) = M

n

9



for all i.

(d) Let (x1, ..., xn) be a vector such that
P
xj ≥ M and assume that xi ≤ M

n
and

xj ≥ M
n
for every j 6= i. Then Φi(x1, ..., xn) = xi.

(e) Let ([a1, b1] , ..., [an, bn]) be a vector of intervals such that
P

j 6=i aj ≤ M ≤P
j 6=i bj and ai ≥ M

n
for at least one i. Then either Φi([a1, b1] , ..., [an, bn]) = 0

or Φi([a1, b1] , ..., [an, bn]) ≥ M
n
.

Proof. (a) Suppose otherwise; that is, there exist x = (x1, ..., xn) ∈ [0,M ]n and
i ∈ N with the properties that xj ≤ M

n
for all j and Φi(x1, ..., xn) 6= M

n
. By Lemma

1, part (a), we may assume (since Φ(x1, ...xn) ∈ Z) that M
n
< Φi(x1, ..., xn) ≤ X

holds, where X =M −Pj 6=i xj. We distinguish between the following two cases:
Case 1: M

n
< Φi(x1, ..., xn) < X. Let R0 ∈ Rwsp(n) be any preference with the

property that t(R0) = xi and

XP 0Φi(x1, ..., xn). (2)

Observe that such preference exists since bothX and Φi(x1, ..., xn) are strictly larger

than M
n
. Since Φ is tops-only,

Φi(x1, ...xn) = Φi(R
0,Rx

−i). (3)

On the other hand, by Lemma 1, part (c), Φi(RX ,Rx
−i) = X, implying that Φ is not

strategy-proof because, by conditions (2) and (3),

Φi(R
X ,Rx

−i)P
0Φi(R0,Rx

−i).

Case 2: M
n
< Φi(x1, ..., xn) = X. Without loss of generality assume i 6= 1. By

Lemma 1, part (d), Φ
³
R
[x1,X]
1 ,Rx

−1
´
= (X,x2, ..., xn) . By continuity of Φ, and since

Φi
³
R
[x1,X]
1 ,Rx

−1
´
= xi ≤ M

n
< X = Φi(R

x1
1 ,R

x
−1), there exist r ∈

¡
M
n
, X
¢
and

y ∈ [x1,X] such that Φi
³
R
[x1,y]
1 ,Rx

−1
´
= r. Then, by Lemma 1, part (d),

Φi
³
R
[x1,y]
1 , RXi ,R

x
−{1,i}

´
= X, (4)

for any RXi ∈ Rwsp(n). Consider now any preference R0i ∈ Rwsp(n) with the prop-

erties that t (R0i) = xi and
XP 0ir. (5)

Since Φ is tops-only,

Φi
³
R
[x1,y]
1 , Rxii ,R

x
−{1,i}

´
= r = Φi

³
R
[x1,y]
1 , R0i,R

x
−{1,i}

´
. (6)

10



But then, conditions (4), (5), and (6) imply

Φi
³
R
[x1,y]
1 , RXi ,R

x
−{1,i}

´
P 0iΦi

³
R
[x1,y]
1 , R0i,R

x
−{1,i}

´
,

which means that Φ is not strategy-proof.

(b) Let x = (x1, ..., xn) be a vector such that
P
xj ≤ M , xi ≥ M

n
for i, and

xj ≤ M
n
for all j 6= i. By Lemma 1, part (a), we may assume that Φi(x1, ..., xn) ≥

xi. To get a contradiction, assume Φi(x1, ..., xn) > xi. Consider any preference

R0 ∈ Rwsp(n) such that t(R0) = xi and M
n
P 0Φi(x1, ..., xn). Since Φ is tops-only,

Φi(R
0,Rx

−i) = Φi(R
xi ,Rx

−i). (7)

On the other hand, by Lemma 2, part (a), Φi(R0,Rx
−i) =

M
n
, which implies, together

with condition (7), that Φ is not strategy-proof because

Φi(R
0,Rx

−i)P
0Φi(R0,Rx

−i).

