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available at the end of the article but the underlying dynamics governing the constant reorganization and switching

between networks are not yet well understood. Electroencephalogram (EEG)
microstates are brief periods of stable scalp topography that have been identified as
the electrophysiological correlate of functional magnetic resonance imaging defined
resting-state networks. Spatiotemporal microstate sequences maintain high temporal
resolution and have been shown to be scale-free with long-range temporal
correlations. Previous attempts to model EEG microstate sequences have failed to
capture this crucial property and so cannot fully capture the dynamics; this paper
answers the call for more sophisticated modeling approaches. We present a
dynamical model that exhibits a noisy network attractor between nodes that
represent the microstates. Using an excitable network between four nodes, we can
reproduce the transition probabilities between microstates but not the heavy tailed
residence time distributions. We present two extensions to this model: first, an
additional hidden node at each state; second, an additional layer that controls the
switching frequency in the original network. Introducing either extension to the
network gives the flexibility to capture these heavy tails. We compare the model
generated sequences to microstate sequences from EEG data collected from healthy
subjects at rest. For the first extension, we show that the hidden nodes ‘trap’ the
trajectories allowing the control of residence times at each node. For the second
extension, we show that two nodes in the controlling layer are sufficient to model the
long residence times. Finally, we show that in addition to capturing the residence
time distributions and transition probabilities of the sequences, these two models
capture additional properties of the sequences including having interspersed long
and short residence times and long range temporal correlations in line with the data
as measured by the Hurst exponent.
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1 Introduction
The human brain is intrinsically organized into large-scale networks that can be identified

when the brain is at rest [1, 2]. These networks reorganize on a sub-second temporal scale
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in order to allow the precise execution of mental processes [3]. Study of the spatial and
temporal aspects of the dynamics underlying this reorganization requires non-invasive
measures with high temporal resolution. The electroencephalography (EEG) is a direct
measure of neuronal activity which captures the temporal evolution of the scalp electrical
field with millisecond resolution. Unlike local measures of EEG in channel space that vary
from time-point to time-point and as a function of the reference, the global measure of
EEG topography remains stable for brief periods (50—100 ms) before changing to another
quasi-stable state, the so-called EEG microstates [4, 5]. Microstates have been coined the
“atoms of thought” and can be considered the basic building blocks of mentation that make
up the spontaneous electrophysiological activity measured at the scalp [6].

At rest, when the subject is not doing any task, four dominant topographies are con-
sistently reported both in healthy individuals across the lifespan as well as in neurologi-
cal and psychiatric populations [7—12]. Moreover, neurological and psychiatric diseases
have been shown to fundamentally alter their temporal dynamics [11, 13, 14]. This im-
plies that the timing of the microstates and not the topography is the most crucial fea-
ture. Further evidence for the importance of the timing of the microstates comes from
studies using simultaneously recorded EEG and functional magnetic resonance imaging
(fMRI) that identify EEG microstates as the electrophysiological correlate of fMRI-defined
resting-state networks (RSNs) [15—-17]. This link is surprising because EEG microstates
and fMRI-RSNs are two global measures of large-scale brain activity that are observed at
temporal scales two orders of magnitude apart: 50—100 ms (microstates) and 10—20 sec-
onds (fMRI). This link could only be established because EEG microstate time-series are
scale-free, i.e., they do not occur at a characteristic timescale, but show similar behavior
across different temporal scales. More specifically, EEG microstate sequences have been
shown to have “memory”: they are mono-fractal and have long-range temporal correla-
tions (LRTC) over six dyadic scales that span the two orders of magnitude (256 ms to 16 s)
at which EEG microstate changes and fMRI blood-oxygen-level-dependent (BOLD) oscil-
lations can be observed [18]. Gschwind et al. verify and expand the work of [18] by com-
puting scale-free behavior in EEG data using a battery of tests, including computing the
power spectral density and Hurst exponents using detrended fluctuation analysis (DFA),
a wavelet framework, and time-variance analysis thus corroborating the robustness of the
memory of microstate time series [19].

LRTC in microstate sequences suggest that the spatial-temporal dynamics are con-
trolled not only by inherent structural properties of the fMRI-RSNs but also by a“sequential
connectivity” that facilitates the timings and transitions between the underlying neural
generators [20]. Importantly, Van de Ville et al. demonstrate that the precise timing of the
residence times but not the order of local state transitions of the microstate sequences
is crucial for their fractal properties [15]. Shuffling their state transitions without chang-
ing their timing has no effect, whereas equalizing their residence times degrades the time
series to white noise. In the case that the residence times are IID and memoryless, then
the residence times can be considered a “renewal process” and the whole process can be
seen as Markov jump process. We note that the series of residence times and the state
transition process are essentially independent. Therefore it is possible for the transitions
to be Markov but the jump (residence) times to be non-Markov.

EEG microstate time series models must capture and reproduce four crucial aspects: (i)
the local transition probabilities between states, (ii) the distribution of residence times,
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(iii) the long-range temporal correlations, and (iv) that longer and shorter residence times
are interspersed throughout the sequence. So far, attempts to model EEG microstate se-
quences have been based on Markov-type models that assume the microstate time se-
ries is a memoryless process [21]. In particular, Girtner et al. construct a hidden-Markov
type stochastic model based on the transition probabilities between microstates extracted
from the data [21]. This approach has been criticized for the underlying assumption that
the microstate transition process is independent of the underlying global field power time
series and therefore does not reproduce the LRTC [19, 22]. Von Wegner et al. show that
neither memoryless Markov models nor single parameter LRTC models fully capture the
data [23]. Hence, more sophisticated models need to be developed to capture the full spa-
tiotemporal dynamics of microstate sequences.

In this paper we provide a novel modeling approach for microstate time series based
on dynamical structures called noisy network attractors. These are stochastic models that
exhibit heteroclinic or excitable network attractors in their noise-free dynamics [24]. A het-
eroclinic network is a collection of solutions (heteroclinic orbits) to a system of ordinary
differential equations that link a set of steady states that themselves are unstable. Excitable
networks, in the sense introduced in [24], are close relations of heteroclinic networks that
have a small but finite threshold of perturbation that needs to be overcome to make a
transition between a number of attracting states.

