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Abstract—This paper proposes a novel atmosphere-informed
predictive satellite channel model for beyond the fifth-generation
(B5G)/the sixth-generation (6G) satellite-terrestrial wireless com-
munication systems at Q-band to model/predict channel at-
tenuation at any specific time. The proposed channel model
is a data-driven model based on either of two deep learning
networks, i.e., multi-layer perceptron (MLP) and long short-term
memory (LSTM). The accuracy of the proposed channel model is
measured by cumulative density function (CDF) of absolute error
and mean square error (MSE) between modeled/predicted and
measured channel attenuation. The complexity of the proposed
channel model is assessed by the training time, loading time,
and test time of deep learning networks. To further improve the
accuracy of the proposed channel model, weather classification
is developed at the stage of database construction. Based on
our established channel and weather measurement campaign, the
performance of the proposed data-driven channel model based
on different deep learning networks, e.g., MLP and LSTM, with
or without the weather classification is investigated and analyzed
comprehensively. Finally, the close agreement is achieved between
the channel attenuation modeled/predicted from the proposed
atmosphere-informed predictive satellite channel model and the
one from real channel measurements, verifying the utility of
proposed channel model.

Index Terms—Channel modeling and measurement, B5G/6G
satellite-terrestrial wireless communications, Q-band, data-
driven, deep learning networks.

I. INTRODUCTION

BY the fourth quarter of 2019, the number of mobile
subscription reached 7.9 billion globally [1]. It is exciting

that mobile technologies have become not only a connection
between people, but also an accelerator of innovation. To
let mobile technologies revolutionize every aspect in every
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one’s daily life, two emerging issues are increasingly attracting
attention from both industry and academia. The first one is
the unprecedented growth of mobile data traffic. According to
[1], there was a 49% growth of mobile data traffic within
the one year period between Q4 2018 and Q4 2019. This
growth rate is challenging the speed of technology evolu-
tion, the conventional business model of mobile network
operators, and the environmental friendliness of large-scale
network deployments. The second one is the connectivity gap
between developed economies and underdeveloped economies.
Although it is reported that more than half of the population
have access to mobile connections, more than 3.5 billion
people in underdeveloped countries remain unconnected to the
internet [2]. The evolution of the fifth-generation (5G) mobile
networks or even beyond 5G (B5G) and the sixth-generation
(6G) mobile networks is targeting to address both of the above-
mentioned issues [3]. One key candidate technology is the
integration of satellite communications and 5G. To enable
seamless transition between them, an accurate and easy-to-use
satellite-terrestrial channel attenuation model is essential.

There are extensive satellite channel studies in the liter-
ature, covering frequency bands including UHF-band (300-
3000 MHz) [4], L-band (1-2 GHz) [5], S-band (2-4 GHz)
[6], X-band (8-12 GHz) [7], Ku-band (12-18 GHz) [7]–[8],
K-band (18-26 GHz) [9], Ka-band (26-40 GHz) [10]–[12].
The research on satellite communication channel models at
higher frequency bands, such as Q-band (33-50 GHz) and
V-band (50-75 GHz) are less studied [13]–[16]. Recently,
Q/V-band attracts a lot of attention because its high data
throughput is beneficial to the transition from broadcast to
broadband services in B5G and 6G satellite-terrestrial wireless
communication systems. Moreover, Q/V-band are expected
to be used for the feeder link of B5G and 6G satellite-
terrestrial wireless communication systems to free Ka-band for
revenue generating user links and reduce the per bit cost of the
ground segment [17]. The channel characteristics of satellite
channel model at higher frequency bands are different from
that at low frequency band [18]–[20], so the channel models
at lower frequency band [4]–[12] cannot be directly used for
satellite channels at Q/V-bands. Therefore, an accurate yet
easy-to-use satellite channel model which can describe channel
characteristics at Q-band is necessary for the proper design
and development of B5G and 6G satellite-terrestrial wireless
communication systems [21]. However, currently the satellite
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channel modeling at Q-band is still in the infancy stage.
[13]–[15] presents the performance evaluation and analysis of
fading estimation over Q/V-band satellite links, but they did
not propose a complete channel model at Q-band. In [16],
the authors proposed a three-dimensional channel model for
satellite communications at Q-band in a high latitude, includ-
ing the path loss, shadowing, and small-scale fading. This
model is based on the stochastic channel modeling and cannot
accurately model satellite channel attenuation at any specific
time. Moreover, the limited opportunities to obtain satellite
channel measurement data at Q-band leads to its channel
modeling to be even more difficult, and thus slows down the
development progress of Q-band channel modeling. Recently,
[22] has discovered the correlation and relationship between
the satellite channel attenuation at Q-band and atmosphere
data. This preliminary investigation inspires us to use widely
available atmosphere data, which is much easier to obtain than
channel measurement data, to propose a new Q-band satellite
channel modeling approach with the help of machine learning.

