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Abstract 

This paper concerns a fracture mechanics problem for elastic cracked materials under transient dynamic loading. The 
nonlinear contact problem for a linear crack under oblique Heaviside compression pulse is solved by the boundary 
integral equations method in the frequency domain, and the components of the solution are presented by the Fourier 
exponential series. The contact forces are calculated and the solution is analysed accounting for the friction. The 
dynamic stress intensity factors are computed at leading and trailing crack’s tips and compared with those obtained 
neglecting the crack closure and friction. 
 
© 2020 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo 
Keywords: Crack; impact loading; contact; friction; boundary integral equations; stress intensity factors. 

1. Introduction 

It is well recognized in the literature that the crack closure effects and the friction between the crack faces must be 
taken into account when considering cracked engineering materials under dynamic loading, because the stress and 
displacement distribution in the vicinity of cracks changes not only quantitatively, but also qualitatively, see, e.g.,  Guz 
et al. (2003), Menshykov et al. (2008). However, the numerical solution of such problems is very complicated as the 
contact problems are nonlinear due to the nature of the contact and divergent integrals of different order and type 
should be regularized and computed. 
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Nomenclature 

a half-length of the crack 
c1, c2 velocities of the longitudinal and transversal waves 
p(x,t)  traction vector 
q(x,t)  vector of contact forces 
[u(x,t)] vector of the displacement discontinuity 
E Yoing’s elastic modulus 
𝐻𝐻���� Hankel function of the first kind 
α angle of the loading 
λ, μ elastic Lame constants 
ρ material density 
ν Poisson’s ratio 
ω frequency of the wave 
Ω middle surface of the crack 

 
Linear crack under normal harmonic tension-compression loading was considered by Menshykov et al. (2005), 

where the crack faces contact interaction was taken into account and the problem was solved using Galerkin method. 
The investigation on how the stress intensity factor depends on the wave number was carried out, using piecewise-
linear continuous elements in the method. Linear crack under oblique time-harmonic loading was studied by 
Menshykov et al. (2008), where crack’s closure was considered with allowance of the friction. The problem was 
solved using boundary integral equation method, and incorporating into analysis friction effects governed by Coulomb 
law. The analysis of results obtained for various angles of incidence and different friction coefficients was carried out, 
and the results were compared with the ones obtained neglecting the cracks’ closure.  

The influence of the friction coefficient on KII was also studied by Giner et al. (2011), where the fatigue contact 
problem was solved using X-FEM. In the paper authors considered two different approaches to set the faces’ contact 
for the crack under cyclic loading, and the accuracy of KII was assessed by various techniques.  

Three-dimensional problem of the elliptical crack in homogeneous body under normally incident tension-
compression wave was solved by Guz et al. (2003), and the opening mode of the stress intensity factor was studied. 
Rectilinear crack in homogeneous material under three different contact conditions was also studied by Ostrik (2019), 
who considered smooth, sliding slip and adhesion between the crack faces. Improved boundary integral equation 
method was used by Mykhas'kiv (2019) for analysis of time-harmonic longitudinal elastic wave penetration through 
a double-periodic array of penny-shaped cracks.  

The problems of interface crack with contact faces under harmonic loading were considered by Menshykov et al. 
(2007), Men’shikov et al (2007), Menshykova et al. (2009) and Guz et al. (2009). To solve the problem the boundary 
integral equations method was used, and a system of boundary integral equations that allows evaluating the 
displacement and stress fields for an interfacial crack under harmonic loading and the expressions for the integral 
kernels were obtained. The influence of the frequency on displacements and tractions at the crack under normal 
tension-compression wave was studied by Menshykov et al. (2007), and under normal shear wave by Guz et al. (2009).  

The effects of wave number, material properties, and the crack interfaces distance on the dynamic stress intensity 
factor were investigated by Mykhaskiv and Stankevych (2019) for the problem of torsion harmonic loading of penny-
shaped crack in layered composite. The extension of the boundary integral equation method was used by Golub and 
Doroshenko (2019) to solve the problem of the elastic wave scattering by a doubly periodic array of planar 
delaminations of arbitrary shape. The solutions for two types of cracks, rectangular and elliptic, were presented in the 
paper. 