Heteroclinic networks have been found in models of many natural systems, for exam-
ple, from population of neurons [25, 26], predator-prey dynamics [27], and bi-matrix game
theory [28]. The dynamics near a network attractor is generally intermittent: trajectories
spend long periods of time close to one state before switching to another. Heteroclinic
cycles or networks have been successfully applied to model transient dynamics in neural
processes at a variety of levels of description and spatial scales [29]. For example, from ol-
factory processing in the zebra fish [30] to human working memory [31], episodic mem-
ory [32], and decision making [33]. Time series from similar networks with noise have
previously been shown to produce non-Markovian dynamics [24, 34]. These modeling
techniques have also been used successfully in applications of artificial intelligence. For
example, in [35] the authors show that arbitrary Turing machines can be built from these
excitable networks, and in [36] the authors use networks of this form as the ‘brain’ for a
theoretical robot that has to solve a classification task. Given the powerful capacities of
network attractors to model transient dynamics at different levels, these are a promising
candidate to model EEG microstate sequences.

Here we demonstrate that the transitions and LRTC of EEG microstates sequences can
be modeled using stochastic differential equations (SDEs) that possess such an excitable
network attractor. We show that the residence time distribution of the microstate time
series follows a double exponential decay. We first construct a four-node, all-to-all con-
nected network model. The SDEs we use have low amplitude additive white noise, and
the network is designed using the construction outlined in [24]. Each node in the network
represents one microstate, and the transitions between them are driven by the noise on
the edges. This model captures the series of state transitions, but not the distribution of
residence times. We present two extensions to this model that induce longer residence
times observed in the data using two different mechanisms. The first is to add a hidden
node for each microstate that acts as a trap for the transient dynamics. The second in-
corporates a controlling layer with two nodes representing a central switching control of
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faster and slower switches between the nodes or the original network. Finally, we assess
the interspersion of long and short residence times by means of their autocorrelation and
show that, when fitted to the data, the sequences generated with each extended model
have the same extent of LRTC as measured by the Hurst exponent [37].

2 EEG data collection and analysis

Detailed description of the procedures used to collect the EEG recordings and convert
them into microstates are given in [18]; here we provide a brief summary for complete-
ness. Nine healthy volunteers (24—33 years, mean age 28.37 years) participated for mon-
etary compensation after giving informed consent approved by the ethics commission of
the University Hospital of Geneva. None suffered from current or prior neurological or
psychiatric illness or from claustrophobia. EEG was recorded from 64 sintered Ag/AgCL
electrodes in an extended 10-10 system. EEG was digitized using a battery-powered and
MRI-compatible EEG system (BrainAmp MR plus, Brainproducts) with a sampling fre-
quency of 5 kHz and a hardware bandpass filter of 0.016—250 Hz with the midline fronto-
central electrode as the physical reference. For each subject, we recorded one 5-minute
session outside the scanner prior to recording three 5-minute runs of resting-state EEG
inside the MRI scanner. Subjects were instructed to relax and rest with their eyes closed
without falling asleep and to move as little as possible. Data from one subject had to be
excluded due to subsequent self-report of sleep and the presence of sleep patterns in EEG.
The 24 recordings from the remaining eight subjects were submitted for further process-
ing. MRI and ballistocardiographic artifacts were removed using a sliding average, then
oculomotor and myogenic artifacts were removed using independent component analy-
sis. The data were downsampled to 125 Hz and bandpass filtered between 1 and 40 Hz.

To compute microstate sequences, first the global field power (GFP) was computed
from each recording as the standard deviation of the scalp electrical field at each time
point. Between the local troughs of GFP, the scalp topography remains stable and only
varies in strength. EEG at all local peaks of GFP was extracted and submitted to a modi-
fied atomize-agglomerate hierarchical clustering (AAHC) algorithm [38]. Four dominant
template maps were identified as the optimal solution in each run using a cross-validation
criterion, a measure of residual variance [39]. These four dominant maps are in line with
the classically identified microstates [5, 7, 12]. Finally, the microstates were fitted back
onto EEG by computing the spatial correlation between the four template maps and the
continuous EEG data, then the template that correlated highest with the data was assigned
at each time point. Figure 1 shows a schematic of the EEG microstate procedure and the
four dominant template maps. Note that at the local troughs of GFP the field strength is
minimal and none of the template maps correlate well with the data; the allocation of the
best template can be considered random. To avoid these brief periods being accounted
as very short separate microstates, a temporal constraint criterion is required. We use a
temporal constraint criterion of 32 ms (corresponding to four sample points at 125 Hz)
to obtain a time-series of the dominant EEG microstates for each recording. Figure 10 in
Appendix A illustrates the requirement for the temporal constraint.

The microstate time-series is a sequence that we denote by m(t) where m € {1,2, 3,4} at
any given sampling time point ¢. We classify m(t) into epochs of the same state defined by
saying that we enter a new epoch at the time point that the microstate changes, if m(t + 1) #
m(t); note that we enter a new epoch at the start of the sequence ¢ = 0. The average number
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Figure 1 Schematic of the EEG microstate method. An example EEG recording and global field power (GFP,
the spatial standard deviation of the electrical field). Momentary maps at the peaks of GFP are submitted to
an AAHC clustering algorithm. The four dominant template maps are shown at the bottom. Backfitting is
performed by calculating the spatial correlation between the four template maps and the continuous EEG
data at each time point. Labels are assigned in a winner-take-all manner to generate the microstate sequence
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of epochs per recording is 2010. We describe the kth epoch in terms of its state o (k) and
residence time p(k) respectively. We call the sequence of states visited o (k) the transition
process, and the sequence of residence times p(k) a residence process. These processes can,
at least in principle, be independent. We define:

« R(2) is the distribution of residence times p(k) for all epochs k (regardless of state).

+ T(m,)) is the probability of transition from an epoch in state m to one in state j,

#k:o(k)=mando(k+1)=j}
#{k:o (k) = m}

T(l’l’l,j) =

Note that there are no self-transitions due to our definition of an epoch. To identify the
residence distribution R from the data, we compute the histogram of residence times from
each microstate sequence for bin size 40, then we find the average and standard error
of each bin over all recordings. The distribution is truncated at the first empty bin. We
compute the residence distribution R for the data collected inside and outside the scanner,
then we use a two-sample Kolmogorov—Smirnov test and find that the histograms are
from the same continuous distribution. We also calculate T for each recording and find
the average and standard error for each probability over all recordings. Calculating the
average T for the two groups, from inside and outside the scanner, separately we find no
significant differences for any transition between the two groups using a Kruskall-Wallis
test with Bonferroni correction. Therefore, we combine the recordings from inside and

outside the scanner for subsequent analysis and model fitting.
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Figure 2 Transition probabilities and residence times extracted from the data. Panel (A) shows the residence
time histogram for the data the scanner, with bin size 40. The curves for one-phase en two-phase £9 and
three-phase decay £ are shown. Panel (B) shows the cumulative residence times with power law curves
PD and PP Curve details are in Table 1. The bottom four panels (C) show the probability of transition T(m,j)
from state m to state j for each microstate m=1,2,3,4

To quantify the combined distribution from the data, we fit exponential curves given by

EM(t) =" arexp(-kit) o)

i=1

for n =1,2,3 to the data using MATLAB, and constrain a; > 0 and k; > 0. We also fit power

law curves given by
PO@) =bitt,  PO(t) = byt + d. )

We calculate the error x as the least squares difference between the log of the values of
each curve and the log of the data. We use an F-test (code used as written for [40]) with
threshold « = 0.05 to indicate if extra parameters are warranted to improve the fit of the
data.