Importantly, the predictive ability of machine learning algo-
rithm, i.e., multilayer perceptron (MLP) and long short-term
memory (LSTM), enables predictive features of the new at-
mosphere data-based modeling approach. So far, conventional
channel models can be classified as deterministic channel mod-
els, stochastic channel models, and machine learning-based
channel models [23]. Neither of the aforementioned satellite
channel models [4]–[12] can accurately model satellite channel
attenuation at any specific time, which is necessary for efficient
link adaptations including power control and adaptive coding
and modulation (ACM) selection for satellite communications
[24], [25]. Meanwhile, current channel models based on ma-
chine learning are all based on the channel propagation data
obtained from real wireless channel measurement campaigns
[26]. Because of the high cost of satellite channel measurement
campaign at Q-band, the atmosphere data is much easier
to obtain than the channel measurement data. A machine
learning-based channel model with the help of the atmosphere
data rather than the channel propagation data can relieve the
difficult-to-obtain satellite channel measurement data at Q-
band. Therefore proposing a new channel modeling approach
based on atmosphere data, which can not only properly model
Q-band satellite channel properties, but also predict channel
attenuation at any interesting and specific time, is still an open
area.

In this paper, to fill the aforementioned gap, we pro-
pose an atmosphere-informed data-driven predictive satellite
channel model for B5G and 6G satellite-terrestrial wireless
communication systems at Q-band based on two deep learning
networks, i.e., MLP and LSTM. The main contributions of this
paper are summarized as follows:

1) An atmosphere-informed data-driven predictive satellite
channel model for B5G and 6G satellite-terrestrial wire-
less communication systems at Q-band is proposed in
this paper. The proposed model can not only model Q-
band channel characteristics based on atmosphere data,
but also predict channel attenuation at any interesting
and specific time. The term “channel prediction” refers
to the ability of modeling channel attenuation at future

time in advance. Therefore, both the terms “model” and
“predict” are used in this paper to describe the proposed
model’s ability.

2) A new measurement campaign is built up at Chilbolton,
Hampshire, UK, for training and validating the proposed
data-driven channel model. The development measure-
ment campaign can offer both the channel data at Q-band
and the corresponding atmosphere data at the same time.

3) For further improving the accuracy of the proposed
channel model, the weather classification during the
process of the database construction is developed for the
first time. Based on the established measurement cam-
paign, the impact of the developed weather classification
on the proposed data-driven channel model is fully
analyzed and discussed, demonstrating the importance
and necessity of the weather classification.

4) Based on the established measurement campaign at
Chilbolton, UK, the utility of the proposed channel
model is validated by the close agreement between the
channel attenuation modeled/predicted from the pro-
posed channel model and the one from real channel
measurements. Moreover, the accuracy and complexity
of the proposed channel model based on different deep
learning networks, e.g., MLP and LSTM, with or with-
out the weather classification are completely analyzed
and discussed. Some interesting observations and useful
conclusions are found, which are important and useful
for the better design of B5G/6G satellite terrestrial
wireless communication systems.

The rest of the paper is organized as follows. In Section
II, the satellite communication system at Q-band and atmo-
sphere measurement system are shown. In Section III, the
atmosphere-informed data-driven predictive satellite channel
model based on MLP is proposed. The weather classification
and performance analysis are also shown. In Section IV, the
atmosphere-informed data-driven predictive satellite channel
model based on LSTM is shown. Its performance analysis is
also investigated. In Section V, the atmosphere-informed data-
driven predictive satellite channel model based on MLP and
LSTM with weather classification are compared and discussed
according to the trade-of between accuracy and complexity.
Conclusions are given in Section VI.