The proofs of parts (c) and (d) are omitted since they follow arguments which

are symmetric to the ones used to prove parts (a) and (b), respectively.

(e) Assume otherwise; that is, there exist [a,b] = ([a1, b1] , ..., [an, bn]) and i

such that
P

j 6=i aj ≤ M ≤ P
j 6=i bj, ai ≥ M

n
, and 0 < Φi

¡
R[a,b]

¢
< M

n
. BecauseP

j 6=i aj ≤ M ≤ P
j 6=i bj, Lemma 1, part (b), implies Φi

³
R0,R

[a,b]
−i
´
= 0. Let

R0 ∈ Rwsp(n) be any preference such that t(R0) = [ai, bi] and 0P 0Φi
¡
R[a,b]

¢
. Observe

that the hypothesis that ai ≥ M
n
guarantees the existence of such a preference. Since

Φ is tops-only, Φi
³
R0,R[a,b]

−i
´
= Φi

¡
R[a,b]

¢
, which implies that Φ is not strategy-

proof because Φi
³
R0,R

[a,b]
−i
´
P 0Φi

³
R0,R[a,b]

−i
´
.

Lemma 3 Let Φ : Vn → Z be a strategy-proof, efficient, tops-only, and continuous

rule. Then, t(R) = [t(R), t(R)] for all R ∈ V.

Proof. Assume otherwise; that is, there exist R ∈ V and y ∈ ¡t(R), t(R)¢ such
that t(R)Py. Define

x =
M − t(R)
n− 1

and

x =
M − t(R)
n− 1 .

Let i be arbitrary. Since Φ is efficient,

Φj
¡
R,Rx

−i
¢
=

(
t(R) if j = i

x if j 6= i

11



and

Φj
¡
R,Rx

−i
¢
=

(
t(R) if j = i

x if j 6= i .

Claim: Either there exists z ∈ [x, x] such that Φi
³
R,R

[z,x]
−i
´
> y or there existsbz ∈ [x, x] such that Φi ³R,R[x,bz]

−i
´
< y.

Proof of the Claim: Assume otherwise; that is, Φi
³
R,R

[z,x]
−i
´
≤ y for all z ∈ [x, x]

and Φi
³
R,R

[x,bz]
−i
´
≥ y for all bz ∈ [x, x]. Therefore, taking z = x and bz = x,

Φi
³
R,R

[x,x]
−i
´
= y. However, the vector (α1, ...,αn), where

αj =

(
t(R) if j = i

x if j 6= i ,

is feasible and has the property that t(R)Py and xR[x,x]j Φj
³
R,R

[x,x]
−i
´
for all j 6= i.

Therefore, Φ
³
R,R

[x,x]
−i
´
/∈ E

³
R,R

[x,x]
−i
´
, contradicting the efficiency of Φ. There-

fore, the claim is proved.

Without loss of generality, assume there exists z ∈ [x, x] such thatΦi
³
R,R

[z,x]
−i
´
>

y. By continuity ofΦ, and since Lemma 1, part (c), impliesΦi
¡
R,Rx

−i
¢
= t(R), there

exists z0 ∈ [z, x] such that Φi
³
R,R

[z0,x]
−i

´
= y. But again, the vector (α1, ...,αn),

where

αj =

(
t(R) if j = i

x if j 6= i ,

is feasible and has the property that αiPy and αjR
[z0,x]
j Φj

³
R,R

[z0,x]
−i

´
for all j 6= i.

Therefore, Φ
³
R,R

[z0,x]
−i

´
/∈ E

³
R,R

[z0,x]
−i

´
, contradicting the efficiency of Φ.

By the above lemma we can look at any strategy-proof, efficient, continuous,

and tops-only rule Φ on Vn as just a function Φ : In → Z defined on vectors of n

intervals.

Lemma 4 Let R ∈ V and x and y be such that M
n
≤ x < y ≤ t(R). Then, yRx.