Note that the special attention should be paid to the case of non-harmonic loading. In particular, the problems of 
impact loading were considered by many of researchers. Wuensche et al. (2009) analyzed two-dimensional crack 
under transient dynamic loading, comparing two hypersingular time-domain boundary element methods. A 
combination of the classical displacement boundary integral equations and the hypersingular traction boundary 
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integral equations was used to solve the problem and the analysis of dynamic stress intensity factors was presented. 
3D time-domain formulation of boundary element method was implemented to obtain the solution of impact loading 
of finite elastic cracked members problem by Agrawal and Kishore (2001), and Agrawal (2002). The computation of 
the critical intersection angle for straight and curved cracks was performed and the influence of free surface on the 
distribution of stress intensity factor along the crack-front was investigated.  

The dynamic stress intensity factors for different stress pulses were computed by Menshykova et al. (2016) for 
cracked homogeneous materials. In the paper the components of solution were presented by the Fourier exponential 
series, solving the problem by boundary integral equations in frequency domain. Piezoelectric cracked solids under 
dynamic transient load were analyzed by Garcia-Sanchez et al. (2007) and Zhao et al. (2015). For linear crack of finite 
length in infinite body the dynamic stress intensity factors were calculated. To solve the problem the regular integrals 
were calculated numerically and singular and hypersingular integrals were taken analytically. The sawtooth shock 
pulse problem was considered by Zhang et al. (2020), investigating the factors that are likely to influence the dynamic 
stress. 

The normal impact loading of the linear interface cracks was also considered in Menshykov et al (2020a), where 
the analysis of the stress intensity factors (opening and transverse shear modes) dependence on the bimaterial 
properties was carried out. In Menshykov et al (2020b) the problem for the normal transient loading of the linear crack 
in homogeneous material was solved for the first time taking the friction into account (under some specific 
assumptions made for the distribution of the normal contact forces in order to test the adapted iterative algorithm 
initially developed for interface cracks in Menshykova et al (2011). The current study is devoted to oblique impact 
loading of interface crack in homogeneous material. The actual distributions of the contact forces are computed and 
used to obtain the solution satisfying contact constraints (unilateral normal contact and the Coulomb friction law). 

 

2. Boundary integral equations 

Let us consider a two-dimensional homogeneous, isotropic linearly elastic material under external dynamic 
loading. The material contains a finite length linear crack without any initial opening and the Heaviside compression 
pulse propagates (with the velocity of the longitudinal wave) in the oblique direction to the surface of the crack, please 
see Fig. 1.  

 

Fig. 1. Linear crack under oblique Heaviside compression pulse. 

For an isotropic material the equation of motion and the generalized Hooke’s law lead to the linear Lamé equations 
of elastodynamics for the displacement field with the appropriate initial and boundary conditions. The components of 
the displacement and tractions could be represented in terms of boundary displacements and tractions using the 
Somigliana dynamic identity and the appropriate fundamental solutions, see, for example, Menshykov et al (2008) 
and Menshykova et al (2016).  

Furthermore, in order to use the methodology developed by authors in the frequency domain for cracked materials 
under harmonic loading, see Menshykova et al (2016), and Menshykov et al (2020a, 2020b) for the detailed literature 
reviews, the external transient dynamic load can be approximated by the Fourier exponential series. In particular, the 
Heaviside impact pulse H(t) can be approximated by the repeating “steep and long” trapezoidal stress pulse: 



 Oleksandr Menshykov  et al. / Procedia Structural Integrity 28 (2020) 1621–1628 1623
2 Author name / Structural Integrity Procedia  00 (2020) 000–000 

 
Nomenclature 

a half-length of the crack 
c1, c2 velocities of the longitudinal and transversal waves 
p(x,t)  traction vector 
q(x,t)  vector of contact forces 
[u(x,t)] vector of the displacement discontinuity 
E Yoing’s elastic modulus 
𝐻𝐻���� Hankel function of the first kind 
α angle of the loading 
λ, μ elastic Lame constants 
ρ material density 
ν Poisson’s ratio 
ω frequency of the wave 
Ω middle surface of the crack 