Table I lists the abbreviations and their full names in this
paper.

II. MEASUREMENT SYSTEMS AND WEATHER
CLASSIFICATION

A. Satellite channel attenuation measurements

The measurement campaign was conducted at Q-band
(39.402 GHz) exploiting the Aldo Paraboni experimental
payload on-board the commercial satellite Inmarsat-4A FA
located at 25.0◦E. The signal was received by a station
mounted 10 m above rooftop located at Chilbolton, Hampshire,
UK (51.1445◦N, 1.4370◦W). This measurement campaign
has been operating since July 2016. In this paper, excess
attenuation is our main focus and its behavior over time
was recorded in the measurement campaign. As part of the
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TABLE I: Summary of abbreviations.

Full name Abbreviation
Beyond the fifth-generation B5G

Sixth-generation 6G
Multi-layer perceptron MLP

Long short-term memory LSTM
Cumulative density function CDF

Mean square error MSE
Adaptive coding and modulation ACM

Rainfall drop count RDC
Artificial neural network ANN

Rectified linear unit ReLU
Root-mean-square propagation RMSProp

Recurrent neural network RNN

measurement campaign, the excess attenuation under different
weather condition was recorded. To eliminate the impact of
ground equipment, the excess attenuation was extracted from
the received signals by calculating the difference between the
measured signal power and the power of a reference signal in
clear sky.

B. Atmosphere measurements

To compare against weather conditions, the corresponding
atmosphere data were also recorded. In order to improve the
accuracy of proposed atmosphere-informed data-driven predic-
tive satellite channel model, the satellite channel attenuation
data and the corresponding atmosphere data are synchronized
over time by seconds. The atmosphere data were collected us-
ing three instruments, including Campbell Scientific PWS100
present weather sensors, multiple raingauges, and meteorolog-
ical sensors, in the Chilbolton Observatory, Hampshire, UK
[27]–[29]. Fig. 1 (a) is the location of Chilbolton. Fig. 1 (b)
is the Chilbolton Observatory [30].

These sensors and instruments were able to capture 14
measured parameters ranging from air temperature to rainfall
drop count (RDC). A list of these atmosphere condition
parameters are shown in Table II. There parameters will serve
as inputs to the proposed channel attenuation model in later
paragraphs.

III. CHANNEL MODEL BASED ON MLP

A. System model

The artificial neural network (ANN) in this model is a MLP
with 6 fully connection layers. The architecture parameters
such as the learning rate, mini batch, epochs, and loss function,
are adjusted to find the best performance. There are 16, 32, 64,
32, 16, and 1 neurons, respectively in each fully connection
layer. The structure of this model is shown in Fig. 2. The
loss function is applied to parameteric estimation. It is used to
evaluate the performance of model by comparing the predicted
value with the expected value. In this model, the mean square
error (MSE) is used as the loss function. It is the average value

(a) The location of Chilbolton.

(b) The Chilbolton Observatory.

Fig. 1: The photographs of Chilbolton Observatory.

TABLE II: Measured atmosphere parameters.

Parameter Unit
Air temperature K

Relative humidity %
Rainfall rate m/s

Visibility m
Thickness of rainfall amount m

Average particle diameter mm
Average particle speed m/s

RDC 1 within turf wall enclosure count
RDC 2 on ground count

RDC 3 from low rate raingauge on ground count
Rainfall tip count count
Barmetric pressure Pa

Wind speed m/s
Wind direction degree

of squared distances between our target values and predicted
values, and can be expressed as

R =

∑N
n=1(yn − ypn)

2

N
(1)

where N denotes the numbers of dataset, yn denotes true value
and ypn denotes predicted value, respectively. The optimizer is
used to minimize the value of MSE through iterations using
the training dataset. Rectified linear unit (ReLU) is used in our
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Fig. 2: The ANN architecture of proposed model for channel
excess attenuation prediction.

model to accelerate the early stages of learning by providing
positive inputs. ReLU is a popular activation function in
deep learning, and could preserve information about relative
intensities as information travels through multiple layers of
feature detectors [31]. The learning rates for all the fully
connection layers are set to 10−4 and divided by 10 every
100 epochs. The root-mean-square propagation (RMSProp)
with the smooth factor of 10−6 and the momentum of 0.9
is applied to optimize the weights. The weight β is updated
as below