Proof. Assume otherwise; that is, there exist x and y such that M
n
≤ x < y ≤ t (R)

and xPy. Consider any RM ∈ Rs. Because Φi(RM ,R0
−i) =M, Φi(R

M ,R
M/n
−i ) =

M
n
,

by Lemma 2, part (d), and continuity of Φ there exists z ≤M/n such that

Φi(R
M ,Rz

−i) = y. (8)

12



By strategy-proofness of Φ,

Φi(R,R
z
−i) ≤ y, (9)

otherwise Φi(R,Rz
−i)P

MΦi(R
M ,Rz

−i).
Because z ≤ M

n
and Lemma 2, part (a), Φi(R0,Rz

−i) =
M
n
. By continuity of Φ

there exists z0 such thatΦi(Rz
0
,Rz

−i) = x. By strategy-proofness ofΦ, Φi(R,R
z
−i)RxPy,

which imply, by condition (9), Φi(R,Rz
−i) < y. Let R0 ∈ Rwsp(n) be such that

t(R0) = t(R) and t(R0)P 0byP 0bx for every bx < by < t(R0). Because Φ is tops-only,

Φi(R
0,Rz

−i) = Φi(R,R
z
−i). Therefore, by condition (8)

Φi
¡
RM ,Ry

−i
¢
P 0Φi

¡
R0,Rz

−i
¢
,

which contradicts strategy-proofness of Φ.

Lemma 5 Let R ∈ V, x and y be such that M
n
≤ x < y ≤ min{M

2
, t(R)}. Then,

yPx.

Proof. First notice that the hypothesis of Lemma 5 imply that n ≥ 3. Assume
M
n
≤ x < y ≤ min{M

2
, t(R)} and xRy. By Lemma 4, we may assume that there

exist a and b such that M
n
≤ a < b ≤ min{M

2
, t(R)} and aIbx for all bx ∈ [a, b]. By

part (b) of Lemma 1, for all j ≥ 3,

Φj
¡
RM1 , R

M
2 ,R

0
−{1,2}

¢
= 0.

Hence, there exists i ∈ {1, 2} such that Φi
³
RM1 , R

M
2 ,R

0
−{1,2}

´
≥ M

2
. Assume that

i = 1. Since Φ is strategy-proof,

Φ1
³
R
t(R)
1 , RM2 ,R

0
−{1,2}

´
≥ min

½
M

2
, t(R)

¾
. (10)

To see it, assume z0 = Φ1
³
R
t(R)
1 , RM2 ,R

0
−{1,2}

´
< min

©
M
2
, t(R)

ª
and consider

any Rt(R) ∈ Rs such that bzP t(R)z0 for all bz ∈ £min©M2 , t(R)ª ,M¤; then agent 1
would manipulate Φ at profile

³
R
t(R)
1 , RM2 ,R

0
−{1,2}

´
with RM1 . Using again strategy-

proofness of Φ, condition (10) implies

Φ1
³
R
[t(R),t(R)]
1 , RM2 ,R

0
−{1,2}

´
≥ min

½
M

2
, t(R)

¾
.

Hence, by tops-onlyness of Φ,

Φ1
¡
R,RM2 ,R

0
−{1,2}

¢ ≥ min½M
2
, t(R)

¾
. (11)
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By Lemma 2, part (c),

Φ
³
R
t(R)
1 , RM2 ,R

M
−{1,2}

´
=

µ
M

n
, ...,

M

n

¶
.

Since Φ is strategy-proof, Φ1
³
R
[t(R),t(R)]
1 , RM2 ,R

M
−{1,2}

´
=M/n. Since Φ is tops-only,

we may assume that RM ∈ Rs and

Φ1
¡
R,RM2 ,R

M
−{1,2}

¢
=
M

n
. (12)

Let x0 ∈ (a, b) be arbitrary. Conditions (11) and (12) and continuity of Φ im-

ply that there exists z ∈ [0,M ] such that Φ1
³
R,RM2 ,R

z
−{1,2}

´
= x0; and thus,

Φ2
³
R,RM2 ,R

z
−{1,2}

´
< M . Therefore, there exists ² > 0 sufficiently small such that£

Φ1
¡
R,RM2 ,R

M
−{1,2}

¢− ²¤ IΦ1 ¡R,RM2 ,RM
−{1,2}

¢
(13)

and £
Φ2
¡
R,RM2 ,R

M
−{1,2}

¢
+ ²
¤
PM2 Φ2

¡
R,RM2 ,R

M
−{1,2}

¢
. (14)

