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Abstract
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1 Introduction

Achieving cooperation and sharing the resulting benefits in the presence of externalities

is a central question in many economic environments. These issues are often decided by

international agreements, when countries are the players involved. Take for example the

Kyoto protocol drafted in 1997 to address climate control. It was further elaborated upon

in the Buenos Aires plan of action put together in 1998. The Bonn agreements in 2001

resolved several outstanding issues and paved the way to the Marrakesh accords that

contained a clearer picture of the Kyoto protocol. Of concern were the commitments un-

dertaken by the various parties and the enforcement as well as compensation mechanisms

set in place.

The GATT (General Agreement on Tariffs and Trade) was signed in 1947 in Geneva

and focused on trading arrangements. After eight rounds of multilateral trade negotia-

tions, the Uruguay round concluded with the signing in 1994 of the Marrakesh agreement,

closing down the GATT which was replaced in 1995 by the World Trade Organization

(WTO). The WTO stated goals are to promote world trade. It examines among other

things the effect of regional trade agreements on the world wide trading system and the

ways to compensate (or reward) the parties adhering to its policy recommendations.

Another instance of such an agreement is The Treaty on the Non-Proliferation of

Nuclear Weapons signed at Washington, London, and Moscow in 1968, which dealt with

the nuclear arms race. The purpose was to prevent the spread of nuclear weapons and

eventually lead to nuclear disarmament. The implementation of the treaty objectives

had to overcome two major problems. The first one is assuring countries agreeing to it of

adequate protection should a non-adhering country develop a nuclear arsenal. The second

is the (economic) sanctions that should be imposed on violating countries, as well as the

(economic) compensation for countries adhering to it.

On the industry level, there are mergers and agreements between firms coordinating

their market behavior or research activity. Two major issues are the payoffs expected

by the parties involved, and the reorganization of activities which determines to a large

degree the sharing of these payoffs.

A common denominator to all of the above scenarios is that they entail cooperation
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in the presence of externalities. Each one of those can be broadly described as a situation

where, what a group of players, taking a joint action, may expect to get, depends both on

the action taken, as well as on the organization and actions of players outside this group.

Recently there has been a surge of literature that deals with the question of what

coalitions would arise in such cooperative environments and how would the gains of coop-

eration be shared among the players. This “strategic” approach has been taken by Bloch

(1996) which studied the sequential formation of coalitions in environments with exter-

nalities through the analysis of extensive form games. Ray and Vohra (1999) allowed for

more general environments while studying a similar problem. They defined an extensive

form bargaining game, and studied its stationary subgame perfect equilibria outcomes

with emphasis on the resulting coalition structure. In Ray and Vohra (2001) the provi-

sion of public goods was analyzed and the resulting equilibrium coalition structure was

characterized. Bloch (2002) offered a survey of problems and results in the industrial

organization literature.

These works, while discussing in part the efficiency of the outcome reached, did not

address other properties of the resulting allocations. They refrained from taking the ax-

iomatic point of view asking what should the coalition structure and sharing of the surplus

look like. This might in part be due to the fact that in contrast to cooperative environ-

ments with no externalities for which there exist focal solutions such as the Shapley value

or the core, there is no “focal” solution for cooperative environments with externalities.

In this work we propose a general, yet simple, method of dividing the gains (costs)

of cooperation in the presence of externalities. The solution offered can be applied to

environments where the externalities are positive (that is, what a group of players expects

to get is larger the more grouped the rest of players are) as well as to situations with

negative externalities. It satisfies the desirable properties (axioms) of efficiency, anonymity

(symmetry), linearity, and the further reasonable property that players which have no

effect whatsoever on the outcome (“dummy” players) should not receive any part of the

surplus. In contrast to the case of no externalities, where these conditions are sufficient

to generate a unique sharing method (Shapley, 1953), there are several ways to satisfy

them in the presence of externalities. We proceed to ask more stringent, yet reasonable,

conditions leading to a unique way of surplus sharing.
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First we study the implications of a stronger symmetry axiom, capturing the idea that

all players with “identical power” should receive the same outcome. We prove that this

leads to a natural method of constructing a solution, that is proceeding via averages. This

method associates to each group of players a value that is some average of what they can

obtain in the different scenarios, and then it allocates to each player the Shapley value of

this average game.

There are still several ways to share the surplus from cooperation that satisfy all the

properties required so far. This allows to ask for one more desirable property, namely,

that when a pair of players has exactly the same power acting separately or together,

the outcome received as a pair coincides with the outcome received as singletons. We

construct a (simple) sharing method that satisfies all the axioms and show it is unique.

We elaborate further on the proposed sharing method by providing additional proper-

ties it satisfies. We present a “marginalistic view” of the method, similar to the popular

marginalistic expression for the Shapley value for games with no externalities. We also

prove the method satisfies a “strong dummy property”, in that the addition of a “dummy”

player leaves the outcomes of all other players intact.

A distinct advantage of such an approach setting forward a set of requirements the

sharing method should satisfy is that it enables one to focus on principles rather than

particulars. If these requirements seem reasonable then their prediction should be ac-

cepted as reasonable too. This approach moves the discussion from considering particular

examples to considering general guidelines.

Two previous attempts to provide sharing methods in the presence of externalities

were Myerson (1977) and Bolger (1989). Our method is simpler and uses a more intu-

itive average approach. We also offer a more suitable definition of a “dummy” player

than Myerson (1977) and avoid the Bolger (1989) problem whereby the “strong dummy

property” is violated. The issue of coalition formation and value in environments with ex-

ternalities has recently been raised by Maskin (2003). He considered a sequential process

of coalition formation, where offers made and decisions to accept are required to satisfy

a set of reasonable requirements, and characterized the resulting sharing method. The

efficiency of the solution depends in part on the type of the externality present. We note

that the value and coalitions structure predictions of Aumann and Dreze (1974) and Hart
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and Kurz (1983) dealt with environments with no externalities.

Finally, we emphasize the applicability of our proposal by applying our method to data

provided by Eyckmans and Tulkens (2003) on international environmental agreements.1

The environment consists of six players: the U.S., Japan, European Union, China, Former

Soviet Union, and Rest of the World. The data describes the coalitional payoffs for any

partition of those players. We calculate and comment on the country payoffs prescribed

by our value.

The paper proceeds as follows: Section 2 introduces the environment; Section 3

presents the three basic requirements of symmetry, “dummy” player, and linearity and

the class of efficient sharing methods that satisfy them. Section 4 presents the new strong

symmetry axiom as well as the average approach and shows the two are equivalent. Section

5 introduces the final similar influence axiom. It constructs a sharing method satisfying

all axioms, shows it is unique, and discusses several properties of the new value. Section

6 offers a detailed comparison of our value with those of Myerson and Bolger. Section 7

applies our value to data on environmental agreements, generating a proposal regarding

the distribution of gains across the various countries. Section 8, concludes and offers

further directions of research. Finally, an Appendix includes all the proofs.

