
Median Stable Matching for College Admissions∗

Bettina Klaus† Flip Klijn‡

February 2006

Abstract: We give a simple and concise proof that so-called generalized median stable match-
ings are well-defined for college admissions problems. Furthermore, we discuss the fairness
properties of median stable matchings and conclude with two illustrative examples of college
admissions markets, the lattices of stable matchings, and the corresponding generalized median
stable matchings.
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1 Introduction

We study a specific class of two-sided matching problems, so-called college admissions problems,
in which students have to be matched to colleges (Gale and Shapley, 1962) based on the students’
and the colleges’ preferences over the other side of the market and colleges’ capacity constraints.
An outcome for such a college admissions market, a matching, is an assignment of students to
colleges such that each student is matched to at most one college and no college is matched to
more students than its capacity allows for. A key property for college admissions markets is
stability: a matching is stable if it satisfies individual rationality and no coalition of agents can
improve by rematching among themselves (no blocking).

For college admissions markets with responsive preferences,1 the set of stable matchings is
nonempty (Roth, 1985) and has a specific lattice structure (Roth and Sotomayor, 1990). A direct
consequence of this lattice structure is the polarization of stable matchings in the sense that there
is a best stable matching for the colleges (students) which is at the same time the worst stable
matching for the students (colleges). Thus, both extreme stable matchings clearly favor one
side of the market over the other. Masarani and Gokturk (1989) showed several impossibilities
to obtain a fair deterministic matching mechanism within the context of Rawlsian justice based
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1By responsiveness (Roth, 1985), a college’s preference relation over sets of students is related to its ranking of
single students in the following way: the college always prefers to add an acceptable student to any set of students
(provided this does not violate the capacity constraint) and it prefers to replace any student by a better student.
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on cardinal preference information. One way to recover fairness is to use probabilistic (stable)
matching mechanisms that are ex ante fair and/or ‘procedurally fair;’ see for instance Aldershof
et al. (1999), Klaus and Klijn (2006), and Ma (1996).

Using another approach, Teo and Sethuraman (1998) and Sethuraman et al. (2004) estab-
lished the existence of natural deterministic ‘compromising mechanisms’ for marriage and college
admissions models respectively. Specifically, they showed that if all agents order their (possibly
non-distinct) matches at the, say, k stable matchings from best to worst, then the map that
assigns to each agent of one side of the market its l-th best match and to each agent of the other
side its (k − l + 1)-st best match constitutes a stable matching. Teo and Sethuraman (1998)
and Sethuraman et al. (2004) used linear programming tools to prove that these ‘(generalized)
median stable matchings’ are indeed well-defined and stable. We use the term ‘(generalized)
median’ to emphasize not only the formal equivalence of this solution concept to (generalized)
medians in voting theory, but also to its similar spirit of compromise (Moulin, 1980, Barberà et
al., 1993).

In this note, we provide a very short and direct proof that all (generalized) median stable
matchings are well-defined and stable. Our proof is based on the lattice structure of the set
of stable matchings (Fleiner, 2002, Theorem 5.5, independently obtained the same result for
a more abstract two-sided matching model). Given that for responsive preferences the lattice
structure reflects the polarization and trade-offs that occur between the two sides of the market,
any median stable matching combines stability with some degree of ‘endstate’ fairness. Hence,
median stable matchings are compromise solutions that can be applied to conflict situations that
resemble college admissions problems.

The rest of the note is organized as follows. In Section 2, we introduce college admissions
markets and recall some results concerning stable matchings that we need for our proof. In
Section 3, we present our proof of the existence of generalized median stable matchings, define
the subset of median stable matchings and discuss their fairness properties. We conclude with
two examples of college admissions markets for which we illustrate the associated lattices of
stable matchings and the corresponding generalized median stable matchings.