The existence of the feasible vector (α1, ...,αn), where

α1 =
£
Φ1
¡
R,RM2 ,R

M
−{1,2}

¢− ²¤ ,
α2 =

£
Φ2
¡
R,RM2 ,R

M
−{1,2}

¢
+ ²
¤
, and

αj = Φj
¡
R,RM2 ,R

M
−{1,2}

¢
for all j ≥ 3,

and conditions (13) and (14) imply that Φ
³
R,RM2 ,R

M
−{1,2}

´
/∈ E

³
R,RM2 ,R

M
−{1,2}

´
,

contradicting the efficiency of Φ.

Lemma 6 Let R ∈ V and x be such that x < M
n
< t(R). Then, M

n
Px.

Proof. Assume x < M
n
< t(R) and xRM

n
. By Lemma 2, part (c), Φ

¡
Rt(R),RM

−i
¢
=¡

M
n
, ..., M

n

¢
. Consider any preference profile

¡
Rt(R),RM

−i
¢ ∈ Rn

s and any preference

relation R[t(R),t(R)] ∈ Rsp. Since Φ is strategy-proof, Φi
³
R[t(R),t(R)],RM

−i
´
= M

n
, and

by tops-onlyness of Φ, Φi(R,RM
−i) =

M
n
. Now, for each j 6= i there exists αj > 0

such that
P

j 6=i αj =
M
n
− x and Φj(R,R

M
−i) + αj ≤M . Then, the vector of feasible

shares (z1, ..., zn), where

zj =

(
x if j = i

Φj
¡
R,RM

−i
¢
+ αj if j 6= i ,

has the property that ziRΦi
¡
R,RM

−i
¢
and zjPMj Φj

¡
R,RM

−i
¢
for every j 6= i, implying

that Φ
¡
R,RM

−i
¢
/∈ E ¡R,RM

−i
¢
, which contradicts the efficiency of Φ.
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Lemma 7 Let R ∈ V, x, and y be such that t(R) < y < x ≤ M
n
. Then, yRx.

Proof. Assume otherwise; that is, there exist x and y such that t(R) < y < x ≤ M
n

and xPy. Since R is continuous we may assume that there exist a and b such that

t(R) < a < b ≤ M
n
, aIbPbx for all bx ∈ (a, b), and bRbz for all bz ∈ (b, M

n
). Let

x0 ∈ (a, b) be such that bPx0. By Lemma 2, Φi(R0,RM/n
−i ) =

M
n
, by part (a), and

Φi(R
0,RM

−i) = 0, by part (d). Therefore, by continuity of Φ there exists z >
M
n
such

that

Φi
¡
R0,Rz

−i
¢
= x0. (15)

Consider any preference relation Rt(R) ∈ Rsp. Since Φ is strategy-proof,

Φi
¡
Rt(R),Rz

−i
¢ ≥ x0, (16)

otherwise, agent i would manipulate Φ at profile
¡
Rt(R),Rz

−i
¢
by declaring R0. By

part (c) of Lemma 2,

Φi
¡
RM ,Rz

−i
¢
=
M

n
. (17)

By strategy-proofness of Φ,

Φi
¡
Rt(R),Rz

−i
¢ ≤ M

n
. (18)

Since Φ is continuous, conditions (15) and (17) imply that there exists z0 ∈ [0,M ]
such that Φi

¡
Rz

0
,Rz

−i
¢
= b. Conditions (16), (18), and tops-onlyness of Φ imply

x0 ≤ Φi
¡
R,Rz

−i
¢ ≤ M

n
. By strategy-proofness of Φ, Φi

¡
R,Rz

−i
¢
Ib, implying that

x0 < Φi
¡
R,Rz

−i
¢
. Let R0 ∈ Rsp be any preference relation such that t(R0) =

t(R). Thus, for every t(R0) < by < bx we have t(R0)P 0byP 0bx. Because Φ is tops-only,

Φi
¡
R0,Rz

−i
¢
= Φi

¡
R,Rz

−i
¢
. But Φi

¡
R0,Rz

−i
¢
P 0Φi

¡
R0,Rz

−i
¢
contradicts strategy-

proofness of Φ.