The residence time distribution R(£) and transition probabilities 7'(m,) from the data
are shown in Fig. 2. The distribution R(t) is plotted on a logarithmic scale with £")(¢)
for n = 1,2,3 given by (1) and P"(¢) for n = 1,2 given by (2). The values of the coef-
ficients are given in Table 1. We perform a comparison of £ and £? and find that
F(d,,dg) = 1102.8(2,31), which therefore rejects the null hypothesis that the distribution
is £W. We also compare £® and £? and find that F(d,,d,;) = 46.9(2,30), therefore the
additional parameters are warranted. Figure 2 shows that although £©® has smaller error,
the improvement in fit is for short residence times and the tail in this case is better cap-
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Table 1 The values for the constants for the exponential curves £ for n = 1,2,3 given by (1) and the
power law curves P for n = 1,2 given by (2). The distance x from the data is given for each curve

g(W) 5(2) 5(3) 'p(U 73(2)
a 4875 x 1072 3451 x 1072 3.766 x 1072 by 1473 x 1072
ki 2114 x 1072 2.087 x 1072 2113 x 1072 ¢ 7.79 x 1072
a 2829 % 1073 2432 % 1073 by -8.205
ky 9510 x 1073 9.293 x 1073 1) -1.602
a3 1.052 x 107 d 2519 x 1072
ks 1405 x 1073
X 697.6697 9.9775 24163 0.2005 0.0027

tured by £@ which lies within the error bars for large residence time values. Figure 2 also
shows the cumulative distribution of residence times and the two power law curves. We
perform a comparison of PV and P®. We find that an F-test rejects the null hypothesis
that the distribution is PY, with F(d,, d,;) = 1167(2,32).

We note that the error in the tail of the distribution is relatively large. There are few
very long residence times 840 < p < 1000 ms, and longer recordings would be required
for greater certainty about the distribution of the very long (>900 ms) residence times.
The heavy tailed residence time distribution indicates non-Markovian dynamics in line
with [19]. This is supported by the best fit of the power law P?® with a negative slope
that is synonymous with scale-free dynamics [41]. When fitting the models to the data,
we will consider residence times 20 < p < 900 ms due to the greater uncertainty for >900
ms; details of the fitting strategy are given in each section.

3 Single-layer excitable network model

We aim to build a model that captures the statistical properties of the transition process
and residence process. To this end, we construct a model of stochastic differential equa-
tions perturbed by low amplitude additive white noise, using a general method that allows
us to realize any desired graph as an attracting excitable network in phase space. This
model has evolved from work in [42] and is detailed in [24], and here we briefly outline
the construction.

We realize the network of all possible transitions between the four canonical microstates
as an excitable network with four nodes (p-cells) that represent the four microstates. There
is an edge between two nodes in the network if there can be transition between the two
corresponding microstates; here the network is all-to-all connected with twelve edges (y-
cells).

The system is given by

Tdpj = [f(pj,yk)] dt +n, dw;, 3)

© dyx = [g(pj, yi)] e + ny, dw) ()

forj=1,...,Mand k=1,...,Q. We create a microstate model by choosing M = 4 (corre-
sponding to the number of states) and Q = 12 (corresponding to the number of possible
transitions between states). The w; and w; are independent identically distributed (iid.)
noise processes, and 7 is noise weights. We introduce the time scaling v (which does not
occur in [24]) because although the timescale of the p-dynamics can be scaled by the pa-
rameters, the equations for the y dynamics have a functional form in which the timescale
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Figure 3 Structure and dynamics of the excitable network model. Panel (A) shows the four dominant
microstates. Panel (B) shows the coupling architecture of the sixteen-cell network. Each node represents one
of the microstates shown in panel (A). Each edge represents allowed transitions between microstates. Panel
(C) shows the time series of the p-cells (nodes), note at most only one node is equal to one at any given time
point. Panel (D) shows the time series of the y-cells (edges). The edges only become active (non-zero) during
transitions between nodes

is fixed. The p; variables classify which node of the network (i.e., which of the four mi-
crostates) is visited. The y; variables become non-zero during a transition between nodes.
The functions f and g and parameters for this single-layer model are detailed in [24] and
discussed in Appendix B.1.

This network can be realized as either a heteroclinic or excitable network depending on
the choice of constants in f and g [24]. In the system with no noise, the network consists of
heteroclinic connections between equilibrium solutions with p; = 1 and all other coordi-
nates zero. In an excitable network, these equilibria are all stable, and small perturbations
(from added noise) are required to push the trajectory from one equilibrium to another.

Figure 3 shows the four microstates from the data and the coupling architecture of the
network model with example time series output for the nodes and the edges in the ex-
citable case. The transitions between nodes occur on a faster timescale than the length
of time spent at each node (the residence time). Thus, the trajectory in the simulation is
almost always close to one of the equilibrium solutions, where one of the p,, variables is
close to 1.

To determine when the trajectory is close to a given node, we define a box in phase space
around that node so that when the trajectory is in the box we say it is near the node. Here
we fix the box size & = 0.49 such that each box contains one node and the boxes do not
overlap. The duration of time spent in the box is then the residence time for that node [24].
The output of the model simulation is a series of k epochs where each epoch is defined by
the stateitisin o € {1,2, 3,4} and its residence time p. The transition rates between nodes
in the model are modulated by the noise levels on the edges (rather than on the nodes) as
described in [24]. Therefore we fix the noise on the nodes 7, = 107%. The free parameters
for fitting the model are the twelve noise values on the edges n, k= 1,...,12.

To fit the excitable network model output to the data, we employ the following algo-

rithm.
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1. Initialize: Initiate the noise values using scaled transition probabilities r);)k =8%,
where 1) = T(m,j) and S° = 1.