2 College admissions markets

There are two finite and disjoint sets of agents: a set S = {s1, . . . , sm} of students and a set
C = {C1, . . . , Cn} of colleges. We denote a generic student by s and a generic college by C. For
each college C, there is a fixed quota qC that represents the number of positions it offers.2

Each student s has a complete, transitive, and strict preference relation ºs over the colleges
and the prospect of being unmatched. Hence, student s’s preferences can be represented by a
strict ordering P (s) of the elements in C ∪ {s}. If C ∈ C such that C Âs s, then we call C an
acceptable college for student s. Let PS = {P (s)}s∈S .

A set of students S′ ⊆ S is feasible for college C if |S′| ≤ qC . Each college C has a complete
and transitive preference relation ºC over feasible sets of students, which can be represented
by a weak ordering P (C) of the elements in P(S, qC) ≡ {S′ ⊆ S : |S′| ≤ qC}. We make two
assumptions on the preferences of a college C.3

2The marriage model is the special case of one-to-one (two-sided) matching where for all C ∈ C, qC = 1.
3See Roth and Sotomayor (1989) for a discussion of these assumptions.
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First, C’s preferences over singleton sets of students, or equivalently over individual students,
are strict. For notational convenience we denote a singleton set {s} by s. The second assumption
describes comparisons of feasible sets of students when a single student is added or replaced. If
s ∈ S is such that s ÂC ∅, then we call s an acceptable student for college C. If s, s′ ∈ S are such
that s ÂC s′, then we call student s a better student than student s′ for college C. We assume
that each college C’s preferences over feasible sets of students are based on preferences over
individual students such that C always prefers to add an acceptable student and it also prefers
to replace any student by a better student. More formally, we assume that C’s preferences are
responsive, i.e., for all S′ ∈ P(S, qC),
(r1) if s 6∈ S′ and |S′| < qC , then (S′ ∪ s) ÂC S′ if and only if s ÂC ∅ and
(r2) if s 6∈ S′ and t ∈ S′, then ((S′\t) ∪ s) ÂC S′ if and only if s ÂC t.
Let P C = {P (C)}C∈C .

A college admissions market is a triple (S, C, P ), where P = (PS , P C). A matching for college
admissions market (S, C, P ) is a function µ on the set S ∪ C such that
(m1) each student is either matched to exactly one college or unmatched, i.e.,

for all s ∈ S, either µ(s) ∈ C or µ(s) = s,
(m2) each college is matched to a feasible set of students, i.e.,

for all C ∈ C, µ(C) ∈ P(S, qC), and
(m3) a student is matched to a college if and only if the college is matched to the student, i.e.,

for all s ∈ S and C ∈ C, µ(s) = C if and only if s ∈ µ(C).
Given matching µ, we call µ(s) student s’s match and µ(C) college C’s match.

A key property of matchings is stability. First, we impose a voluntary participation condition.
A matching µ is individually rational if neither a student nor a college would be better off
by breaking a current match, i.e., if µ(s) = C, then C Âs s and µ(C) ÂC (µ(C)\s). By
responsiveness of ºC , the latter requirement can be replaced by s ÂC ∅. Thus alternatively,
a matching µ is individually rational if any student and any college that are matched to one
another are mutually acceptable. Second, if a student s and a college C are not matched to
one another at a matching µ but the student would prefer to be matched to the college and
the college would prefer to either add the student or replace another student by student s, then
we would expect this mutually beneficial adjustment to be carried out. Formally, a pair (s, C),
s 6∈ µ(C), is a blocking pair if C Âs µ(s) and (a) [ |µ(C)| < qC and s ÂC ∅ ] or (b) [ there exists
t ∈ µ(C) such that s ÂC t ].4 A matching is stable if it is individually rational and there are
no blocking pairs. With a slight abuse of notation, we denote the set of stable matchings for
college admissions market (S, C, P ) by Σ(P ) = {µ1, . . . , µk}.

Gale and Shapley (1962) proved that Σ(P ) 6= ∅. Roth and Sotomayor (1989) proved that
each college has strict preferences over different sets of students that they are matched to at
different stable matchings (even though they may be indifferent between other feasible sets of
students). Note that a similar result for the students holds trivially because of the strictness of
the students’ preferences.