Lemma 8 Let R ∈ V, x, and y be such that t(R) < y < x ≤ M
n
and assume n ≥ 3

Then, yPx.

Proof. Assume otherwise; that is, n ≥ 3 and there exist x and y such that

t(R) < y < x ≤ M
n
and xRy. By Lemma 7, we may assume that xIy and there exist

a and b such that t(R) < a < b ≤ M
n
, aIbx for all bx ∈ [a, b], bzPa for all t̄(R) < bx < a,

and bPby for all b < by < M
n
. Consider any preference relation Rt(R) ∈ Rsp. By

Lemma 1, part (b), Φi
³
Rt̄(R), Rt̄(R),RM

−{1,2}
´
≤ t(R) for i ∈ {1, 2}. By Lemma 2,

part (a), Φ
³
Rt̄(R), Rt̄(R),R0

−{1,2}
´
=
¡
M
n
, ..., M

n

¢
. By continuity of Φ (and without
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loss of generality in the roles of agents 1 and 2), there exist z, x0, and y0 such that
t(R) < x0 ≤ y0 < M

n
,

Φ1
³
Rt̄(R), Rt̄(R),Rz

−{1,2}
´
= x0

and

Φ2
³
Rt̄(R), Rt̄(R),Rz

−{1,2}
´
= y0.

Since t̄(R) < x0, Lemma 1, part (a), implies that 2t̄(R)+(n−2)z < M and therefore,

x0 + y0 + (n− 2)z ≤M. (19)

Since Φ is strategy-proof, Φ1
³
R[t(R),t(R], Rt̄(R),Rz

−{1,2}
´
= x0, and by tops-onlyness

of Φ, Φ1
³
R,Rt̄(R),Rz

−{1,2}
´
= x0. Now, if Φ2

³
R,Rt̄(R),Rz

−{1,2}
´
6= t̄(R) then Φ is

not efficient since there exists ² sufficiently small (positive if Φ2
³
R,Rt̄(R),Rz

−{1,2}
´
<

t̄(R) and negative otherwise) such that the feasible vector (α1, ...,αn), where

αj =


x0 − ² if j = 1

Φj
³
R,Rt̄(R),Rz

−{1,2}
´
+ ² if j = 2

Φj

³
R,Rt̄(R),Rz

−{1,2}
´

if j ≥ 3
,

has the properties that α2P t(R)Φ2
³
R,Rt̄(R),Rz

−{1,2}
´
, α1IΦ1

³
R,Rt̄(R),Rz

−{1,2}
´
, and

αjI
z
jΦj

³
R,Rt̄(R),Rz

−{1,2}
´
for all j ≥ 3 ; thus, the rule Φ would not be efficient. If

Φ2
³
R,Rt̄(R),Rz

−{1,2}
´
= t̄(R), condition (19) implies that there exists an agent

j ≥ 3 such that Φj
³
R,Rt̄(R),Rz

−{1,2}
´
6= z, in which case, using a similar argument,

Φ would not be efficient.

Lemma 9 Let R ∈ V and assume that x is such that t(R) < M
n
< x. Then, M

n
Px.

Proof. Let R ∈ V and assume otherwise; that is, there exists x ∈ ¡M
n
,M
¤

such that xRM
n
. Consider any preference profile R0

−i ∈ Rs. By part (a) of Lemma

2, Φ
³
Rt(R),R0

−i
´
=
¡
M
n
, ..., M

n

¢
. Since the rule Φ is strategy-proof and tops-only,

Φi
³
R[t(R),t(R)],R0

−i
´
= M

n
. Again, by tops-onlyness of Φ, Φi

¡
R,R0

−i
¢
= M

n
. There-

fore, P
j 6=iΦj

¡
R,R0

−i
¢
=M − M

n
≥ x− M

n
.