2. Model simulation and analysis: Numerically simulate the excitable network model
given by system (3)—(4) with a stochastic Heun method implemented using a custom
code written in MATLAB. Compute ten realizations of the model using step size 0.05
up to maximum of 100,000 steps. This gives approximately 5750 epochs per
realization. Calculate the transition probabilities Ts(,j) and residence distribution
Ry(t) from the simulations in the same way as from the data; see Sect. 2.

3. Cost function: Compute the cost function

C = (Jlog(R®)| - [log(Ry(1)[)* + 100 > (T(m,j) ~ Ty(m, ). (5)

m,j

This function is the weighted sum of the distance between the log of the residence
times R(¢) (from the data) and Ry, and the distance between the transition
probabilities T and 7. The weighting for the transition probabilities is due to the
relatively smaller magnitude of the difference. We seek to minimize this cost function.

4. Update parameters: Change S’ and n} according to the following strategy. Change #}

values to minimize the least square distance between the transition probabilities 7'
and T;. Maintain the ordering between the probabilities for a given m, for example, if
T(1,3) > T(1,2) then we set n, > ). In this way the excitable network model can be
adjusted to produce any given set of transition probabilities, as described in [24].
Change S' to control the decay rate of R; and minimize the least squares distance
between the log residence times R and R;. If all n,, are large, for example, o(10™h),
transitions happen quickly, the residence times are short, and the decay rate of the
distribution R is large (slope is steep); whereas if ,, are small, for example, 0(107%),
there are long residence times between transitions and the decay rate is small (slope
is shallow). Set n;, = S'n;.

5. Repeat from 2.

The statistics of the sequences generated by the excitable network model to the data are
shown in Fig. 4 with the curves £V and €@ from Table 1. The noise weights 7,, used
here and corresponding cost function C are given in Table 2. Our aim is to demonstrate
whether this model can produce the statistical properties of interest, and so adapting the
parameters at each iteration is performed in an ad-hoc manner according to the fitting
strategy. In this case the fitting algorithm is stopped when the model transition proba-
bilities lie within the error bars of the data and residence distribution is aligned with the
single exponential curve £, Here, no choice of 1y, allows the distribution to follow £ @
as the transition process generated by the model is Markov and the residence times corre-
spond to inter-event intervals for a Poisson process [24]. This is further evidence that this
modeling approach cannot produce a heavy tailed residence distribution observed in the
data. Due to the evidence of multiscale behavior of the temporal dynamics of microstate
sequences [18, 19], we now present two extensions of the model, each of which generates
a residence process distribution with a heavy tail.

4 Hidden-node network model
The excitable network model was constructed using a general method that allows us to
realize any desired graph as an attracting excitable network in phase space. We can use
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Figure 4 A four-state excitable network model that captures transition probabilities but not temporal
dynamics. Excitable network model simulation (purple) with residence distribution for the data (blue) in panel
(A) with inset network schematic. Curves 1) and £ from Table 1 are also shown (black dashed lines). The
transition probabilities T(m, j) are shown in panels (B) for both the data (blue) and the simulation (purple). The
parameters used in the simulations and the cost function are given in Table 2. There is good agreement
between the model transition probabilities, and the residence time distribution of the model closely follows
the single exponential curve rather than the data distribution

Table 2 Parameters for the excitable network model. The values 1y, identified following fitting to
the data shown in Fig. 4. Here S = 0.1 and the cost function C = 106.954

My My, Ny3 Ny, Tys Nyg
0.0334 0.0355 0.0326 0.0347 0.0379 0.0328
Ny, Tyg Nyg My10 My My
0.0318 0.0328 0.0312 0.0335 0.0334 0.0366

the same method of construction to extend the network model to a network containing 8
nodes and 20 edges (28 cell network) such that each node in the original four-node net-
work is connected to one additional “hidden node”. Specifically, we use the system of SDEs
given by (3)—(4) with M = 8 and Q = 20. We then modify the outputs (O) and inputs (/) to
the p cells from the y cells so that each of the original four nodes has one additional node
bidirectionally coupled to it. We introduce noise weights y,,: and y;, on the edges con-
necting the hidden nodes to the network. They drive transitions out to the hidden nodes
and back again, respectively.

Figure 5 shows the four-node network from Fig. 3 with the additional four hidden nodes
and example time series output for the nodes and the edges. Again, at almost all points in
time, the trajectory is close to one of the equilibrium solutions; when the trajectory is close
to a hidden node, we record the output as being at the node neighboring that particular
hidden node. The transition probabilities are independent of how long it is spent at the
hidden node.
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Figure 5 Structure and dynamics of the hidden-node network model. Panel (A) shows the coupling
architecture of the 28-cell network consisting of the network of four nodes representing the four microstates
with one hidden node for each microstate. Note that yout and yin are the same for all hidden nodes. Panel (B)
shows the time series of the eight p-cells (nodes), note at most only one node is equal to 1 at any given time
point. The solid lines are the trajectories of the original four p; cells (as shown in Fig. 3) and the dotted lines are
the trajectories of the additional nodes, colored according to the p; they are attached to. Note here that when
a hidden node is equal to 1 it contributes to the residence time of its neighboring node. Panel (C) shows the
time series of the 20 y-cells (edges). The model was simulated using exemplar noise values of n = 0.05 on all

Time

edges

The constants in f and g are fixed as in Sect. 3, so the whole network is excitable and
transitions are driven by noise. We fix the noise value on all nodes 7, = 10~* as before. The
free parameters for fitting the model are the twelve noise weights on the edges 7,, and the
two additional noise weights you and yi,. To fit the model to the data, we use a similar
procedure to that described in Sect. 3.

L. Initialize: Set nj, = S°n) using the values from Table 2 and yout = yin = 0.1.

2. Model simulation and analysis: Simulate the hidden-node model and calculate the

transition probabilities T;(m,) and residence distribution R(£) as described in
Sect. 3.

3. Cost function: Compute the cost function C using (5).

4. Update parameters: For this model the shortest residence times are captured by
transitions around the original four nodes. Set S to produce shorter residence times,
then update 7 as described in Sect. 3. The longer times are achieved by visits to the
hidden nodes. Set 1y, to control how often the hidden nodes are visited, for
example, if 7, < min(ny, ), the probability of visiting a hidden node is less than
visiting a neighboring node. Set n,,  to control how long it is spent at the hidden node;
if . is large, then the time at the hidden node will be shorter than if 7, is small.