Theorem 2.1 [Roth and Sotomayor (1989), Theorem 3]
Let µ, µ′ ∈ Σ(P ) and C ∈ C. Then, either µ(C) ÂC µ′(C), µ′(C) ÂC µ(C), or µ(C) = µ′(C).

4Recall that by responsiveness (a) implies (µ(C) ∪ s) ÂC µ(C) and (b) implies ((µ(C)\t) ∪ s) ÂC µ(C).
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In fact, the set of stable matchings has several other appealing features, all of which are due to
its specific lattice structure, which we explain next.

For any two stable matchings µ and µ′ we define the function µ ∨S µ′ that assigns to each
student his/her more preferred match from µ and µ′ and to each college its less preferred match
from µ and µ′.5 Formally, we define the function λ := µ ∨S µ′ on the set S ∪ C as follows. For
all s ∈ S, let λ(s) := µ(s) if µ(s) Âs µ′(s) and λ(s) := µ′(s) otherwise. For all C ∈ C, let
λ(C) := µ′(C) if µ(C) ÂC µ′(C) and λ(C) := µ(C) otherwise. In a similar way we define the
function µ ∧S µ′ that assigns to each student his/her less preferred match and to each college
its more preferred match.

Theorem 2.2 [Roth and Sotomayor (1990), Theorem 5.31]
Let µ, µ′ ∈ Σ(P ). Then, µ ∨S µ′ ∈ Σ(P ) and µ ∧S µ′ ∈ Σ(P ).

Let µ, µ′ be two stable matchings. We write µ ÂS µ′ if for all s ∈ S, µ(s) ºs µ′(s), and for some
s′ ∈ S, µ(s′) Âs′ µ′(s′). Similarly, we write µ ÂC µ′ if for all C ∈ C, µ(C) ºC µ′(C), and for
some C ′ ∈ C, µ(C ′) ÂC′ µ′(C ′). Note that ÂS and ÂC are partial orders on the set of stable
matchings Σ(P ).

Theorem 2.3 [Roth and Sotomayor (1990), Theorem 5.29]
The partial orders ÂS and ÂC are dual partial orders on the set of stable matchings Σ(P ), i.e.,
for any µ, µ′ ∈ Σ(P ), µ ÂS µ′ if and only if µ′ ÂC µ.

Summarizing Theorems 2.2 and 2.3 in algebraic terms, we obtain the following characterization
of the set of stable matchings.

Corollary 2.4 [Roth and Sotomayor (1990), Corollary 5.32]
The set Σ(P ) forms a lattice under the partial orders ÂC or ÂS with the lattice under the first
partial order being the dual to the lattice under the second partial order.

3 Generalized median stable matchings

We first introduce generalized median stable matchings. The main result of this section is a very
simple proof that for any college admissions market, generalized median stable matchings are
well-defined and stable (Theorem 3.2). In contrast to Sethuraman et al. (2004), who used a linear
programming approach, our proof is based on the lattice structure of the set of stable matchings.
Proceeding from the existence of generalized median stable matchings, we define the subset of
median stable matchings and discuss their fairness properties (Definition 3.5, Remark 3.6, and
Example 3.7). Finally, we give an illustrative example of generalized median stable matchings
in a college admissions market (Example 3.8).

Consider a college admissions market (S, C, P ). Then, the set of stable matchings Σ(P ) =
{µ1, . . . , µk} is nonempty. Each student can order the matchings in Σ(P ) according to his/her
preferences over the corresponding colleges. Formally, for each s ∈ S there is a sequence of
matchings (µs

1, . . . , µ
s
k) such that {µs

1, . . . , µ
s
k} = {µ1, . . . , µk} and for any l ∈ {1, . . . , k−1}, either

µs
l (s) Âs µs

l+1(s) or µs
l (s) = µs

l+1(s). Thus, for any l ∈ {1, . . . , k}, at µs
l student s is assigned to

5Note that by Theorem 2.1 each college’s less (or more) preferred match from µ and µ′ is well-defined.
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his/her l-th ‘(weakly) best’ match among all k stable matchings. For any l ∈ {1, . . . , k}, define
the function αS