E[g2]t = 0.9E[g2]t−1 + 0.1g2t (2)

βt+1 = βt −
η√

E[g2]t + κ
gt (3)

where t denotes the iteration index, η denotes the learning
rate, and κ denotes the smooth factor, respectively, gt is
the gradient of the current iteration t [32] [33]. The Glorot
uniform initializer, which is also recognized as the Xavier
uniform initializer, is applied to initialize the weights in each
layer. Xavier uniform initializer is first proposed by Xavier
Glorot and Yoshua Bengio in [34], and is widely used in the
training deep feedforward neural networks. In order to make
the information flow in the network more efficient, the variance
of output of each layer should be equal as far as possible.
A uniform distribution randomly within [−ε, ε] was used to
generate the weight where

ε =

√
6

ιin + ιout
(4)

where lin and lout are the numbers of input units and output
units in the weight tensor. The neuron biases in all fully
connection layers is initialized with the constant 0.

B. Weather classification and database description

According to our preliminary research on the correlation
between the satellite channel attenuation at Q-band and at-

mosphere data [22], the rainfall amount has significant effect
on the channel attenuation. Combined with the characteristic
of ANN, this inspires us to exploit weather classification
as prior information for improving the modeling/prediction
performance of the proposed model.

To validate the performance of weather classification on the
proposed atmosphere-informed data-driven predictive satellite
channel model, a sunny database and a rainy database are
built according to the thickness of rainfall amount from total
samples. Meanwhile, the entire database comprises all sam-
ples. For a certain sample, if its thickness of rainfall amount
is zero, this sample belongs to the sunny database, otherwise,
this sample belongs to the rainy database. These databases are
separated into training datasets, validation datasets, and testing
datasets according to the proportion 60%, 15%, and 25%,
respectively. In this paper, the proposed atmosphere-informed
data-driven predictive satellite channel models trained by
the entire database, sunny database, and rainy database are
named as the general model, sunny model, and rainy model,
respectively. In the same way, using the testing datasets of
entire database, sunny database, and rainy database to test
the prediction performance of channel models are named as
the general prediction, sunny prediction, and rainy prediction,
respectively. Therefore, based on a very simple inspection of
the weather condition (sunny or rainy), we can easily choose
either the sunny model or the rainy model correspondingly.

C. Performance analysis

In this subsection, the accuracy and complexity of the pro-
posed MLP-based channel model predicting/modeling channel
attenuation 1 min–60 min in advance are shown.

1) Prediction accuracy: The accuracy of MLP-based chan-
nel model predicting channel attenuation 1 min–60 min in
advance is measured via MSE between predicted and measured
channel attenuation and the cumulative density function (CDF)
of absolute error. The MSE reflects overall value of error while
the CDF of absolute error shows the distribution of absolute
errors.

The MSE between measured and predicted channel attenu-
ation by using MLP-based channel model is shown in Table
V in Appendix A. In this table, it can be seen that the MSE
increases with the prediction window. For instance, the MSE
of the general prediction with 60 min in advance by using the
general model is approximately 0.43 dB larger than that of
general prediction with 0 min in advance by using the general
model. Similarly, the MSE of the sunny prediction with 60 min
in advance by using the sunny model is approximately 0.44 dB
larger than that of the sunny prediction with 0 min in advance
by using the sunny model. However, the rainy prediction
behaves differently from them. The MSEs of rainy prediction
by using the general model and rainy model always fluctuate
around 3-4 dB, whether the prediction time is 0 min or 60 min.
The MSEs of rainy prediction by using the sunny model
always fluctuate around 6 dB.

The CDFs of absolute error of general predictions with
0 min–60 min in advance by using the general model based
on MLP are shown in Fig. 3. Predictions with 0 min, 5 min,

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2020.3037212, IEEE
Transactions on Vehicular Technology

5

and 45 min in advance have better performance when absolute
error is below 0.4 dB. When absolute error is above 0.4 dB,
the predictions with different minutes in advance have similar
performance and increase slowly. Finally, more than 88%
of the absolute errors between the predicted and measured
channel attenuation are below 1 dB.