5. Repeat from 2.

The results of fitting the hidden-node network model with four hidden nodes to the data
are shown in Fig. 6. For illustration we also show the exponential curves £ for n = 1,2
from Table 1. The noise weights 7,, used and cost function are given in Table 3. The noise
weights 7, and 7, are lower than the noise weights 7,, . This means that the trajectory
is more likely to transition to another microstate node than to the hidden node, and when
it is at a hidden node it takes longer to transfer to another node, i.e., it gets trapped. This
gives longer residence times for each node than the four-node network alone.

This model allows local control at each state. However, it is not easily expandable to
accommodate additional decay rates or external influences, for example, from other sys-

tems in the body. We therefore also present a more parsimonious alternative, namely a
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Figure 6 Hidden-node network model captures transition probabilities and temporal dynamics.
Hidden-node network model simulation (purple) with residence distribution for the dataset (blue) in panel
(A) with inset network schematic. The single and double exponential curves from Table 1 are shown for
comparison (black dashed lines). The transition probabilities T(m, j) are shown in panels (B) for both the data
(blue) and the simulation (purple). The parameters used in the simulations in each panel are given in Table 3.
There is good agreement between the model transition probabilities; compare with Fig. 4. The residence time
distribution of the hidden-node model closely follows the double exponential curve and the distribution of
the data

Table 3 Parameters for the hidden-node network model. The noise values on the edges 7y, and the
additional edges 1, and 7y, for the model simulation to fit the twelve transition probabilities of
the data shown in Fig. 6. Here S =0.17 and C = 1.268

Myout r/}/'m

0.032 0.052

My Ny, Ty3 My, Tys Tys
0.0501 00533 0.0489 0.0521 0.0567 00494
Ny, Tyg Tyg My10 My1 Ty12
0.0477 0.0492 0.0468 0.0503 0.0501 0.0548

more generalizable model in which the distribution of residence times is not controlled

independently at each node but by an additional controlling layer.

5 Multi-layer network model
We present a second extension to the excitable network model by including a controlling
layer that drives the transitions around the original four-node network. To this end, we

construct a system of N levels for which we set up a system of SDEs as follows:

v dpy = [fi(pyj yix) ] dt + n, dw, (6)

T Ay = (@1 yik) + z1x ] dE + nii dwi. (7)
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Figure 7 Structure and dynamics of a multi-layer model. Panel (A) shows the coupling architecture of the
two networks; compare layer two to Fig. 3(B). Example time series are shown for layer one nodes in panel (B)
and edges in panel (C), layer two nodes in panel (D) and edges in panel (E). The noise on all edges 1, = 107
is fixed, residence times are scaled by ¢1 = 107" and o= 1073. When pi2 = 1in panel (A), the dynamics on
the edges in layer two are scaled by &, and residence times of nodes in layer two, shown in panel (D), are
much longer than when py 1 =1

Each level / has M; nodes, and we assume all-to-all connections in each layer, so we have
Q; = M;(M; - 1) edges. w is independent identically distributed noise processes, 7 is noise
weights. This system includes a general input into the y-cells z;;(¢) that linearly couples
layers from the p; nodes to the y;,1x edges by

M

2
ZIs1k = Z CLiPy -

j-1

The functions f and g and parameters for this hidden-layer model are detailed in [24] and
discussed in Appendix B.2.

For the microstate model, we choose the number of levels N = 2, the number of nodes
in layer one M; = 2, in layer two M, = 4, the number of edges in layer one Q; =2 and in
layer two Q, = 12. The constants in functions f and g are set as in Sect. 3 for each layer, so
each layer is an excitable network. Note that layer two is identical to the excitable model
described in Sect. 3.

Layer one with two nodes is a “controlling layer” in that we only consider the output
from layer two with four nodes. As before the output is a transition process and a residence
process. The two nodes in layer one affect the dynamics on the edges (and therefore the
residence times) in layer two by the scalings {11 = ¢; and ¢35 = £». These scale the residence
times in the output from layer two. As before we fix the noise on the nodes 7, = 107
Figure 7 shows the coupling architecture for the two-layer model with time series of the
nodes and edges in each layer. Note that layer two is the same as in Fig. 3(B). For illustrative
purposes, in Fig. 7 we choose ¢; = 107 and ¢, = 1073 here. Panels (B)—(E) clearly show
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Table 4 Parameters for the multi-layer model. The noise values on the edges 7« for each layer
[ =1,2 with the transfer parameters ¢, for the model simulation shown in Fig. 8. Cost function
C =6.993. Compare 1, to the values in Table 2

Layer-one edges m M2
0.04 0.07

Transfer parameters s &
0.21 0.0001

Layer-two edges m, 722 n23 24 25 126
0.0013 0.0020 0.0010 0.0015 0.0023 0.0010
n7 ms8 m29 12,10 11 12,12
0.0013 0.0014 0.0012 0.0013 0.0013 0.0023

that when p; 5 = 1 in layer one the residence times at each node in layer two p,; are longer
(transitions between nodes are less frequent) as the edges in layer two y,; are scaled by
¢>. Note that if ¢; = ¢, layer one would be redundant as the residence times would be
consistent (drawn from the same distribution) in either node and the residence process
would again be exponential.

The free parameters for fitting the model are the two noise values on the edges in layer
one 1y, for k = 1,2, the 12 noise values on the edges in layer two nyx for k = 1,...,12,
and the two transfer parameters ¢; for [ = 1, 2. To fit the multi-layer model, we employ the
fitting algorithm as for the other two models.

1. Initialize: Set 1}, using the values from Table 2. Set 7,4 =107, ¢, =107, and

£y =1073,

2. Model simulation and analysis: Simulate the multi-layer model and calculate the
transition probabilities T5(m,) and residence distribution R(¢), as described in
Sect. 3, from the output of layer two only.

3. Cost function: Compute the cost function C using (5).

4. Update parameters: Update the parameters according to the following strategy.
Update 7« in the same way as for 7} in Sect. 3 to fit the transition probabilities.
Adjust the transfer parameters ¢; to change the dynamics on the edges of layer two in
a homogeneous way (equivalent to changing S in the previous models). If ¢ is
increased, the residence times decrease and the decay rate of the distribution
becomes quicker; if ¢ is decreased, the decay rate is decreased. The residence
distribution of the output from layer two is a linear combination of the decay rates
governed by ¢s. The proportion of each distribution (the mixing) is controlled by the
noise on the edges in layer one 7 ¢. In the two-node case, for example, if 11,1 < 11,2
transitions along y; 2 will occur more frequently than along y;; and so the trajectory
will spend longer in node p;; than p; .