2 The environment

The economic environment we study can be described as follows. We denote by N =

{1, ..., n} the set of players. A coalition S is a group of players, that is, a non-empty

subset of N, S ⊆ N . An embedded coalition is a pair (S, P ), where S is a coalition and

P 3 S is a partition of N . An embedded coalition hence, specifies the coalition as well

as the structure of coalitions formed by the other players. Let P denote the set of all

partitions of N. It represents all the possible ways in which the society can be organized.

The set of embedded coalitions is denoted by ECL and defined by:

ECL = {(S, P ) | S ∈ P, P ∈ P} .
1See Eyckmans and Tulkens (2003) for a description of the computational model generating this data

set.
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We denote by (N, v) a game in partition function form (or a Partition Function Game),

where v : ECL→ R is a characteristic function that associates a real number with each

embedded coalition. Hence, v(S, P ) with S ∈ P, P ∈ P, is the worth of coalition S when

the players are organized according to the partition P. In our environment, players can

make transfers among them. For technical convenience, we use the convention that the

empty set ∅ is in P for every P ∈ P, and assume that the characteristic function satisfies
v(∅, P ) = 0.

A game is with no externalities if and only if the payoff that the players in a coalition

S can jointly obtain if this coalition is formed is independent of the way the other players

are organized. This means that in a game with no externalities, the characteristic function

satisfies v(S, P ) = v(S, P 0) for any two partitions of the set of players P,P 0 ∈ P and any
coalition S which belongs both to P and P 0. Hence, the worth of a coalition S can be

written without reference to the organization of the remaining players, v̂(S) ≡ v(S, P ) for

all P 3 S, P ∈ P.
A game is with externalities if and only if the worth of some coalitions depend on the

way the other players are organized, that is, there is at least one coalition S ⊆ N, and

two partitions P and P 0 containing S, such that v(S, P ) 6= v(S, P 0). In this case, it is

necessary to specify not only the coalition whose worth we are interested in but also the

organization of the other players.

In this paper we make a proposal for the division of the surplus in such Partition

Function Games. By a solution concept, or a value, we mean a mapping ϕ which associates

with every game (N, v) a vector in Rn that satisfies
P

i∈N ϕi(N, v) = v(N, (N,∅)). A

value determines the payoffs for every player in the game and, by definition, it is always

efficient since the value of the grand coalition is shared among the players. Note that

we are assuming that all the players end up together. Hence, we have in mind economic

environments where forming the grand coalition is the most efficient way of organizing the

society, that is, v(N, (N,∅)) ≥
P

S∈P v(S, P ) for every partition P ∈ P. All international
negotiations highlighted in the Introduction (as well as many other interesting economic

environments) clearly satisfy that the players maximize total surplus when they take

decisions jointly, because they can internalize the externalities.

To illustrate some properties, we will use very simple examples. In particular, we will
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refer to games that we will denote by (N,wS0,P 0), that satisfy

wS0,P 0(S
0, P 0) = wS0,P 0(N, (N,∅)) = 1, and wS0,P 0(S.P ) = 0 otherwise.

In the game (N,wS0,P 0) there are only two cases where a coalition has a positive worth,

the first is for the coalition S0 when the players are organized according to the partition

P 0, and the second is for the grand coalition.

3 The “basic” axioms

The most natural requirements to impose on a value are those underlying the construc-

tion of the Shapley value in games without externalities, namely the axioms of linearity,

symmetry, and finally the “dummy” player axiom. We first define the notion of a dummy

player and the operations of addition, multiplication by a scalar, and permutation of

games.

A player i ∈ N is called a dummy player in the game (N, v) if and only if for every

(S, P ) ∈ ECL, then v(S, P ) = v(S0, P 0) for any embedded coalition (S0, P 0) that can be

obtained from (S, P ) by changing the affiliation of player i. Hence, for a player i to be

a dummy player it must be the case that he alone receives zero for any organization of

the other players. Also a dummy player has no effect on the worth of any coalition S. In

games in partition function form, this also means that if player i is not a member of S,

changing the organization of players outside S by moving player i around will not affect

the worth of S.2

The addition of two games (N, v) and (N, v0) is defined as the game (N, v+ v0) where

(v + v0)(S, P ) ≡ v(S, P ) + v0(S, P ) for all (S, P ) ∈ ECL. Similarly, given the game

(N, v) and the scalar λ ∈ R, the game (N,λv) is defined by (λv)(S, P ) ≡ λv(S, P ) for all

(S, P ) ∈ ECL.

Let σ be a permutation of N. Then the σ permutation of the game (N, v) denoted by

(N,σv) is defined by (σv)(S, P ) ≡ v(σS, σP ) for all (S, P ) ∈ ECL.

2This definition of a dummy player agrees with the Bolger (1989) definition and it is different than

the Myerson (1977) definition. A dummy player in Myerson (1977) is not necessarily a dummy player

according to our definition. However a dummy player in our setup is a dummy player according to

Myerson (1977) as well. See Section 6 for more details.
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The three basic axioms a value ϕ should satisfy are immediately derived from the

original Shapley (1953) value axioms and are:

1. Linearity: A value ϕ satisfies the linearity axiom if:

1.1. For any two games (N, v) and (N, v0), ϕ(N, v + v0) = ϕ(N, v) + ϕ(N, v0).

1.2. For any game (N, v) and any scalar λ ∈ R, ϕ(N,λv) = λϕ(N, v).3

2. Symmetry: A value ϕ satisfies the symmetry axiom if for any permutation σ of N ,

ϕ(N,σv) = σϕ(N, v).

3. Dummy player: A value ϕ satisfies the dummy player axiom if for any player i which

is a dummy player in the game (N, v), ϕi(N, v) = 0.

The axiom of linearity means that when a group of players shares the benefits (or

the costs) stemming from two different issues, how much each player obtains does not

depend on whether they consider the two issues together or one by one. Hence, the

agenda does not affect the final outcome. Also, the sharing does not depend on the unit

used to measure the benefits. Symmetry is a property of anonymity: the payoff of a

player is only derived from his influence on the worth of the coalitions, it does not depend

on his “name”. Finally, the dummy player axiom only makes sure that a player with

absolutely no influence on the gains that any coalition can obtain, should not receive nor

pay anything.

Shapley (1953) proved that these three basic axioms characterize a unique value in the

class of games with no externalities. Let us denote by (N, bv) a game with no externalities,
where bv : 2N → R is a function that gives the worth of each coalition (independently of

the partition structure). The Shapley value φ can be written as:

φi(N, bv) =X
S⊆N

βi(S, n)bv(S) =X
S⊆N
S3i

βi(S, n)MCi(S) for all i ∈ N , (1)

3Note that in games with no externalities, the axiom of Linearity can be reduced to part 1.1. In fact,

in that class of games, property 1.2 is implied by part 1.1 together with the other axioms. In games with

externalities this is not the case.
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where MCi(S) is the marginal contribution of player i ∈ S to the coalition S, MCi(S) ≡bv(S)− bv(S\{i}), and we have denoted by βi(S, n) the following numbers:
βi(S, n) =

 (|S|−1)!(n−|S|)!
n!

for all S ⊆ N, if i ∈ S

− |S|!(n−|S|−1)!
n!

for all S ⊆ N, if i ∈ N\S.