 
Linear crack under normal harmonic tension-compression loading was considered by Menshykov et al. (2005), 

where the crack faces contact interaction was taken into account and the problem was solved using Galerkin method. 
The investigation on how the stress intensity factor depends on the wave number was carried out, using piecewise-
linear continuous elements in the method. Linear crack under oblique time-harmonic loading was studied by 
Menshykov et al. (2008), where crack’s closure was considered with allowance of the friction. The problem was 
solved using boundary integral equation method, and incorporating into analysis friction effects governed by Coulomb 
law. The analysis of results obtained for various angles of incidence and different friction coefficients was carried out, 
and the results were compared with the ones obtained neglecting the cracks’ closure.  

The influence of the friction coefficient on KII was also studied by Giner et al. (2011), where the fatigue contact 
problem was solved using X-FEM. In the paper authors considered two different approaches to set the faces’ contact 
for the crack under cyclic loading, and the accuracy of KII was assessed by various techniques.  

Three-dimensional problem of the elliptical crack in homogeneous body under normally incident tension-
compression wave was solved by Guz et al. (2003), and the opening mode of the stress intensity factor was studied. 
Rectilinear crack in homogeneous material under three different contact conditions was also studied by Ostrik (2019), 
who considered smooth, sliding slip and adhesion between the crack faces. Improved boundary integral equation 
method was used by Mykhas'kiv (2019) for analysis of time-harmonic longitudinal elastic wave penetration through 
a double-periodic array of penny-shaped cracks.  

The problems of interface crack with contact faces under harmonic loading were considered by Menshykov et al. 
(2007), Men’shikov et al (2007), Menshykova et al. (2009) and Guz et al. (2009). To solve the problem the boundary 
integral equations method was used, and a system of boundary integral equations that allows evaluating the 
displacement and stress fields for an interfacial crack under harmonic loading and the expressions for the integral 
kernels were obtained. The influence of the frequency on displacements and tractions at the crack under normal 
tension-compression wave was studied by Menshykov et al. (2007), and under normal shear wave by Guz et al. (2009).  

The effects of wave number, material properties, and the crack interfaces distance on the dynamic stress intensity 
factor were investigated by Mykhaskiv and Stankevych (2019) for the problem of torsion harmonic loading of penny-
shaped crack in layered composite. The extension of the boundary integral equation method was used by Golub and 
Doroshenko (2019) to solve the problem of the elastic wave scattering by a doubly periodic array of planar 
delaminations of arbitrary shape. The solutions for two types of cracks, rectangular and elliptic, were presented in the 
paper. 

Note that the special attention should be paid to the case of non-harmonic loading. In particular, the problems of 
impact loading were considered by many of researchers. Wuensche et al. (2009) analyzed two-dimensional crack 
under transient dynamic loading, comparing two hypersingular time-domain boundary element methods. A 
combination of the classical displacement boundary integral equations and the hypersingular traction boundary 

 Author name / Structural Integrity Procedia 00 (2020) 000–000  3 

integral equations was used to solve the problem and the analysis of dynamic stress intensity factors was presented. 
3D time-domain formulation of boundary element method was implemented to obtain the solution of impact loading 
of finite elastic cracked members problem by Agrawal and Kishore (2001), and Agrawal (2002). The computation of 
the critical intersection angle for straight and curved cracks was performed and the influence of free surface on the 
distribution of stress intensity factor along the crack-front was investigated.  

The dynamic stress intensity factors for different stress pulses were computed by Menshykova et al. (2016) for 
cracked homogeneous materials. In the paper the components of solution were presented by the Fourier exponential 
series, solving the problem by boundary integral equations in frequency domain. Piezoelectric cracked solids under 
dynamic transient load were analyzed by Garcia-Sanchez et al. (2007) and Zhao et al. (2015). For linear crack of finite 
length in infinite body the dynamic stress intensity factors were calculated. To solve the problem the regular integrals 
were calculated numerically and singular and hypersingular integrals were taken analytically. The sawtooth shock 
pulse problem was considered by Zhang et al. (2020), investigating the factors that are likely to influence the dynamic 
stress. 