l on the set S such that for all s ∈ S, αS
l (s) := µs

l (s).
It follows from Theorem 2.1 that each college can proceed similarly. Formally, for each C ∈ C

there is a sequence of matchings (µC
1 , . . . , µC

k ) such that {µC
1 , . . . , µC

k } = {µ1, . . . , µk} and for any
l ∈ {1, . . . , k − 1}, either µC

l (C) ÂC µC
l+1(C) or µC

l (C) = µC
l+1(C). Thus, for any l ∈ {1, . . . , k},

at µC
l college C is assigned to its l-th ‘(weakly) best’ match among all k stable matchings. For

any l ∈ {1, . . . , k}, define the function αCl on the set C such that for all C ∈ C, αCl (C) := µC
l (C).

In Theorem 3.2 we state that for any l ∈ {1, . . . , k}, functions αS
l and αCk−l+1 together

constitute a well-defined and stable matching.

Definition 3.1 Generalized median stable matchings
Let l ∈ {1, . . . , k}. Then, the l-th student optimal generalized median stable matching is defined
by function αS

l that assigns all students to their l-th (weakly) best match among all k stable
matchings. Similarly, the l-th college optimal generalized median stable matching is defined
by function αCl that assigns all colleges to their l-th (weakly) best match among all k stable
matchings.6

Sethuraman et al. (2004) used linear programming tools to prove the following theorem. We give
a simple proof of this result by exploiting the lattice structure of the set of stable matchings.

Theorem 3.2 Generalized median stable matchings are well-defined and stable
All student optimal and all college optimal generalized median stable matchings are well-defined
and stable matchings. Furthermore, for any l ∈ {1, . . . , k}, the l-th student optimal generalized
median stable matching equals the (k− l+1)-st college optimal generalized median stable match-
ing. Formally, for all l ∈ {1, . . . , k} there exists a stable matching γ ∈ ∑

(P ) such that for all
s ∈ S, γ(s) = αS

l (s), and for all C ∈ C, γ(C) = αCk−l+1(C).

Proof: Let l ∈ {1, . . . , k}. For all choices of l matchings ν1, . . . , νl out of the k stable matchings
it follows from Theorem 2.2 that ν1 ∧S · · · ∧S νl, the matching where all students are assigned
to their least preferred match of all matchings in {ν1, . . . , νl}, is well-defined and stable. Denote
the N =

(k
l

)
(possibly non-distinct) stable matchings obtained in this way by β1, . . . , βN . By

Theorem 2.2, γ = β1 ∨S · · · ∨S βN , the matching where all students are assigned to their most
preferred match of all matchings in {β1, . . . , βN}, is well-defined and stable, i.e., γ ∈ Σ(P ).

Consider a student s ∈ S. Note that for all r ∈ {1, . . . , N}, αS
l (s) ºs βr(s), which implies

αS
l (s) ºs γ(s). Also, for some r′ ∈ {1, . . . , N}, βr′(s) = µs

1 ∧S · · · ∧S µs
l = αS

l (s), which implies

6We would like to make two short remarks on the definition of generalized median stable matchings:

(1) We use the term ‘generalized median stable matching’ because for any l ∈ {1, . . . , k} the l-th (weakly) best
match can be represented as the median of all k matches with k − 1 extra weights on the l-th (weakly) best
match; i.e., l = med{1, . . . , l, . . . , l︸ ︷︷ ︸

k times

, . . . , k} (for a similar use of the term ‘generalized median’ see for instance

Moulin’s (1980) generalized median voter rules).

(2) Determining the set of generalized median stable matchings is only possible if the set of stable matchings
is known. Gusfield and Irving (1989, Section 3.5, pp. 121) provided a time- and space-optimal algorithm for
enumerating all stable matchings for one-to-one matching markets (S, C, P ) (i.e., for all C ∈ C, qC = 1) where |S| =
|C| = m; their algorithm needs O(m2+m|∑(P )|) total time. Using responsiveness and Roth and Sotomayor, 1989,
Lemma 5.6, Gusfield and Irving’s (1989) time- and space-optimal algorithm can be straightforwardly adjusted to
college admissions markets with a complexity of time of O(m

∑
C∈C qC + min{m,

∑
C∈C qC}|

∑
(P )|).
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γ(s) ºs αS
l (s). Hence, for all s ∈ S, γ(s) = αS

l (s). Finally, from the definition of ∨S and ∧S

and Corollary 2.4 it follows that for all C ∈ C, γ(C) = αCk−l+1(C). 2

Given Theorem 3.2, from now on and with some abuse of notation, the functions αS
l and αCk−l+1

[l ∈ {1, . . . , k}] denote the same stable matching, i.e., αS
l = αCk−l+1 ∈

∑
(P ).