For each j 6= i there exist αj ≥ 0 such that Φj
¡
R,R0

−i
¢ − αj ≥ 0 and x +P

j 6=i
£
Φj
¡
R,R0

−i
¢− αj

¤
= M. Therefore, the vector z = (x, z−i), where zj =

Φj
¡
R,R0

−i
¢−αj, is feasible and has the property that ziIΦi ¡R,R0

−i
¢
, zjR0jΦj

¡
R,R0

−i
¢

for all j 6= i, and there exists at least an agent j0 6= i such that zj0P 0j0Φj0
¡
R,R0

−i
¢
.

Hence, Φ
¡
R,R0

−i
¢
/∈ E ¡R,R0

−i
¢
, which contradicts the efficiency of Φ.
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5 Final Remarks

We close with five remarks. First, we want to illustrate why our domain only admits

preference relations with a very special kind of indifference intervals away from the

top. Most of these intervals are excluded because our properties impose on the

rule the following feature: it is not possible that an agent receives a share on an

indifference interval away from the top while another agent is rationed (namely, he

is receiving a non-maximal share). Examples 1 and 2 illustrate why this feature

excludes some preferences while Example 3 exhibits a preference relation which is

not excluded by this feature.

Example 1 Let M = 10 and N = {1, 2, 3}. Assume Φ is a strategy-proof,

efficient, tops-only, and continuous rule on V3. Consider the preference profile

R = (R1, R2, R3) where, for i = 1, 2,

yPix for all 0 ≤ x < y ≤ 10,

and

yP3x for all 0 ≤ x < y ≤ 3 and all 4 ≤ x < y ≤ 10,
and

yI3x for all x, y ∈ [3, 4].
By Lemma 2, part (c), Φ(10, 10, 10) =

¡
10
3
, 10
3
, 10
3

¢
. SinceΦ is tops-only, Φ(R1, R2, R3) =¡

10
3
, 10
3
, 10
3

¢
. The vector (3.5, 3.5, 3) is feasible and 3.5PiΦi(R1, R2, R3) for i = 1, 2

and 3I3Φ3(R1, R2, R3). Therefore, Φ(R1, R2, R3) /∈ E(R1, R2, R3), which contradicts
the efficiency of Φ. Hence, R3 can not belong to V. Note that R3 does not satisfy
condition (b.2) of Definition 7 and therefore, R3 /∈ Rwsp(3).

Example 2 Let M = 10 and N = {1, 2}. Assume Φ is a strategy-proof, efficient,
tops-only, and continuous rule on V2. Consider the preference profile R = (R1, R2),
where,

yP1x for all 0 ≤ y < x ≤ 10,
yP2x for all 0 ≤ y < x ≤ 3 and all 7 ≤ y < x ≤ 10,

and

yI2x for all x, y ∈ [3, 7].
By Lemma 2, part (a), Φ(0, 0) = (5, 5). Since Φ is tops-only, Φ(R1, R2) = (5, 5). The

vector (3, 7) is feasible and 3P1Φ1(R1, R2) and 7I2Φ2(R1, R2). Therefore, Φ(R1, R2) /∈
E(R1, R2), which contradicts the efficiency of Φ. Hence, R2 can not belong to
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V. Note that R2 does not satisfy condition (c.2) of Definition 7 and therefore,

R2 /∈ Rwsp(2).

Example 3 Let M = 10 and N = {1, 2}. Consider the extended uniform rule U

on V2. Consider the preference relation R1, where

xP1y for all 0 ≤ y < x ≤ 6 and all 7 ≤ y < x ≤ 10

and

yI1x for all x, y ∈ [6, 7].
Let R2 ∈ V be any preference relation such that U1 (R1, R2) ∈ (6, 7). We want to
show that U2 (R1, R2) ∈ t (R2). To see it, observe that U1 (R1, R2) < t (R1) implies,
by part (b) of Lemma 1, U2 (R1, R2) ≤ t (R2). To obtain a contradiction, assume
U2 (R1, R2) < t (R2). Take any R2 ∈ Rsp with the properties that t