The normal impact loading of the linear interface cracks was also considered in Menshykov et al (2020a), where 
the analysis of the stress intensity factors (opening and transverse shear modes) dependence on the bimaterial 
properties was carried out. In Menshykov et al (2020b) the problem for the normal transient loading of the linear crack 
in homogeneous material was solved for the first time taking the friction into account (under some specific 
assumptions made for the distribution of the normal contact forces in order to test the adapted iterative algorithm 
initially developed for interface cracks in Menshykova et al (2011). The current study is devoted to oblique impact 
loading of interface crack in homogeneous material. The actual distributions of the contact forces are computed and 
used to obtain the solution satisfying contact constraints (unilateral normal contact and the Coulomb friction law). 

 

2. Boundary integral equations 

Let us consider a two-dimensional homogeneous, isotropic linearly elastic material under external dynamic 
loading. The material contains a finite length linear crack without any initial opening and the Heaviside compression 
pulse propagates (with the velocity of the longitudinal wave) in the oblique direction to the surface of the crack, please 
see Fig. 1.  

 

Fig. 1. Linear crack under oblique Heaviside compression pulse. 

For an isotropic material the equation of motion and the generalized Hooke’s law lead to the linear Lamé equations 
of elastodynamics for the displacement field with the appropriate initial and boundary conditions. The components of 
the displacement and tractions could be represented in terms of boundary displacements and tractions using the 
Somigliana dynamic identity and the appropriate fundamental solutions, see, for example, Menshykov et al (2008) 
and Menshykova et al (2016).  

Furthermore, in order to use the methodology developed by authors in the frequency domain for cracked materials 
under harmonic loading, see Menshykova et al (2016), and Menshykov et al (2020a, 2020b) for the detailed literature 
reviews, the external transient dynamic load can be approximated by the Fourier exponential series. In particular, the 
Heaviside impact pulse H(t) can be approximated by the repeating “steep and long” trapezoidal stress pulse: 



1624 Oleksandr Menshykov  et al. / Procedia Structural Integrity 28 (2020) 1621–16284 Author name / Structural Integrity Procedia  00 (2020) 000–000 

��𝐱𝐱� � �∗ �
�

�∗ ���𝐱𝐱� � ��𝐱𝐱 � 𝐱𝐱∗�� � ���𝐱𝐱 � 𝐱𝐱∗� � ��𝐱𝐱 � 𝐱𝐱∗ � 𝐱𝐱���
� �2 � ����

�∗ � ���𝐱𝐱 � 𝐱𝐱∗ � 𝐱𝐱�� � ��𝐱𝐱 � 2𝐱𝐱∗ � 𝐱𝐱��� �,                                                            (1) 

where c2t*=0.1 and c2td=12, and the trapezoidal pulse can be approximated by the Fourier series with an appropriate 
number of the Fourier coefficients. According to Menshykova et al (2016) for the impact (or sharp pulse) loading at 
least 30 Fourier coefficients should be used to adequately approximate the Heaviside pulse. Some details of the 
solution convergence analysis with respect to the number of Fourier coefficients are also given in Menshykov et al 
(2020a) for linear interface cracks with the recommended number of Fourier coefficients being equal to 50. For the 
consistency sake, in the current study we will use 50 Fourier coefficients to represent the external loading and the 
components of the solution. 

The normal and tangential components of the displacement discontinuity vector, �𝐮𝐮�𝐱𝐱𝐱 𝐱𝐱�� � 𝐮𝐮����𝐱𝐱𝐱 𝐱𝐱� �
𝐮𝐮����𝐱𝐱𝐱 𝐱𝐱�, and the traction vector at the crack surface can be approximated by the following trigonometric Fourier 
series with respect to the time:  
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𝑘𝑘 𝐱 𝑘𝑘� � 0𝐱1𝐱 � 𝐱 �∞. 
Thus, the system of boundary integral equations can be represented as follows: 
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where 𝑖𝑖 is the imaginary unit; and the real and the imaginary parts of the integral kernel Fmj �𝐱𝐱𝐱 𝐱𝐱𝐱 𝜔𝜔�� can be obtained 
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applying the following differential operator with respect to 𝐱𝐱 and 𝐱𝐱   
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For a linear crack the integral kernels in (6) can be written as: 