Next, we comment on the relation between our result and Fleiner (2002, Theorem 5.5) and
describe an alternative proof of Theorem 3.2.

Remark 3.3 Alternative proofs
After finishing the first draft of this article, thanks to Jay Sethuraman, we became aware of a
similar proof for the marriage model due to Fleiner (2002, Theorem 5.5). In fact, Fleiner (2002)
noted that his Theorem 5.5 can be generalized to a more abstract setting. However, for more
general models than the college admissions market (with responsive preferences!) the set of
stable matchings can only be endowed with a lattice structure if ∨S and ∧S are replaced by
binary operations that do not necessarily reflect agents’ preferences over stable matchings (cf.
Blair, 1988, Mart́ınez et al., 2001). Consequently, since then the lattice structure does not reflect
any polarization between agents according to their preferences over stable matchings, for more
general models it is no longer clear how far the ‘generalized median stable matchings’ are natural
compromises. In fact, apart from giving a simple proof of Theorem 3.2 for the college admissions
market, we would like to argue that Fleiner’s (2002, Theorem 5.5) and our (Theorem 3.2) result
does not only describe ‘(mathematical) operations’ that induce stable matchings, but that these
‘operations’ reflect fairness trade-offs between stable matchings. In Remark 3.6 we comment on
these fairness aspects of median stable matchings.

Finally, there is another simple proof of Theorem 3.2 based on Teo and Sethuraman’s (1998,
Theorem 2) result for marriage markets. The proof works as follows. First, one uses the well-
known technique of transforming a college admissions market (with responsive preferences) into
a related marriage market by replicating all colleges according to their quota such that all
qC − 1 copies of a college have the same preferences as the original college C and such that
each student replaces a college by a fixed order over the college and its replicas (see Roth and
Sotomayor, 1990, Section 5.3.1, pp. 131). Then, Teo and Sethuraman’s (1998, Theorem 2) result
applies to the related marriage market. Since by Roth and Sotomayor (1990, Lemma 5.6) stable
matching in the related marriage market correspond to stable matchings in the original college
admissions market, any generalized median stable matching for the related marriage market is
also a generalized median stable matching for the original college admissions market and vice
versa.7

The next remark clarifies two implications of Theorem 3.2.

Remark 3.4

(i) Note that Definition 3.1 and Theorem 3.2 can be straightforwardly generalized to any subset
Σ′ ⊆ Σ(P ) of stable matchings. In this case, however, a generalized median stable matching
may be a stable matching that is no longer in Σ′.

7This alternative and elegant proof of Theorem 3.2 was suggested by one of the referees.
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(ii) It is also interesting to note that by construction of the generalized median stable matchings
each side of the market is unanimous on the set of generalized median stable matchings. More
precisely, for all l ∈ {1, . . . , k − 1}, either [αS

l = αS
l+1 and αCk−l+1 = αCk−l] or [αS

l ÂS αS
l+1 and

αCk−l+1 ≺C αCk−l].

When the number of stable matching is odd, Teo and Sethuraman (1998) and Sethuraman et
al. (2004) proved the existence of the so-called median stable matching for the marriage model
and the college admissions model, respectively, i.e., giving each student and each college the
‘median’ match in the set of stable matches yields again a stable matching. Next, independently
of the number of stable matching being odd or even, we define ‘median stable matchings.’