These three basic axioms impose some structure on a value for Partition Function

Games, as can be seen by the results in the Appendix. However, they still leave a

considerable amount of leeway as regarding the question of how one should distribute

v(N, (N,∅)) among the players. As will become clear later, the two values of Myerson

(1977) and Bolger (1989) indeed satisfy these basic axioms, as do many other possible

values one could define.

In the next section we describe an alternative (and stronger) symmetry axiom leading

to a very natural method of constructing a value for Partition Function Games, namely

“taking averages”.

4 The strong symmetry axiom and the average ap-

proach

The symmetry axiom imposes much more structure on a value for games with no ex-

ternalities, than it does on a value when there are externalities. Consider for example

the game with no externalities (N, bv), where bv(S0) = bv(N) = 1 and all other coali-

tions receive zero. In such a game the symmetry axiom implies that all the players

who do not belong to S0 should obtain the same payoff. Take now the game with

externalities (N = {1, 2, 3, 4, 5}, wS0,P 0) where only the embedded coalition (S0, P 0) =

({1, 2} , ({1, 2} , {3} , {4, 5} ,∅)) and the grand coalition have a worth of 1, and all other
embedded coalitions have zero worth. Symmetry implies that players 4 and 5 should

receive the same payoff. But symmetry does not tell anything about the payoff of player

3 as compared with them. However, the role of the three players in this game is, in some

sense, similar: it is only when they form the partition ({1, 2} , {3} , {4, 5} ,∅) that the
coalition {1, 2} generates value. If the position of any of them changes, {1, 2} gets zero.
Our strong symmetry axiom will propose that player 3 should receive the same as 4 and
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5. It captures the intuitive notion that individuals with “identical power” should receive

the same payoff.

The strong symmetry axiom strengthens the symmetry axiom by requiring that the

payoff of a player should not change after permutations in the set of players in N\S, for
any embedded coalition structure (S, P ). For simplicity, we illustrate this new condition

through the game (N,wS0,P 0) introduced before. We consider a permutation of the set

N\S0 so that we obtain a new (S0, P 00) ∈ ECL, we denote such a permutation by σS0,P 0 .

For example, a permutation σS0,P 0 can generate

(S0, P 00) = ({1, 2} , ({1, 2} , {4} , {3, 5} ,∅)).

Strong symmetry requires that player 3 receive the same payoff in the games (N,wS0,P 0)

and (N,wS0,P 00). Note that both P 0 and P 00 are of equal sizes.

Formally, given a coalition S and a partition P containing that coalition the σS,P

permutation of the game (N, v) denoted by (N, σS,Pv) is defined by (σS,Pv)(S, P ) =

v(S, σS,PP ), (σS,Pv)(S, σS,PP ) = v(S, P ), and (σS,Pv)(R,Q) = v(R,Q) for all (R,Q) ∈
ECL\ {(S, P ), (S, σS,PP )} .

2’. A value ϕ satisfies the strong symmetry axiom if:

(a) for any permutation σ of N , ϕ(N,σv) = σϕ(N, v),

(b) for any (S, P ) ∈ ECL and for any permutation σS,P , ϕ(N,σS,Pv) = ϕ(N, v).

The strong symmetry axiom, naturally, implies symmetry and reduces to the Shapley

symmetry for games with no externalities. It imposes in addition to symmetric treatment

of individual players, the symmetric treatment of “externalities” generated by players in

a given embedded coalition structure. Exchanging the names of the players inducing the

same externality does not affect the payoff of any player.

When we add the strong symmetry axiom to the two basic axioms of linearity and

dummy player, we can look for values for games with externalities in a different and very

appealing way. We will refer to this way as the “average approach”, that we now describe.

In an environment with externalities, the worth of a group of players is influenced by

the way the outside players are organized. What should then be the worth “assigned” to
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that group of players? The most natural and obvious candidate is to take an average of

the different worths of this group for all the possible organizations of the other players.

Repeating this process for all groups leads to an “average” game with no externalities.

A focal candidate now for a value for the original game with externalities, is the Shapley

value for the average game.

More formally, the “average approach” consists of, first constructing an average game

(N, ev) associated to the Partition Function Game (N, v) by assigning to each coalition

S ⊆ N the average worth ev(S) ≡ PP3S,P∈P α(S, P )v(S, P ), with
P

P3S,P∈P α(S, P ) = 1.

We refer to α(S, P ) as the “weight” of the partition P in the computation of the value

of coalition S ∈ P . Second, the average approach constructs a value ϕ for the Partition

Function Game (N, v) by taking the Shapley value of the game (N, ev). Therefore, if a
value ϕ is obtained through the average approach then, for all i ∈ N ,

ϕi(N, v) =
X
S⊆N

βi(S, n)ev(S) =X
S⊆N

"
βi(S, n)

X
P3S,P∈P

α(S, P )v(S, P )

#
.

We say a value is constructed through the average approach, if it can be derived in

the two stage procedure described above of constructing an average game and calculating

its Shapley value.

The following theorem shows the relationship between the average approach and the

strong symmetry axiom:

Theorem 1 Assume the value ϕ satisfies linearity and dummy player. Then, ϕ can be

constructed through the average approach if and only if it satisfies the strong symmetry

axiom.

Theorem 1 provides additional intuition and support for the strong symmetry axiom:

under the two basic axioms of linearity and dummy player, it is equivalent to the possibility

of using the average approach. Similarly, it clearly states which is the additional property

we are assuming if we use the (natural) average approach to construct a value.

The average approach as such does not imply any restrictions regarding the different

weights. However, to fulfill the symmetry and the dummy player axioms, the weights must

satisfy several constraints. First, the weights must be symmetric, that is, they must only
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depend on the size distribution of the partition. Second, the dummy player axiom imposes

a certain link between the weight of partition P for the coalition S and the weights of

the partitions that result from moving any player in S to the coalitions in P other than

S. The next corollary describes the precise restrictions stemming from the dummy player

axiom.

Corollary 1 A value ϕ satisfies linearity, strong symmetry, and dummy player if and

only if it can be constructed through the average approach with symmetric weights satis-

fying the following condition:

α(S, P ) =
X

R∈P\S
α(S\{i}, P ∪ (R ∪ {i})\R) (2)

for all i ∈ S and for all (S, P ) ∈ ECL with |S| > 1.4

The three requirements of linearity, strong symmetry, and dummy player do not yield

a unique value for games with externalities. To illustrate this statement, we provide in the

following tables the parametrized family of values that satisfy the three axioms for games

with three and four players. We write in the table the weight α(S, P ) of each embedded

coalition structure (S, P ).