𝐹𝐹���𝐱𝐱𝐱 𝐱𝐱𝐱 𝜔𝜔�� � 𝐹𝐹���𝐱𝐱𝐱 𝐱𝐱𝐱 𝜔𝜔�� � 0𝐱                                                                                                                     (9) 
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where � � |𝑥𝑥� � ��| is the distance between the observation and load points. The detailed expressions for the real and 
imaginary parts of integral kernels are given in Menshykov et al (2008). 
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To include the contact interaction into account, the Signorini unilateral constraints and the Coulomb friction law 
must be imposed for the normal and tangential components of the contact force and the displacement discontinuity, 
Menshykov et al (2008), and Menshykova et al (2011): 
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The contact constraints above ensure that there is no interpenetration of the opposite crack faces; the normal 
component of the contact force is unilateral, and the opposite crack faces remain immovable with respect to each other 
in tangential direction while they are held by the friction force before the slipping occurs.  

As the first step, the solution of elastodynamic problem for the cracked material neglecting the effect of the crack 
closure is obtained. Then the correction of the solution is performed applying the constraints (12)–(14) and the Fourier 
coefficients are changed until the solution satisfying the constraints is found. Details of the algorithm and the analysis 
of its convergence for different friction coefficients for the case of impact loading can be found in Menshykov et al 
(2008), Menshykova et al (2011), Menshykov et al (2020b). 

 

4. Numerical results 

For the validation of the numerical model the normal shear loading of unit amplitude was considered. The material 
has the properties of steel: E = 200 GPa, ν = 0.25, ρ = 7800 kg/m3. The dynamic stress intensity factor (shear mode 
normalized by the static value) is presented in Fig. 2. As it was concluded in Menshykov et al (2020b) the magnitude 
of KII depends on the friction and significantly decreases with the rise of the friction coefficient. At the same time, this 
problem may be considered as a rather artificial one since the assumption made for the normal component of the 
contact force being constant to test the iterative algorithm accounting for friction.  
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where c2t*=0.1 and c2td=12, and the trapezoidal pulse can be approximated by the Fourier series with an appropriate 
number of the Fourier coefficients. According to Menshykova et al (2016) for the impact (or sharp pulse) loading at 
least 30 Fourier coefficients should be used to adequately approximate the Heaviside pulse. Some details of the 
solution convergence analysis with respect to the number of Fourier coefficients are also given in Menshykov et al 
(2020a) for linear interface cracks with the recommended number of Fourier coefficients being equal to 50. For the 
consistency sake, in the current study we will use 50 Fourier coefficients to represent the external loading and the 
components of the solution. 

The normal and tangential components of the displacement discontinuity vector, �𝐮𝐮�𝐱𝐱𝐱 𝐱𝐱�� � 𝐮𝐮����𝐱𝐱𝐱 𝐱𝐱� �
𝐮𝐮����𝐱𝐱𝐱 𝐱𝐱�, and the traction vector at the crack surface can be approximated by the following trigonometric Fourier 
series with respect to the time:  
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𝑘𝑘 𝐱 𝑘𝑘� � 0𝐱1𝐱 � 𝐱 �∞. 
Thus, the system of boundary integral equations can be represented as follows: 

𝑝𝑝�𝐱���� �𝐱𝐱� � 𝑖𝑖𝑝𝑝�𝐱���� �𝐱𝐱� � � ∑ � �𝐹𝐹�����𝐱𝐱𝐱 𝐱𝐱𝐱 𝜔𝜔�� � 𝑖𝑖𝐹𝐹�����𝐱𝐱𝐱 𝐱𝐱𝐱 𝜔𝜔���� ����𝐱���� �𝐱𝐱�� � 𝑖𝑖���𝐱���� �𝐱𝐱������� 𝑑𝑑𝐱𝐱𝐱        (6) 