5. Repeat from 2.

The results of fitting the multi-layer model with two nodes in layer one to the data are
shown in Fig. 8 with the exponential curves £V and £ from Table 1. The parameters for
the simulations and the value of the cost function C are shown in Table 4. The distribution
of the simulations agree closely with £, Note that the magnitude of the noise on the
edges of layer two 1,; is much smaller than for the excitable network model. This is due
to the additive nature of the transition parameters given by (7).

In the limit N — oo of number of nodes in the controlling layer the distribution would
be the sum of infinitely many exponentials, i.e., a power law. However, it is interesting that
only two nodes in the controlling layer are sufficient to capture the dynamics. This suggests
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Figure 8 Multi-layer model captures longer residence times. The distribution for the dataset (blue) with the
residence time distributions from the simulation of the multi-layer model (purple) with inset network
schematic in panel (A). The double exponential curve £ from Table 1 is also shown. (B) shows the transition
probabilities. The parameters used in the simulations in each panel are given in Table 4. The model
distribution aligns with the two-rate decay of the residence time distribution of the data capturing both long
and short times

that the microstate dynamics might be driven by oscillations in other bodily rhythms such

as the cardiac or respiratory cycles.

6 Comparison of hidden-node and multi-layer network models

So far, we have shown that the hidden-node model and the two-layer model are extensions
of the excitable model that both reproduce the transition probabilities and the residence
time distributions found in the data. Yet another crucial feature of microstate residence
time is that the long and short residence times are interspersed throughout the time-series.
For the hidden-node model, the trajectory getting ‘trapped’ at one hidden node should be
independent of getting trapped at another hidden node. For the two-layer model, however,
the first layer drives the residence times of the second layer, which can lead to clear blocks
of short residence times driven by node p;,; with blocks of long residence times driven by
node p1 ; see, for example, Fig. 7, panel (D).

We now examine the role of the noise weights on the residence times produced by each
version of the model. We consider two sets of noise values: exemplar noise values used in
Figs. 5 and 7 and the noise values used to fit the models to the data, used in Figs. 6 and
8. The exemplar noise weights on all edges for the hidden-node model are 7,, =5 x 1072
For the two-layer model, the edge weights are ;; = 1072 for [ = 1,2 and all k, with transfer
parameters ¢; = 107! and &, = 1072, The noise weights used for the models fitted to the
data are shown in Table 3 for the hidden-node model and in Table 4 for the two-layer

model.
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Figure 9 Residence times of 200 consecutive microstate epochs and autocorrelation of 400 microstate
epochs from two exemplar subjects and model simulations, with the Hurst exponent computed for all 24
data sets and for 10 simulations of each model. The data is shown in row (A). Simulations from the two-layer
(2 L) and hidden-node (HN) models using example noise weights on the network edges (see text for details)
are shown in rows (B) and (D). Row (C) shows the HN model with noise weights given by Table 3, and row (E)
shows the 2 L model with noise weights given in Table 4

We assess the generated sequences from the hidden-node and two-layer models by com-
puting the autocorrelation of the signal and the Hurst exponent [37]. Autocorrelation
identifies any correlation between the signal and a lagged copy of itself. We compute the
autocorrelation by computing the Pearson correlation coefficient between 400 consecu-
tive epochs p(k) and p(k + i), k = 1,...,400 for 100 lag times i = 1,...,100. The Hurst ex-
ponent H is a measure of the extent of the LRTC in a time series. For white noise H = 0.5,
whereas 0.5 < H < 1 is indicative of LRTC. We compute H using wavelet fractal analysis
with the code written for [18]. For the data, we use all 24 EEG microstate sequences to
compute the Hurst exponent. For each model and set of parameters, we use ten simula-
tions to compute the Hurst exponent.

Figure 9 shows the residence times, autocorrelation, and Hurst exponent from the data,
the two-layer, and hidden-node network model simulations. In each panel two sequences
are shown, for the data these are the durations from two subjects, for the models these
are two simulations. The Hurst exponent is shown as a violin plot with the mean value
(over all 24 subjects, or over 10 model simulations) marked. The durations from the data
show short residence times interspersed with some very long residence times, and the au-
tocorrelation is noisy around zero. The mean Hurst exponent for the data is H = 0.6374 as
reported in [18] indicating scale-free behavior with LRTC. The hidden-node model with
exemplar noise weights has some very large residence times, note that the y-axis scale is
from 0 to 800 and a mean Hurst exponent of H = 0.8444. However, when the hidden-node
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model is fitted to the data, the longest residence times are in line with the data, the au-
tocorrelation is noisy around zero, and H = 0.6485. The two-layer model residence times
with exemplar noise weights show clear blocks alternating between longer residence times
and shorter residence times. This is reflected in the oscillatory structure of the autocorre-
lation and H = 0.7730. Importantly, fitting the two-layer model to the data abolishes this
clustering and renders the long and short residence times interspersed with a correspond-
ing autocorrelation that is again noisy around zero and H = 0.6259 closer to the value for
the data. Finally, we note that the Hurst exponent for sequences generated by the excitable
four-node network model (not shown in Fig. 9) is H ~ 0.5 indicating no LRTC.

7 Discussion

In this article we demonstrate novel mathematical models for EEG microstate sequences
constructed using excitable networks that overcome the main caveats of previous mod-
eling approaches that consider microstate sequences as memoryless Markov processes.
Resting state brain activity has been shown to visit four canonical EEG microstates with
variable durations. The residence times can be considered a residence process that con-
tains interspersed long and short times. Microstate-sequences are mono-fractal and have
long range temporal correlations (LRTC) that span two orders of magnitude [18]; the EEG
microstate sequences can be thought of as having “memory”. This means that models with
memoryless Markov switching between states at times given by a Poisson process will not
capture the full temporal dynamics of microstate sequences; more sophisticated modeling
approaches are required. Here we demonstrate that excitable network models can capture
the crucial features of microstate sequences: the local transition probabilities; the distri-
bution of residence times; the interspersion of long and short residence times; and the
LRTC.

We investigate the distribution of residence times of resting state EEG microstate se-
quences from healthy subjects and show that the distribution has a heavy tail. We show
that although the residence time distribution can be fit by a power law, it can also be cap-
tured by a sum of exponentials, where each exponential adds a characteristic decay rate to
the distribution. We show that a sum of two exponentials is sufficient to capture the heavy
tail of the distribution, indicating the data has two characteristic decay rates. We show
that the microstate sequences from the data have interspersed long and short residence
times giving an autocorrelation of the signal around zero. Finally, we compute the Hurst
exponent, a measure of LRTC in time series in line with [18].