To illustrate how the values share the benefits of cooperation in some examples,

we also include at the end of each row in the tables (a row corresponds to an em-

bedded coalition structure (S, P )) the payoff that each player in the coalition S ob-

tains in the game (N,wS,P ) (remember that wS,P (S, P ) = wS,P (N, (N,∅)) = 1, and

wS,P (S
0, P 0) = 0 otherwise). Note that, by strong symmetry, what each player in N\S

receives is equal, and augments the payment to members of S to one. For example, when

(S, P ) = ({1}, ({1}, {2}, {3}), the value gives the following payoff profile: ϕ(N,wS,P ) =

(2−a
3
, 1+a
6
, 1+a
6
).

4When R = ∅, we slightly abuse notation (to keep it simple) by assuming that the partition P ∪ (∅∪
{i})\∅ also includes the empty set.
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(S, P ) for n = 3 α(S, P ) ϕi(N,wS,P ) for i ∈ S

({i} , ({i} , {j} , {k} ,∅)) 1− a 2−a
3

({i} , ({i} , {j, k} ,∅)) a 1+a
3

({ij} , ({i, j} , {k} ,∅)) 1 1
2

({N} , (N,∅)) 1 1
3

Table 1

The three player case serves to clearly demonstrate why strong symmetry is not suffi-

cient to guarantee uniqueness of the value. For this case, strong symmetry and symmetry

are equivalent and fail to provide a unique value since any real number a generates a

different value satisfying for n = 3 all three axioms.

This table allows us to informally discuss some features of the family of solutions

proposed so far. For a > 1 player i in the game ({1, 2, 3}, w{i},({i},{j},{k},∅)) would receive
less than 1

3
. The same would happen for a < 0 in the game ({1, 2, 3}, w{i},({i},{j,k},∅)). One

may argue that this is not a convincing feature in these games. Indeed, the only coalition

other than the grand coalition that may generate some profits is {i} , hence it does not
seem sensible that player i ends up enjoying less than a third of the whole profit. It may

hence, be more sensible to consider values such that a ∈ [0, 1] . In fact, since the issue we
are interested in is related to the existence of externalities one may argue that a = 0 and

a = 1 may not be appropriate since they are ignoring the effect of the coalition structure.

The table for four players is given as follows:

(S, P ) for n = 4 α(S, P ) ϕi(N,wS,P ) for i ∈ S

({i} , ({i} , {j} , {k} , {l} ,∅)) 1− b− 2c 1
4
(2− b− 2c)

({i} , ({i} , {j} , {k, l} ,∅)) c 1
4
(1 + c)

({i} , ({i} , {j, k, l} ,∅)) b− c 1
4
(1 + b− c)

({i, j} , ({i, j} , {k} , {l} ,∅)) 1− b 1
12
(4− b)

({i, j} , ({i, j} , {k, l} ,∅)) b 1
12
(3 + b)

({i, j, k} , ({i, j, k} , {l} ,∅)) 1 1
3

(N, (N,∅)) 1 1
4

Table 2
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The parameters b and c can be any real numbers. Again, as discussed before one may

impose constraints on these parameters so as to yield a relatively larger payoff to the

player(s) generating positive profits on their own. This would imply b ∈ (0, 1) , c ∈
¡
0, 1

3

¢
and b ∈ (c, 1− 2c) . Still many values remain possible.
In the next section we introduce the final axiom and obtain a unique value.

5 The similar influence axiom and the value

The fourth axiom that we propose addresses the issue that similar environments should

lead to similar payoffs for the players. To understand the motivation for this axiom

take N = {1, 2, 3} and consider the games (N,wS0,P 0) and (N,wS0,P 00), where S0 = {1},
P 0 = ({1}, {2, 3} ,∅) and P 00 = ({1}, {2} , {3} ,∅). The two games are very similar. In
both only player 1 can produce some benefits alone. The only difference is, that in the

first game players 2 and 3 should be together for the benefits to player 1 to be realized,

while in the second game players 2 and 3 should be separated. The payoffs for the three

players in these games according to any value ϕ satisfying the three previous axioms are:

ϕ(N,wS0,P 0) = (
1+a
3
, 2−a
6
, 2−a
6
) and ϕ(N,wS0,P 00) = (

2−a
3
, 1+a
6
, 1+a
6
).

The payoff of players 2 and 3 (hence, the payoff of player 1 as well) can differ very

much depending on whether they influence the worth of player 1 by staying together or

separated. However, we think that this influence is very similar and therefore it is sensible

that players 2 and 3 should receive the same payoff in both games. This idea leads to the

next axiom.

To introduce the similar influence axiom, we first define the notion of “similar in-

fluence”. We say that a pair of players {i, j} ⊆ N, i 6= j, has similar influence in

games (N, v) and (N, v0) if v(T,Q) = v0(T,Q) for all (T,Q) ∈ ECL\{(S, P ), (S, P 0)},
v(S, P ) = v0(S, P 0), and v(S, P 0) = v0(S, P ), where the only difference between the parti-

tions P and P 0 is that {i}, {j} ∈ P\S while {i, j} ∈ P 0\S.

4. Similar influence: A value ϕ satisfies the similar influence axiom if for any two

games (N, v) and (N, v0) and for any pair of players {i, j} that has similar influence
in those games, we have ϕi(N, v) = ϕi(N, v0) and ϕj(N, v) = ϕj(N, v0).
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Note that when applied to the following simple class of games (N,wS,P ), the similar in-

fluence axiom reduces to the requirement that for any two such games with (S, P ), (S, P 0) ∈
ECL, where the only difference between P and P 0 is that a pair of players i, j ∈
N\S, i 6= j, are singletons in P and are a pair in P 0 (or the other way around), we

have ϕi(S, P ) = ϕi(S, P
0) and ϕj(S, P ) = ϕj(S, P

0).

To see the restrictions of this axiom for games with small number of players, notice

that it implies a = 1/2 for the games with three players that we introduced at the end

of last section. Similarly, for games with four players, the similar influence axiom implies

that the parameters defining the value are b = 1/2 and c = 1/6.

In the next theorem we show there is a unique value satisfying the four axioms, and

provide an explicit and simple formula to calculate it.

Theorem 2 There is a unique value ϕ∗ satisfying linearity, strong symmetry, dummy

player, and similar influence. The value ϕ∗ is given by:

ϕ∗i (N, v) =
X

(S,P )∈ECL

Q
T∈P\S

(|T |− 1)!

(n− |S|)! βi(S, n)v(S, P )

for all game (N, v) and for all player i ∈ N .

For simplicity, we will refer from now on to the value ϕ∗ identified in Theorem 2 as the

value. We now give a first interpretation of it. Remember that βi(S, n) is the coefficient

of v(S) in the expression of the Shapley value in a game with no externalities. It seems

reasonable that the coefficient multiplying v(S, P ) should be smaller, since v(S, P ) is

the worth of coalition S only if the partition P forms. The factor multiplying βi(S, n)

measures how to “discount” the outcome for the players, depending on the partition P.

This factor is nothing but the weight associated with the partition P in the average

approach, as stated in the following corollary:

Corollary 2 The value ϕ∗ can be constructed through the average approach by using, for

all (S, P ) ∈ ECL, the following weights:

α∗(S, P ) =

Q
T∈P\S

(|T |− 1)!