Definition 3.5 Median stable matchings
If k is odd, then the set of median stable matchings M(P ) is a singleton that consists of the
matching where each student and each college is assigned the (k+1

2 )-th (weakly) best match,
i.e., M(P ) = {αS

k+1
2

} = {αCk+1
2

}.
If k is even, then we call matching αS

k
2

(αCk+2
2

) the lower student (upper college) median stable

matching and matching αS
k+2
2

(αCk
2

) the upper student (lower college) median stable matching.

The set of median stable matchings M(P ) consists of the (possibly distinct) upper and lower
median stable matchings, i.e., M(P ) = {αS

k
2

, αS
k+2
2

} = {αCk
2

, αCk+2
2

}.

Theorem 3.2 implies that for any college admissions market the set of median stable matchings
M(P ) is well-defined and M(P ) ⊆ Σ(P ).

Remark 3.6 Fairness aspects
Even when using cardinal preference information (either based on cardinal utility functions or
using the rankings of matches in the preference orders as cardinal measurement) a matching
that combines stability and certain (endstate) fairness criteria may not exist (Masarani and
Gokturk, 1989). In the absence of a clear criterion for what constitutes a fair outcome, Klaus and
Klijn (2006) therefore applied Rawls’s (1971) principle of ‘pure procedural justice’ and identified
two procedurally fair and stable matching mechanisms. Given Masarani and Gokturk’s (1989)
negative and Klaus and Klijn’s (2006) positive results, it would seem that we could only expect
procedural fairness, but not endstate fairness, in combination with stability. However, median
stable matchings satisfy various aspects of endstate fairness different from those of Masarani
and Gokturk (1989). First, the mere fact that based on the ordinal preferences, each agent
is assigned to a median stable match should be considered an endstate fairness result given
the stability constraints. In addition to this endstate fairness aspect that is induced by using
medians, it is interesting to note that two further fairness properties are satisfied by median
stable matchings for marriage markets (where all colleges have quota one). First of all, both
sides of the market are treated symmetrically; i.e., exchanging the roles of students and colleges
will not change the median stable matching(s). Second, an agent who is assigned to the same
match at all stable matchings, called a dummy agent, does not influence the matches of other
agents. Thus, median stable matchings are independent of dummy agents.8

8The exact formulation of this property is given in Klaus and Klijn (2006) and can easily be adjusted to college
admissions markets.
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Our next example illustrates how the median stable matching coincides with what for this exam-
ple may be called the endstate compromise matching. Klaus and Klijn (2006) demonstrated for
the same example that none of the procedurally fair and stable matching mechanisms they an-
alyzed ever chooses the endstate compromise matching. For notational convenience, in this and
the next example we only list acceptable colleges (students) in students’ (colleges’) preferences.

Example 3.7 The median stable matching equals the endstate compromise
Let (S, C, P ) with S = {s1, s2, s3}, C = {C1, C2, C3}, qC1 = qC2 = qC3 = 1, and P listed below.
The three stable matchings for this market are listed below as well (for example, µ1 matches s1

to C1, s2 to C3, and s3 to C2).

Preferences Stable Matchings
P (s1) = C1 C2 C3 µ1 = C1 C3 C2

P (s2) = C3 C1 C2 µ2 = C2 C1 C3

P (s3) = C2 C3 C1 µ3 = C3 C2 C1

P (C1) = s3 s2 s1

P (C2) = s2 s1 s3

P (C3) = s1 s3 s2

At matching µ1 all students (colleges) are assigned to their most (least) preferred match. Match-
ing µ3 establishes the other extreme: all colleges (students) are assigned to their most (least)
preferred match. At matching µ2 all agents are matched to their second choice, which is why
we consider µ2 to be an endstate compromise in this situation. We depict the corresponding
lattice in Figure 1. The nodes denote the stable matchings. The solid arcs denote comparability
or unanimity on each side of the market. For instance µ2 → µ1 in Figure 1 means that all
students weakly prefer their matches at µ1 to their matches at µ2 and all colleges weakly prefer
their matches at µ2 to their matches at µ1. The generalized median stable matchings coincide
with the stable matchings: αS