We aim to design models that capture the local transitions and residence time distribu-
tions observed in the data. To this end, we split each microstate sequence into a local state
transition process that gives the probabilities of switching between states and a residence
process that produces the timings of microstate transitions. Using the construction out-
lined in [24], we build systems of stochastic differential equations that each have a noisy
network attractor. Specifically, we construct a series of excitable network models and com-
pare these to the data. The simplest, discussed in Sect. 3, simply has four (stable) nodes
that represent the four classic microstates. The nodes are all-to-all connected because
transitions between any two microstates are possible. Dynamics around the network are
driven by noise on the edges, where the level of noise on a given edge governs the prob-
ability of transition along that edge. We fit the model to the data by changing the noise
on the edges of the network. In this way the model captures the local transition process
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between microstates. However, this construction produces statistics that are well mod-
eled by a Markov transition process and switching times that are Poisson. In this case the
residence time distribution is a single exponential with fast decay rate and no heavy tail.
Correspondingly, the Hurst exponent for the simulated sequences is H = 0.5 indicating
no LRTC.

In order to capture the heavy tail of the residence time distribution that appears crucial
for the LRTC of the microstate sequences, we extend the single-layer excitable network
model using the two following approaches.

First, in Sect. 4, we add one hidden node onto each of the original four nodes, that acts
as a ‘trap’ for the trajectories. This creates long residence times at each node. We add two
additional noise parameters, one out to the hidden node and one back from it, in order to
control the durations of these longer residence times. The local transitions between the
original four nodes are unaffected by the hidden nodes and the transition probabilities
remain unchanged. With this extension, this model produces residence time distributions
with heavy tails, and the simulated microstate sequences show long and short residence
times that are interspersed giving an autocorrelation around zero. Moreover, we show that
when the model is fitted to the data, simulated sequences have a mean Hurst exponent in
line with the data indicating LRTC.

The second extension, in Sect. 5, is the addition of a controlling layer that acts on the
edges in the original four-node network, making transitions slower or faster, leading to
longer or shorter residence times respectively. The residence time distribution from the
data is captured by the sum of two exponentials, therefore two decay rates. Accordingly,
we use two nodes in the controlling layer with two corresponding transfer parameters:
one that captures the short times and one that captures the long times. The noise on the
edges in the controlling layer controls the level of mixing between long and short times in
the distribution. When the model is simulated using exemplar noise values and transfer
parameters, as shown in Fig. 8, the microstate sequences show clusters of short residence
times followed by clusters of long residence times, giving a sinusoidal autocorrelation. The
Hurst exponent value of these sequences is higher than the data indicating a smoother
trend. When the noise values and transfer parameters of the model are set to produce
the correct distribution of residence times, the long and short residence times are inter-
spersed and the autocorrelation decays to noise around zero. Similarly, the Hurst exponent
for the fitted sequences is in line with the data. The clustering of long and short times dis-
appears here because the switching between nodes in the controlling layer is faster than
the switching between nodes in the original layer when modulated by the slow transfer
parameter. Therefore, no transitions occur in the original layer, it remains at one node un-
der the influence of the slow transfer parameter, until the controlling layer switches and
the dynamics on the edges in the original layer are modulated by the fast transfer param-
eter.

The purpose of this paper is to demonstrate that excitable network models can generate
sequences that exhibit the features of microstate sequences. The ad-hoc fitting procedure
used here demonstrates that these models capture the temporal properties of the switch-
ing dynamics more thoroughly than existing statistical models. For further fitting and ap-
plication of these models to data, a suitable parameter fitting algorithm and systematic

parameter space exploration should be employed.
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Throughout this paper we use four nodes for the four canonical microstates from [18]
and consistently reproduced in the literature [43]. Additional nodes could be added to ei-
ther of these network constructions to extend the model for larger numbers of microstates,
for example, seven [44] or fifteen [45]. The hidden-node network model has d x N nodes
where d is the number of decay rates required and N is the number of states, whereas the
multi-layer model has d + N nodes. Therefore, for larger systems, the multi-layer mode
provides a more parsimonious and generalizable modeling approach.

In line with current microstate literature [43, 46] we consider the group level statis-
tics rather than for each individual. We note that while the mean Hurst exponents from
the two-layer and hidden-node models align with the data, the spread of the distribu-
tion of the Hurst exponent does not. In particular when the models are fitted to the data,
the distributions are narrow around the mean; see Fig. 9. The spread of the distribution
for the Hurst exponents from the data is likely due to inter-individual variability. We do
not fit the models to each individual and do not capture this variability. We leave it to
future research to developing the models to explore inter- and intra-individual differ-
ences.

These new models support classic microstate analysis and provide insight into the spa-
tial temporal structure of EEG microstate sequences and therefore into the switching dy-
namics of the underlying neural neural networks. From a neuroscientific perspective, a
centrally controlled switching of microstates as in the two-layer model is more parsimo-
nious than a decentralized control of switching as in the hidden-node model. In the former,
the switching between the nodes is modulated in the same way for the whole network at
once, and in the latter, the switching between nodes happens more independently from
one to another. Note that both models capture the data from healthy subjects similarly
well. One could consider this difference in locus of switching control as a difference be-
tween health and pathology.

Interestingly, neurological and psychiatric conditions rarely affect all microstates simi-
larly, but they generally selectively target only one or two microstates [8, 10—13, 46]. A way
to consider the physiological plausibility of the hidden-node model is that altering the
connection between a single node-hidden node pair represents a change at the individ-
ual microstate level. We plot the individual distributions for each microstate and model
with the data in Appendix C. We note that the distributions of the residence times for
each microstate produced by the hidden-node and two-layer models give a good fit to
the data, as measured by the error values given in Table 5. For the hidden-node model,
the noise values governing frequency of visits to the hidden nodes (yo,) and duration
spent there (yi,) are the same for all nodes. Changing the y;, and y, values allows adapta-
tion of the hidden-node model to describe differences between healthy and pathological
groups.