(n− |S|)! .
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According to Corollary 2, the weights are all strictly positive and more weight is given

to those partitions with large coalitions than to partitions with a large number of small

coalitions.

To gain more intuition about the value, and to see how it relates to the original

Shapley value for games with no externalities, we now provide another way of writing and

computing the value as an average of marginal contributions. We take the convention

that |∅| = 1 and we write:

MCi(S, P ) ≡ v(S, P )−
X

R∈P\S

|R|
(n− |S|+ 1)v(S\{i}, P ∪ (R ∪ {i})\R).

That is, MCi(S, P ) is a marginal contribution of player i ∈ S to the coalition S, given

the coalition structure P , where the worth of the coalition S\{i} is some average of the
worth of this coalition in all the possible coalition structures that can emerge by moving

i in P. Then we can write ϕ∗ as follows:

ϕ∗i (N, v) =
X

(S,P )∈ECL
S3i

Q
T∈P

(|T |− 1)!

n!
MCi(S, P ) (3)

=
X
S⊆N
S3i

βi(S, n)X
P3S
P∈P

α∗(S, P )MCi(S, P )

 .
The expression (3) is similar to the formula (1) for the Shapley value, once we interpretP
P3S
P∈P

α∗(S, P )MCi(S, P ) as the (average) marginal contribution of player i ∈ S to the

coalition S. Hence, the payoff of player i, according to the value ϕ∗, is an average of his

marginal contribution to the different groups of players he can join, taking into account

all the ways the whole society can be organized.

6 Comparison with previous values and further prop-

erties

Two previous solutions for the problem of sharing surplus with externalities were proposed

by Myerson (1977) and Bolger (1989). Myerson (1977) adapts the Shapley value axioms to
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environments with externalities and derives an extension, that we will denote ϕM , of the

Shapley value for this class of environments. The three axioms that uniquely characterize

the Myerson’s extension are linearity, symmetry, and a carrier axiom requiring that the

surplus is shared only among the members of the carrier. The Myerson value of a player

is given by:

ϕM
i (N, v) =

X
(S,P )∈ECL

(−1)|P |−1 (|P |− 1)!

1n − X
T∈P\S
i/∈T

1

(|P |− 1) (n− |T |)

 v(S, P ),
where |P | is the number of non-empty coalitions in P .

The carrier axiom implies both efficiency and a dummy player concept much stronger

than the one assumed in our analysis. A set S of players is a carrier if: v(eS, P ) =
v(eS ∩ S, P ∧ {S,N\S}) for all (eS, P ) where P ∧Q = {S ∩ T |S ∈ P, T ∈ Q,S ∩ T 6= ∅}.
The carrier axiom states that if S is a carrier in the game (N, v), the sum of payoffs

assigned to the members of S equals v(N, (N,∅)). We can say that, in the game (N, v),

a player i ∈ N is a dummy player, in the Myerson sense if there exists a carrier set S

with i /∈ S. Given that all the dummy players are symmetric, they all get zero according

to the Myerson value.

A problematic aspect of the carrier axiom is that in many cases a dummy player (in

the Myerson’s sense) might, through changes in his position in the partition, affect the

outcome reached. Take for example the game with three players ({1, 2, 3}, wS0,P 0), where

(S0, P 0) = ({1}, ({1}, {2, 3},∅)). In this game, player 1 is a carrier and hence players 2 and
3 are dummy players. Therefore, ϕM

1 (N,wS0,P 0) = 1 and ϕM
2 (N,wS0,P 0) = ϕM

3 (N,wS0,P 0) =

0. However, player 2 can affect the outcome since player 1 will get zero rather than one

if player 2 does not join player 3. Thus we feel player 2 is not “really” a dummy player.

Also note that, due to the carrier axiom, the Myerson value yields very different

outcomes to games that are quite similar. Consider the game ({1, 2, 3}, wS0,P 00), where

(S0, P 00) = ({1}, ({1}, {2}, {3},∅)). This game is similar to the game (N,wS0,P 0) proposed

previously in the sense that the “worth” of the players is similar. However, players 2 and 3

are not dummy now and the Myerson value for these players is surprising since it does not

allocate any payoff to player 1 : ϕM
1 (N,wS0,P 00) = 0 and ϕM

2 (N,wS0,P 00) = ϕM
3 (N,wS0,P 00) =

1/2.
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Bolger (1989) obtains a unique value ϕB characterized by our properties of linearity,

symmetry, and dummy player, and an additional requirement based on the behavior of

the value in simple games (the worth of any coalition is either one or zero). He says

that the coalition S is winning with respect to (S, P ) if v(S, P ) = 1. Now, consider an

embedded coalition (S\{i}, P ∪(R∪{i})\R) obtained from (S, P ) by moving player i ∈ S

from S to R ∈ P\S. In Bolger’s terminology this is called a move for player i. Such a
move is called a pivot move if S wins with respect to (S, P ) and S\{i} loses with respect
to (S\{i}, P ∪ (R∪{i})\R). The additional property Bolger (1989) introduces states that
for simple games, a player i obtains the same payoff in two games (N, v) and (N, v0) if he

has the same number of pivot moves in both games. There is no closed form expression

for ϕB.

The values ϕM and ϕB while satisfying our basic properties, cannot be constructed

through the average approach, as shown in the next proposition.

Proposition 1 The values ϕM and ϕB fail to satisfy the strong symmetry axiom.

Straightforward calculations show that the values proposed by Bolger and Myerson do

not satisfy the similar influence property as well.

Finally, we would like to comment on the behavior of the various values with respect

to an alternative axiom concerning the dummy player. Our dummy player (as well as

Bolger’s) axiom imposes that a dummy player should obtain zero, but it does not require

that this player does not influence the payoffs obtained by the other players. In games

with no externalities, the basic axioms do indeed imply this additional property. However,

this is not necessarily so in games with externalities. We call this property the “strong

dummy player” property:

3’. Strong Dummy Player: A value ϕ satisfies the strong dummy player axiom if for

any dummy player j in the game (N, v), ϕi(N, v) = ϕi(N\{j}, v) for all i in N\{j}.

We note that, given that a value is efficient, the strong dummy player axiom implies the

dummy player axiom. The next proposition shows that even though the strong dummy

property was not imposed as a requirement, our value does satisfy it.
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Proposition 2 The value ϕ∗ satisfies the strong dummy player property.

Bolger’s value (as pointed out in Bolger, 1989) violates the strong dummy player axiom.

On the other hand, the value proposed by Myerson (1977) satisfies the requirement; his

dummy player property (implied by his carrier axiom) is still much more demanding than

the strong dummy player property. Hence, the strong dummy player axiom is not sufficient

to characterize, together with symmetry and linearity, a unique value. In fact, the class

of values satisfying these three axioms is still large. Even if we substitute symmetry by

strong symmetry, or if we add the similar influence axiom, a value is still not singled out.

7 The value allocation for a world climate change

program

The purpose of our approach is to provide a simple method to share the gains from co-

operation in economic environments. In this section, we illustrate the approach in a par-

ticularly interesting environment where we can use the characteristic function estimated

in Eyckmans and Tulkens (2003).