𝐱𝐱 𝐱 Ω𝐱    𝑘𝑘 𝐱 𝑘𝑘�𝐱    � � 1𝐱2𝐱 
where 𝑖𝑖 is the imaginary unit; and the real and the imaginary parts of the integral kernel Fmj �𝐱𝐱𝐱 𝐱𝐱𝐱 𝜔𝜔�� can be obtained 
from the fundamental displacement 
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applying the following differential operator with respect to 𝐱𝐱 and 𝐱𝐱   
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For a linear crack the integral kernels in (6) can be written as: 

𝐹𝐹���𝐱𝐱𝐱 𝐱𝐱𝐱 𝜔𝜔�� � 𝐹𝐹���𝐱𝐱𝐱 𝐱𝐱𝐱 𝜔𝜔�� � 0𝐱                                                                                                                     (9) 
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where � � |𝑥𝑥� � ��| is the distance between the observation and load points. The detailed expressions for the real and 
imaginary parts of integral kernels are given in Menshykov et al (2008). 

 

3. Contact interaction and iterative algorithm 

Due to the crack’s closure the traction vector at the crack surface is the superposition of the initial traction caused 
by the incident load and the contact force, ��𝐱𝐱𝐱 𝐱𝐱�, that arises in the contact region, which is generally unknown 
beforehand, depends on the direction of the loading, changes in time under deformation of the material and must be 
determined as a part of the solution.  

To include the contact interaction into account, the Signorini unilateral constraints and the Coulomb friction law 
must be imposed for the normal and tangential components of the contact force and the displacement discontinuity, 
Menshykov et al (2008), and Menshykova et al (2011): 
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The contact constraints above ensure that there is no interpenetration of the opposite crack faces; the normal 
component of the contact force is unilateral, and the opposite crack faces remain immovable with respect to each other 
in tangential direction while they are held by the friction force before the slipping occurs.  

As the first step, the solution of elastodynamic problem for the cracked material neglecting the effect of the crack 
closure is obtained. Then the correction of the solution is performed applying the constraints (12)–(14) and the Fourier 
coefficients are changed until the solution satisfying the constraints is found. Details of the algorithm and the analysis 
of its convergence for different friction coefficients for the case of impact loading can be found in Menshykov et al 
(2008), Menshykova et al (2011), Menshykov et al (2020b). 

 

4. Numerical results 

For the validation of the numerical model the normal shear loading of unit amplitude was considered. The material 
has the properties of steel: E = 200 GPa, ν = 0.25, ρ = 7800 kg/m3. The dynamic stress intensity factor (shear mode 
normalized by the static value) is presented in Fig. 2. As it was concluded in Menshykov et al (2020b) the magnitude 
of KII depends on the friction and significantly decreases with the rise of the friction coefficient. At the same time, this 
problem may be considered as a rather artificial one since the assumption made for the normal component of the 
contact force being constant to test the iterative algorithm accounting for friction.  
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Fig. 2. Stress intensity factor (shear mode) plotted against the normalized time, normal loading. 

 

 

Fig. 3. Normal contact forces at the crack surface plotted against the normalized time. 
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Fig. 4. Stress intensity factor (shear mode) plotted against the normalized time both crack tips. 
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Fig. 4. Stress intensity factor (shear mode) plotted against the normalized time both crack tips. 
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As a numerical example, let us consider an incident pulse of unit amplitude propagating at α = 450. As discussed 
above, in the current study the actual distribution of the contact forces was obtained, see Fig. 3, and used.  

Due to the nature of the problem the crack is constantly closed, so the first mode of the stress intensity factor is 
absent. The normalized shear modes of dynamic stress intensity factors at both crack tips are presented in Fig. 4. The 
maximal values of KII do not coincide and are achieved at different times, so the responses at the leading and trailing 
crack tips are very different due to the non-symmetry of the problem (similarly to the case of oblique harmonic loading, 
considered in Menshykov et al (2008). It should be also noted that the friction significantly affected the solution, 
especially when comparing to the case of the normal shear loading. 

Considering the crack closure and friction for the case of interface cracks, where both normal opening and shear 
modes of the stress intensity factor are present for any type and direction of the loading, will be the next stage of this 
study. 
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