1 = µ1, αS
2 = µ2, and αS

3 = µ3. In particular, the median stable
matching αS

2 equals the endstate compromise matching µ2. ¦

aS

1

aS

2

aS

3

1
m

2
m

3m

Figure 1: Example 3.7 - lattice of stable matchings

We conclude with an example of a more general college admissions market and its generalized
median stable matchings.
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Example 3.8 Let (S, C, P ) with S = {s1, . . . , s11}, C = {C1, . . . , C5}, and P be given by Ta-
bles 1 and 2 (by responsiveness it suffices to present colleges’ preferences by strict orderings
of individual students).9 We list all seven stable matchings in Table 3. We depict the corre-
sponding lattice in Figure 2. Again, the nodes denote the stable matchings and the solid arcs
denote comparability or unanimity on each side of the market. The dotted edge µ2 · · ·µ3 de-
notes incomparability on each side of the market. In other words, there is disagreement among
the students (colleges) about which matching is better (for instance, µ3(s1) Âs1 µ2(s1), but
µ2(s3) Âs2 µ3(s3)). The generalized median stable matchings are depicted by the gray-filled
nodes: αS

1 = αS
2 = µ1, αS

3 = αS
4 = µ4, αS

5 = µ5, αS
6 = µ6, and αS

7 = µ7. Since the number of sta-
ble matchings is odd, the set of median stable matchings is a singleton given by M(P ) = {µ4}.¦

Students’ preferences
P (s1) = C3 C1 C5 C4

P (s2) = C1 C3 C4 C2 C5

P (s3) = C4 C5 C3 C1 C2

P (s4) = C3 C4 C1 C5

P (s5) = C1 C4 C2

P (s6) = C4 C3 C2 C1 C5

P (s7) = C2 C5 C1 C3

P (s8) = C1 C3 C2 C5 C4

P (s9) = C4 C1 C5

P (s10) = C3 C1 C5 C2 C4

P (s11) = C5 C4 C1 C3 C2

Table 1: Example 3.8 - students’ preferences

Quota Colleges’ preferences
4 P (C1) = s3 s7 s9 s11 s5 s4 s10 s8 s6 s1 s2

3 P (C2) = s5 s7 s10 s6 s8 s2 s3 s11

3 P (C3) = s11 s6 s8 s3 s2 s4 s7 s1 s10

2 P (C4) = s10 s1 s2 s11 s4 s9 s5 s3 s6 s8

1 P (C5) = s2 s4 s10 s7 s6 s1 s8 s3 s11 s9

Table 2: Example 3.8 - quota and colleges’ preferences

9This college admissions market is taken from Gusfield and Irving (1989). It is also used by Sethuraman et
al. (2004).
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Matching s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

µ1 C3 C1 C4 C3 C1 C3 C2 C1 C4 C1 C5

µ2 C1 C3 C4 C3 C1 C3 C2 C1 C4 C1 C5

µ3 C3 C1 C5 C3 C1 C3 C2 C1 C4 C1 C4

µ4 C1 C3 C5 C3 C1 C3 C2 C1 C4 C1 C4

µ5 C5 C3 C3 C4 C1 C3 C2 C1 C1 C1 C4

µ6 C5 C4 C3 C1 C1 C3 C2 C3 C1 C1 C4

µ7 C4 C4 C3 C1 C1 C3 C2 C3 C1 C5 C1

Table 3: Example 3.8 - stable matchings

2 3m

m

m

1
m

7
m

4

6m

5
m

aS

1
aS

2
=

aS

3
aS

4

aS

5

aS

7

=

aS

6

Figure 2: Example 3.8 - lattice of stable matchings
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Barberà, S., Gul, F., and Stacchetti, E. (1993) “Generalized Median Voter Schemes and Com-
mittees,” Journal of Economic Theory, 61, 262-289.

Blair, C. (1988) “The Lattice Structure of the Set of Stable Matchings with Multiple Partners,”
Mathematics of Operations Research, 13, 619-628.

Fleiner, T. (2002) “Some Results on Stable Matchings and Fixed Points,” Technical
Report, EGRES Report TR-2002-8, Egerváry Research Group, Budapest, Hungary
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