These authors consider a question that has received a lot of attention both in pol-

icy debates and in the economic literature: how to reach international agreements on

climate control and how to design the compensation mechanisms. This is a game with

positive externalities, since outside countries benefit whenever other countries reach an

agreement. Eyckmans and Tulkens (2003) analyze global climate negotiations from a

game-cooperative point of view. They consider six regions: USA (player 1), Japan (player

2), European Union (EU, player 3), China (player 4), Former Soviet Union (FSU, player

5) and the Rest of the World (ROW, player 6). They determine the agreements reached

and the payoffs accruing to the various regions under alternative modes of cooperation,

that is, they estimate the value function v for any ECL. They focus their analysis on the

stability properties of alternate transfer systems.

We approach the problem from an axiomatic point of view and calculate the payoff

configuration generated by our value for this “climate change game”. The game is given

by the payoffs received by each coalition for any of the 203 possible partitions of the six
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player set.5 This game is characterized by wide-spread externalities. To illustrate this

feature, we report a few payoff configurations.

When the partition consists of six singletons, the payoffs to the six players respectively

are: 78.352, 42.909, 102.729, 9.140, 23.793, and 81.134 yielding a total world welfare of

338.057. If all six regions form one coalition they receive 339.831, which is the largest

payoff the world can receive. When the USA, Japan and the EU form one coalition

whereas China, the FSU and ROW stay as singletons the payoffs are given by 224.005 to

the three member coalition and 9.142, 23.798 and 81.154 to players 4, 5 and 6 respectively.

If players 4, 5 and 6 form a coalition as well then the payoff to the coalition {1, 2, 3} is
224.913 and it is 114.394 to the coalition {4, 5, 6}. The previous number illustrates that
this is an environment with positive externalities.

Our value takes into account these and all other externalities and yields the following

payoff configuration to the six players respectively:6

ϕ∗(N, v) = (78.692, 43.070, 103.203, 9.293, 23.933, 81.639) .

Our value recommendation can be attained by having the players carry out efficient

climate change policy, and a transfer formula assuring that each region receives its payoff.

This suggestion naturally ignores the possibility of manipulation and strategic behavior

on part of the regions. It also takes for granted the complete information assumption.

We think of it as a desirable outcome, that an international court or body of nations can

justify as an arbitration offer to settle international disputes.

8 Conclusion

We set out to provide an axiomatic solution concept for environments with externalities.

The construction proceeded in stages. We first took the natural extensions of the Shapley

axioms to our environment and studied their implications. They generated a large family

of possible values. We then strengthened the symmetry axiom and showed it is equivalent

to an average approach for resolving the value problem.

5We are grateful to Johan Eyckmans for providing the data set to illustrate our value.
6We thank Nina Kirma for computational assistance.
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The average approach amounts to calculating a value for a game with externalities by

associating with it a game with no externalities, where each coalition is assigned a payoff

which is an average of its payoff over all possible partitions containing it. The Shapley

value of the average game is then taken to be the value of the original game. There are

several restrictions on the weighting method, but still many values remain as possible

solutions.

The final axiom we added regarded the behavior of the value in very similar games.

This was called the similar influence axiom, since the only difference between the games

was the pairing of two singletons in one partition into a pair in the other game. We

wanted the value assigned to each of the two concerned players to be the same in both

games. We showed there is a unique value that satisfies all these axioms. This value,

given by a simple formula, can be easily calculated and generates a payoff vector for any

environment with externalities.

There have been two previous attempts to provide a normative solution to the sharing

problem in environments with externalities, by Myerson (1977) and Bolger (1986). The

main advantages of our value are the plausible nature of the axioms characterizing it and

its ease of calculation. It uses a reasonable dummy player property, and furthermore

satisfies the strong dummy player property whereby the removal of a dummy player has

no effect on the values of the other players.

Our value can be used to resolve distributional problems in very general settings.

It can determine a benchmark result arbitrators might consider as a good compromise.

We applied it to a climate change game based on actual data and generated a payoff

configuration that can serve as a basis for a system of transfers across regions.

There are several open questions regarding the axioms characterizing the value. It

is not clear which, if any, of the basic axioms can be relaxed by the introduction of the

strong dummy player axiom. It is also of interest to study whether or not there exist

axioms different than the similar influence axiom, which are sensible in certain economic

environments and which lead to a unique value. In actual applications it might also be

that certain suggestions generated by only a subset of the axioms form an appropriate

solution. Also, the value may be characterized through properties different from the ones

we use in this paper.
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The approach in this paper has been axiomatic and it would be interesting to construct

game forms that implement the value constructed. Pérez-Castrillo and Wettstein (2001)

provided a deterministic mechanism that implements the Shapley value in pure strategy

Subgame Perfect Equilibrium.

The analysis throughout the paper proceeded under the assumption of transferable

utility. The extension to environments without side payments remains an interesting

topic of further research.

9 Appendix

Prior to providing the proofs of the results stated in the paper, we start by deriving

the properties of solutions satisfying the basic axioms of linearity, symmetry, and dummy

player. In order to study the implications of these as well as further axioms, it is convenient

to introduce a natural basis for the space of Partition Function Games. Consider the

following simple class of games, a generic element of which is denoted by (N, vS,P ), with

(S, P ) ∈ ECL. The game (N, vS,P ) is defined by vS,P (S0, P 0) = 1 if (S0, P 0) = (S, P ) and

zero otherwise. This set of games forms a basis for the set of Partition Function Games,

since for all (N, v) we can write:

v =
X

(S,P )∈ECL
v(S, P ) · vS,P .

We will use in this Appendix the basis formed by the games vS,P instead of the alternative

(and possibly more natural) basis wS,P for computational simplicity.

The following proposition establishes several properties of the value ϕ implied by the

basic axioms. Properties (a), (b), and (c) state immediate implications from, respec-

tively, linearity, efficiency (implicitly included in the definition of a value), and symmetry.

Property (d) highlights the implication of the fact that if a value satisfies the three basic

axioms, then it must coincide with the Shapley value for games with no externalities.
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Lemma 1 If the value ϕ satisfies linearity, symmetry, and dummy player, then:

(a) ϕi(N, v) =
P

(S,P )∈ECL ϕi(N, vS,P )v(S, P ) for all i ∈ N.

(b)
P

i∈N ϕi(N, vS,P ) = 0 for all (S, P ) ∈ ECL, (S, P ) 6= (N, (N,∅)).

(c) ϕi(N, vS,P ) = ϕj(N, vS,P ) for all i, j ∈ S, for all (S, P ) ∈ ECL.

(d)
P

P3S
P∈P

ϕi(N, vS,P ) = βi(S, n) for all S ⊆ N , for all i ∈ N.

Proof. Properties (a), (b), and (c) are immediate. To prove (d), for any S ⊆ N

denote by (N, bvS) the game with no externalities defined by bvS(S, P ) = 1 for any P 3 S

and zero otherwise. The Shapley value of player i ∈ S in bvS is φi(N, bvS) = βi(S, n) and

it should coincide with ϕi(N, bvS). Since bvS = PP3S,P∈P vS,P , linearity of ϕ implies that

ϕi(N, bvS) =PP3S,P∈P(N, vS,P ), thus proving the proposition.