The modeling techniques described in this paper are widely applicable to other physio-
logical and synthetic signals. For example, in task situations, the microstate immediately
before a stimulus has been shown to predict stochastically occurring variations in the
perceptual fate of upcoming stimuli; this pertains to hemispheric lateralization of word
processing, perceptual switching of multi-stable stimuli, and perceptual awareness at the
sensory threshold [47-51]. The models presented here, in particular the two-layer model,
could be extended and used to investigate the relationship between brain activity and per-
ception.
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A way to consider the physiological plausibility of the two-layer model would be to re-
late EEG microstates to other bodily rhythms such as the cardiac or respiratory cycle.
The cardiac cycle can be subdivided into the systole (contraction of the heart muscles)
and diastole (relaxation of the heart muscles). The systole is shorter and less variable than
the diastole, and they could be likened to the two nodes in the controlling layer of the
two-layer model. Similarly, brain activity (local field potential (LFP) activity in limbic net-
works implied in memory formation) is tightly coupled to the respiratory cycle both in
rodents and humans [52—54]. Hence, simultaneous recordings of EEG, electrocardiogram
(ECQG), and respiration could provide an interesting way of testing the physiological plau-
sibility of the two-layer model by relating the different layers to different physiological
processes.

Future research could pit the performance of the different models against each other
by applying them to data from patients with pathologies of different aetiologies: while the
hidden-node model should better capture the changes due to psychiatric diseases that af-
fect only one or two microstates, the two-layer model should capture potential differences
in microstate sequences in patients with pathologies affecting, for example, their cardiac
rhythm.

Appendix A: lllustration of microstate back-fitting procedure

Microstate analysis comprises two steps: identifying the microstate template maps (cluster
analysis) and determining the microstate parameters underlying their strength and tim-
ing (back-fitting). The latter comprises a time-point wise spatial correlation between the
template maps identified in the cluster analysis and the continuous data, and labels are
assigned in a winner-takes-all fashion, i.e., the template that correlates highest with the
data is assigned at that time point. At the local troughs of GFP, where the field strength
is minimal and the global dissimilarity is high, none of the template maps correlate well
with the data, and the allocation of the best template can be considered random. With-
out applying a temporal constraint criterion, these brief periods will be accounted as very
short separate microstates, and microstates could never be longer as the period between
the local GFP troughs. In other words, a temporal constraint criterion is necessary in or-
der to ‘jump across’ the GFP troughs and ignore the polarity. Without this temporal con-
straint, one would obtain a peak around 2-3 sampling periods corresponding to the lo-
cal GFP troughs and corresponding to 16—-24 ms (at a sampling rate of 125 Hz) in our
case.

Figure 10 shows and example series of maps from consecutive times points of the EEG.
The maps corresponding to troughs in GFP are marked. The first 24 time point maps were
assigned to microstate map 2 (orange) and the remaining time point maps to microstate
3 (yellow). The temporal constraint ensures that the toughs within each period are not
assigned to different microstates. It is important to note that microstates are characterized
by topography alone, i.e., the polarity of the topography is irrelevant for characterizing
a microstate, and a given microstate can undergo several polarity changes, which occur
at the local troughs of GFP. Note that each microstate period undergoes several polarity

changes.
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Figure 10 EEG data with backfitting to dominant four microstates. The EEG data and global field potential
(GFP) are plotted against time. Each time point of EEG corresponds to a topographic map. The maps
corresponding to peaks of GFP are submitted to a clustering analysis that yielded the four dominant template
maps shown in the top right. The maps are backfit onto the data in a winner-takes-all process, the result is
shown as a color bar where the four colors correspond to the dominant maps. The enlargement shows EEG,
GFP, and the topographic maps for each time point. The blue dots mark the local troughs of GFP and the blue
boxes mark the corresponding maps. The local troughs of GFP correspond to changes in polarity of the maps

Appendix B: Network models with heteroclinic/excitable networks

We briefly specify the dynamical models used to flexibly construct heteroclinic or excitable
networks with arbitrary transition probabilities and waiting times. The models, and why
they robustly have attracting networks of connections between equilibria in phase space,
are detailed in [24].

B.1 Single-layer network model
We use the following functions to define the network dynamic model presented in (3, 4),
and for the generalization to include additional hidden nodes:

@30 =p(F(1-p*) + D(p}p* - p*)) + E(-Z7(0,3) + Z" (0, 9)), ®)
2wy = -y (7 - 1)2 +A=Bplu+CO* %)) ©)

wherej=1,...,M,k=1,...,Qand

M M Q
DY DY A
j=1 j=1 j=1
The outputs (O) and inputs (/) to the p cells from the y cells are determined by
Z%w = > Rpruwpp (10)
{k:a (K)=7}
Z,('I) B:y) = Z yl%’pi(k’)' (1)

(K" (k')=j}
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Table 5 The error x computed for between the mean curves from the model and the data for each
microstate shown in Fig. 11

Data compared to MS 1 MS 2 MS 3 MS 4

one-layer fit 26.896 41970 105.915 49978
hidden-node fit 19.681 5.694 0.978 6.071
two-layer fit 15.778 4914 40.274 6.717

To ensure the network is in the excitable regime, we fix the constants in functions f and g
throughout as follows:

A=0.5, B=1.49, C=2, D =10, E=4, F=2
although the behavior is robust to small enough changes to these parameters. See [24]
for more details and justification of how the model exhibits an excitable network where

trajectories explore a set of N nodes along M possible directed edges.

B.2 Multi-layer network model
The functions f and g in the multi-layer model (6, 7) are defined by

flpiyix) = pii(F(L = p}) + Do}t - p1)) + E(-Z1) (0:) + Z1)) (0,)), (12)
&0 = k(P = 1)" + A= Bploy + CO7 - 2%1)) (13)

forj=1,...,M;and k = 1,..., Q. The outputs (O) and inputs (/) to the p cells from the y
cells are as follows:

(@)
Zz(,j )(P,J’) = Z J’zz,kpz,w(k)pz,j, (14)
(ke (k)=f)
0 2 9
Zl,} (p’y) = Z yl,k/pl,lx(k/)’ (15)
{k":w(k")=j}

and
M; M Q
pPi=Y b  P=Y_Ph V=D Yk
j=1 j=1 k=1
The default parameters A—F are as in Appendix B.1.

Appendix C: Individual microstate distributions

The individual microstate distributions for each model are shown in Fig. 11. The error x
is the least squares difference between the log of the values of each curve and the log of
the data and the measure of fit, given in Table 5. In line with the main results, the one layer
model does not capture the distributions of the individual microstates and the errors x
are large. The distributions of the two-layer and hidden-node models have a smaller error
X < 20 for all microstates. The agreement shown here further demonstrates the potential

for this model to capture properties of interest in microstate analysis.
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Figure 11 Residence time distributions for each microstate from the data and each model. The model
simulations after the fitting procedure are used. The least squares distances between the distributions are
shown in Table 5. In line with the main results, the residence distributions of the one-layer model do not
capture the heavy tails for any microstate, whereas the two-layer and hidden-node models show a much
better fit even though the models are not fitted to the distributions of the individual microstates
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