¡
R2
¢
= t (R2)

and 5P 2U2 (R1, R2). Since U (10, 10) = (5, 5) and U is tops-only, U(R1, bR2) = (5, 5)
whenever t( bR2) = 10. But then, agent 2 manipulates U at

¡
R1, R2

¢
by declaring

any bR2 with t( bR2) = 10.
Second, parts (a) and (c) of Lemma 2 suggest that the properties of strategy-

proofness, efficiency, tops-onlyness, and continuity imply (surprisingly) some partial

anonymity condition. But this is only apparent. It is a consequence of the following

two unrelated reasons: (i) An indirect anonymity axiom is assumed when we impose

the natural condition that the domain of the rule be the Cartesian product of the

same set of preferences for all agents. Otherwise, given an arbitrary feasible vector

(y1, ..., yn), we could define agent i’s specific maximal set of preferences by replacing

in Definition 7 the share M
n
by yi. Then, the statement of Lemma 2 would also hold

after replacing the role of the vector of equal shares
¡
M
n
, ..., M

n

¢
by (y1, ..., yn). (ii)

We are looking for a maximal domain of preferences. There are other domains of

preferences (for instance, the set of preferences satisfying Definition 7 after replacing
M
n
by M

2n
in condition (b.1)) under which we could have a vector (x1, ..., xn) with the

property that xi ≥ M
n
for all i, but M

2n
≤ Φj(x1, ..., xn) <

M
n
for some j; hence, Φ does

not satisfy the partial anonymity condition of part (c) of Lemma 2. However, this

domain of preferences would not be maximal since it is smaller thanRwsp (n) because

these preferences are all strictly monotonic between M
2n
and M

n
,9 while preferences in

Rwsp (n) do not have to. This lack of anonymity (or symmetry) suggests, though,

the possibility that our list of properties admits, for the domain of weakly single-

9The same argument would apply if we replace M
n in Definition 7 by any smaller share.
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plateaued preferences, a large class of functions (and not only the extended uniform

rule) satisfying our list of properties.10

Third, the maximal domain of preferences identified in Ching and Serizawa

(1998) and Massó and Neme (2001) is, in each case, the unique one containing

the set of single-peaked preferences. In contrast (and as another consequence of

not requiring any property related to symmetry or anonymity), the set of weakly

single-plateaued preferences is not the unique one containing the set of single-peaked

preferences for our list of properties. To see it, consider the domain of preferences

RL ⊆ R where Ri ∈ RL if and only if:

yPix for all 0 ≤ x < y ≤ t(Ri).

Let N = {1, 2, 3} and consider the rule ψ on (RL)
3 defined as follows: for all

R ∈ (RL)
3,

ψ1(R) = t(R1),

ψ2(R) = max {M − t(R1), t(R2)} , and
ψ3(R) = M − ψ1(R)− ψ2(R).

It is easy to check that ψ : (RL)
3 → Z is strategy-proof, efficient, tops-only, and con-

tinuous. Moreover, it is possible to show thatRL is a maximal domain of preferences

for this list of properties.

Fourth, the intersection of all our maximal domains of preferences, fixed M and

when n varies from two to infinity, is strictly larger than the set of single-plateaued

preferences; namely,
T
n≥2
Rwsp (n) ) Rsp. To see that, observe that there are many

preference relations that are weakly single-plateaued for all n ≥ 2 but they are not
single-plateaued.

Fifth, the intersection of all our maximal domains of preferences, fixed n ≥ 2
and whenM varies from zero to infinity, coincides with the single-plateaued domain.

This implies that, when the rule depends not only on preferences but also on the

amount M to be allocated (as in Ching and Serizawa, 1998), the maximal domain

coincides with the set of single-plateaued preferences as already shown by Ching and

Serizawa (1998) for the properties of strategy-proofness, efficiency, and symmetry.

10Barberà, Jackson, and Neme (1997) shows that, on the single-peaked domain, the class is
larger even if we add replacement monotonicity to our list of properties.
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