The dummy property also implies important restrictions (stemming from the struc-

tural properties of Partition Function Games) on the behavior of the value over basis

games.

Lemma 2 If the value ϕ satisfies linearity, symmetry, and dummy player, then

ϕi(N, vS,P ) +
X

R∈P\S
ϕi(N, vS\{i},P∪(R∪{i})\R) = 0 (4)

for all i ∈ S and for all (S, P ) ∈ ECL with |S| > 1.

Proof. Consider (S, P ) ∈ ECL with |S| > 1 and i ∈ S. Define the game (N, viS,P ) as

viS,P (S
0, P 0) = 1 for (S0, P 0) = (S, P ) and for all (S0, P 0) = (S\{i}, P ∪ (R ∪ {i})\R), for

some R ∈ P\S, otherwise viS,P (S0, P 0) = 0; that is, viS,P = vS,P +
P

R∈P\S vS\{i},P∪(R∪{i})\R.

The proposition follows immediately from the fact that player i ∈ S is a dummy player

in (N, viS,P ), hence his value in (N, viS,P ) must be zero.

We now proceed to provide the proofs of the other propositions stated in the paper.

Proof. of Theorem 1. Linearity implies that the value ϕ satisfies the strong sym-

metry axiom for all games if and only if it satisfies the axiom for the games (N, vS,P )

for (S, P ) ∈ ECL. If ϕ can be constructed through the average approach, then for all

(S, P ) ∈ ECL, ϕi(N, vS,P ) = α(S, P )βi(S, n) for all i ∈ N, for some vector of weights

(α(S, P ))(S,P )∈ECL. The expression βi(S, n) is the same for all players i ∈ S, and it is also

23



the same for all players i ∈ N\S. Therefore, ϕi(N, vS,P ) = ϕj(N, vS,P ) for all i, j ∈ S and

for all i, j ∈ N\S, which is equivalent to the requirement of the strong symmetry axiom
for the basic games (N, vS,P ). Hence, the value ϕ satisfies the strong symmetry axiom for

all games.

Now assume ϕ satisfies the linearity, dummy player, and strong symmetry axioms.

We first show that for all (S, P ) ∈ ECL, the ratio ϕi(N, vS,P )/βi(S, n) is the same for

any i ∈ N . By strong symmetry, the property holds for (S, P ) = (N, {N,∅}). For
(S, P ) ∈ ECL, (S, P ) 6= (N, {N,∅}), both ϕi(N, vS,P ) and βi(S, n) are the same for all

players in S, and they are also the same for all players in N\S, because of the strong
symmetry axiom. Moreover, by Proposition 1(b) (that holds because strong symmetry

implies symmetry),
P

i∈N ϕi(N, vS,P ) = 0, i.e., |S|ϕi(N, vS,P ) + (n− |S|)ϕj(N, vS,P ) = 0,

for all i ∈ S, j ∈ N\S. Given that |S|βi(S, n) + (n− |S|)βj(S, n) = 0, for all i ∈ S, j ∈
N\S, it also holds that ϕi(N, vS,P )/βi(S, n) = ϕj(N, vS,P )/βj(S, n), for all i ∈ S, j ∈ N\S.
Second, define the weights as follows: α(S, P ) = ϕi(N, vS,P )/βi(S, n), for any i ∈ N .

By Proposition 1(d),
P

P3S,P∈P ϕi(N, vS,P ) =
P

P3S,P∈P α(S, P )βi(S, n) = βi(S, n) for all

S ⊆ N. Hence,
P

P3S,P∈P α(S, P ) = 1, for all S ⊆ N .

Finally, we claim that the value ϕ can be constructed through the average approach,

using the weights α(S, P ). Indeed,

ϕi(N, v) =
X

(S,P )∈ECL
ϕi(N, vS,P )v(S, P ) =

X
(S,P )∈ECL

α(S, P )βi(S, n)v(S, P )

=
X
S⊆N

βi(S, n)
X

P3S,P∈P
α(S, P )v(S, P ).

Proof. of Corollary 1. The necessary condition is immediately implied by Theorem

1 and Proposition 2. For the sufficient part, note that if the value is constructed through

the average approach, then linearity and efficiency are immediate. Also, strong symmetry

is direct consequence of the fact that (a) βi(S, n) only depends on the players being in or

outside the set S and (b) both βi(S, n) and α(S, P ) only depend on the size of S and on

the size distribution of P . Finally, it is also easy to check that, given the other axioms,

the dummy axiom holds if and only if condition (4) holds, which corresponds to (2) when

it is written in terms of the weights α(S, P ).
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Proof. of Theorem 2. We start by showing that the value ϕ∗ satisfies the four

axioms. It obviously satisfies linearity, strong symmetry, and similar influence. To show

the dummy player axiom, note that if i ∈ N is a dummy player in a game (N, v), then

ϕ∗i (N, v) =
X

(S,P )∈ECL
ϕ∗i (N, vS,P )v(S, P )

=
X

(S,P )∈ECL
S3i

ϕ∗i (N, vS,P )v(S, P ) +
X

P 0∈P(i,P )
ϕ∗i (N, vS\{i},P 0)v(S\{i}, P 0)


=

X
(S,P )∈ECL

S3i

ϕ∗i (N, vS,P ) +
X

P 0∈P(i,P )
ϕ∗i (N, vS\{i},P 0)

 v(S, P ).
Substituting in the expressions for ϕ∗i , we get ϕ

∗
i (N, vS,P )+

P
P 0∈P(i,P ) ϕ

∗
i (N, vS\{i},P 0) =

0 and hence ϕ∗i (N, v) = 0 whenever player i is a dummy player in (N, v).

We now prove that if a value ϕ satisfies the four axioms, then ϕ = ϕ∗. Since ϕ can be

constructed through the average approach, let us denote by α(S, P ) the weights associated

to ϕ. Proving that ϕ = ϕ∗ is equivalent to proving that the weights α(S, P ) are the same

as the weights α∗(S, P ) associated to ϕ∗, that is,

α(S, P ) = α∗(S, P ) =

Q
T∈P\S

(|T |− 1)!

(n− |S|)! for all (S, P ) ∈ ECL. (5)

By symmetry, α(S, P ) only depends on the sizes of the coalitions in P . Hence, denoting

s = |S|, we can write α(S, P ) = ρ(s; t), where t = (t1, ..., th) with
Ph

k=1 tk = n− s, is the

vector of sizes of the coalitions in P different from S. We prove (5) if we show that:

ρ(s; t) =

hQ
k=1

(tk − 1)!

(n− s)!
for all s ≤ n, for all t = (t1, ..., th), with

hX
k=1

tk = n− s. (6)

We prove that the expression (6) holds through an induction argument on the size of the

coalition S, going from s = n to s = 1.

(s = n) If s = n, equation (6) holds since the only embedded coalition structure for

S = N is (N, (N,∅)) and α(S, P ) = ρ(n; 0) = 1.
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(s)We make the induction argument that (6) holds for all (s0; t0) with s0 > s.We then

prove that it also holds for every (s; t). Denote

T 0 =
(
t0 = (t01, ..., t

0
h) | t01 ≥ ... ≥ t0h and

hX
k=1

t0k = n− s− 1
)
.

By the induction argument, we know that ρ(s+1; t0) satisfies (6) for all t0 ∈ T 0.We endow
the set T 0 with the following complete lexicographic order: t0 = (t01, ..., t0h) º bt0 = (bt01, ...,bt0bh)
if t0h > bt0bh, or t0h = bt0bh and t0h−1 > bt0bh−1, and so on, or t0 = bt0.. Also, we say t0 Â bt0 if t0 º bt0
and t0 6= bt0. We rename the vectors in T 0 as t01, t02, etc., so that t01 ≺ t02 ≺ ...

For all t0 ∈ T 0, we denote by T (t0) the set of vectors t of the form t = (t0−k, t
0
k + 1)

or t = (t0, 1). Notice that the sum of the components of the vectors in T (t0) is n − s.

Moreover, all vector t with
Ph

k=1 tk = n− s belongs to T (t0) for some t0 ∈ T 0. Hence, we
prove property (6) for s if and only if we prove the following property:

ρ(s; t) =

hQ
k=1

(tk − 1)!

(n− s)!
for all t = (t1, ..., th) ∈ T (t0m), for all t0m ∈ T 0. (7)

We prove (7) through a second induction argument. This time we do the induction on

the number of elements of T 0. We will use Corollary 1 that we rewrite as

ρ(s+ 1; t0)−
hX

k=1

ρ(s; t0−k, t
0
k + 1)− ρ(s; t0, 1) = 0 for all t0 ∈ T 0. (8)

(s,m = 1) It is clear that t01 = (1, ..., 1), that is, t01 is a vector with n− s− 1 unitary
coordinates. The set T (t01) is composed of (n− s− 1) vectors of the form (2, 1, ..., 1) and
a vector (1, ..., 1). By the similar influence axiom, ρ(s; 2, 1, ..., 1) = ρ(s; 1, ..., 1).7 Hence,

(8) implies that ρ(s+ 1; t01) = (n− s)ρ(s; t1), i.e.,

ρ(s; 1, ..., 1) = ρ(s; 2, 1, ..., 1) =
1

(n− s)
ρ(s+ 1; t01) =

1

(n− s)

hQ
k=1

(t01k − 1)!

(n− s− 1)! =
1

(n− s)!
,

which corresponds to (7) for the vectors (1, ..., 1) and (2, 1, ..., 1), which are the two types

of vector in T (t01). Hence, the induction property holds for m = 1.

7Indeed, the similar influence axiom implies that α(S, P ) = α(S,P 0) whenever the only difference

between P and P 0 is that {i}, {j} ∈ P whereas {i, j} ∈ P 0, with i, j ∈ N\S.
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(s,m) We now suppose that (7) holds for up to t0(m−1), and prove that it also holds

for t0m. By the strong influence axiom, ρ(s; t) = ρ(s;bt) if bt is the vector equal to t except
that each component tk = 2 has been substituted in bt by two components with value 1.
Let us write all the vectors in T (t0m) as vectors where each component with value 2 is
substituted with two components with value 1, and let us denote the set of such vectors

as T1(t0m).
By using the induction hypothesis, we prove that ρ(s; t) is known for all t ∈ T1(t0m),

except possibly the highest vector in T1(t0m) (when we apply the lexicographic order º
defined above). To do the proof, let us write t0m = (t0m2, t0m1), where t0m1 = (1, ..., 1) and

t0m2k ≥ 2 for all k = 1, ..., r, where t0m2 = (t0m21 , ..., t0m2r ) (t0m1 may not exist for m > 1). It

is clear that the highest vector in T1(t0m) is (t0m2−r , t0m2r + 1, t0m1). Consider now any other

vector in T1(t0m). We distinguish between two possibilities:
1. If t = (t0m2−z , t

0m2
z + 1, t0m1) for some z < r, then let t0p ≡ (t0m−{z,r}, t0mz + 1, t0mr − 1).

Note that t0p ≺ t0m, hence p < m, and also note that t = (t0p−r, t0pr +1). Hence, by induction

hypothesis we already know ρ(s; t).

2. If t = (t0m2, t0m1−z , t
0m1
z + 1), or t = (t0m, 1), then ρ(s; t) = ρ(s; t0m, 1). Let t0p ≡

(t0m−r, t
0m
r − 1, 1). Again, since (t0m, 1) = (t0p−r, t0pr + 1), ρ(s; t) is already known.

Hence, we have proven that ρ(s; t) is known for all t ∈ T1(t0m), except possibly the
highest vector in T1(t0m). Therefore, in the formulae (8) (for t0 = t0m) we know all the

values except possibly the one corresponding to the highest vector in T1(t0m). Moreover,
all the other values are different from zero, hence the solution for the remaining value

is unique. Since ρ(s; t) =
hQ

k=1

(tk − 1)!/(n − |S|)! is an expression that does satisfy the
equation, it is the unique solution.

This concludes the proof of Theorem 2.

Proof. of Proposition 1. Consider the basis game (N, vS,P ) where S = {1} and
P = ({1}, {2, 3}, {4},∅). The Myerson and Bolger values assign to for this game the
following payoffs: ϕM

1 = −1/3, ϕM
2 = ϕM

3 = 1/6, and ϕM
4 = 0; whereas ϕB

1 = 7/144,

ϕB
2 = ϕB

3 = −1/72, and ϕB
4 = −1/48. Hence both values violate the strong symmetry

axiom and thus, by our Theorem 1 cannot be constructed through the average approach.
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Proof. of Proposition 2. We first introduce the following notation: Consider two

sets N and M, with N ⊂ M, and P ∈ P(N) and Q ∈ P(M). We say Q A P, or P @ Q

if the partition Q is equal to P when we take out of Q the players in M\N. To show

the strong dummy property, let α ∈ N be a dummy player in the game (N, v). For every

player i ∈ N we have

ϕi(N, v) =
X

(S0,P 0)∈ECL(N)
ϕi(S

0, P 0)v(S0, P 0)

=
X

(S,P )∈ECL(N\{α})

X
S0⊇S
P 0AP

(S0,P 0)∈ECL(N)

ϕi(S
0, P 0)v(S0, P 0)

=
X

(S,P )∈ECL(N\{α})
v(S, P )

X
S0⊇S
P 0AP

(S0,P 0)∈ECL(N)

ϕi(S
0, P 0).

Substituting in the expressions for ϕi, we get
P

S0⊇S,P 0AP
(S0,P 0)∈ECL(N)

ϕi(S
0, P 0) = ϕi(S, P ) and

hence ϕi(N, v) =
P

(S,P )∈ECL(N\{α}) v(S, P )ϕi(S, P ) = ϕi(N\{α}, v) for every i ∈ N.
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