The comparison among prediction performances of general
prediction, sunny prediction, and rainy prediction by using the
general model, sunny model, and rainy model based on MLP
is as follows. According to the comparison of MSE between
predicted and measured channel attenuation, the general pre-
diction with 0 min-60 min in advance has the best prediction
performance by using the general model, better performance
by using the sunny model, and the worst performance by using
the rainy model, i.e. the MSEs of the general prediction with
1 min in advance by using the general model, sunny model,
and rainy model are 0.558, 0.858, and 1.870, respectively.
The sunny prediction with 0 min-60 min in advance has
similar prediction performance by using the general model
and the sunny model, but better performance by using the
sunny model, i.e. the MSEs of the sunny prediction with
1 min in advance by using the general model and sunny model
are 0.274 and 0.258. Using the rainy model delivers inferior
performance, i.e. the MSE of sunny prediction with 20 min
in advance by rainy model is 2.470. The rainy prediction with
0 min-60 min in advance has the best performance by using
the rainy model and the worst performance by using the sunny
model. The MSE of the rainy prediction with 4 min in advance
by using the sunny model is up to 7.388, which is the highest
value in Table. V.

The CDFs of absolute errors of predicting channel at-
tenuation 10 min in advance by using MLP-based channel
models is shown in Fig. 4. Although the MSEs of the sunny
prediction with 0 min-60 min in advance by using the general
model and the sunny model based on MLP are very similar,
the low absolute error distribution of the sunny prediction
by using the sunny model is higher than that of the sunny
prediction by using the general model when absolute error is
approximately 0 dB-0.5 dB as shown in Fig. 4. The two models
are gradually converging when the absolute error increases
to values higher than 0.5 dB. When the absolute error is
approximately 0 dB-1.1 dB, the low absolute error distribution
of the rainy prediction by using the general model is higher
than that of the rainy prediction by using the rainy model.
However, the low absolute error distribution of the rainy
prediction by using the rainy model increases and is higher
than that of rainy prediction by using the general model when
absolute error increases higher than 1.1 dB. Meanwhile, the
low absolute error distribution of sunny prediction by using
the sunny model and the general model is higher than that
of general prediction by using the general model. Therefore,
the advantage of sunny prediction by using the sunny model is
more significant in the analysis of CDFs of absolute error than
the analysis of MSE. In conclusion, it can be seen the weather
classification during the process of the database construction
has important significance in satellite channel model.

2) Model complexity: The complexity of MLP-based chan-
nel model predicting channel attenuation 1 min–60 min in
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Fig. 3: The CDFs of absolute error of general prediction with
0 min–60 min in advance by using the general model based
on MLP.
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Fig. 4: The CDFs of absolute error of predicting channel at-
tenuation 10 min in advance by using the MLP-based channel
models.

advance is measured via training time, loading time, and test
time. It is shown in Table. VI. The training time and loading
time of channel model based on MLP and test time do not
vary with prediction time. In general, the training time of the
sunny model is longer than that of general model and rainy
model based on MLP. However, the test times of the general
prediction by using the general model, sunny model, and rainy
model based on MLP are very similar. The same conclusion
applies to training time and loading time.

In aforementioned results, the MLP has in total six layers.
The number of parameters of each layer is shown in Table
III. The parameters of the first fully connection layer is
related to the input layer. It has 112 parameters when the
input layer is a 7-dimensional vector. The second to the fifth
fully connection layers are symmetrical. Both the second and
fifth fully connection layers have 512 parameters, respectively.
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TABLE III: Number of parameters of MLP.

Layers Number of parameters
Fully connection layer 1 112
Fully connection layer 2 512
Fully connection layer 3 2048
Fully connection layer 4 2048
Fully connection layer 5 512
Fully connection layer 6 16

Total 5248

Both the third and fourth fully connection layers have 2048
parameters which account for most parameters of the model.
The final fully connection layer has 16 parameters. Then the
number of total parameters of the model is 5248.

In summary, the conclusions of prediction accuracy and
model complexity of channel model based on MLP are as
follows.

1) Under the general prediction and sunny prediction, MSE
between predicted and measured channel attenuation
increases with the prediction window. However, the
rainy prediction behaves differently. Its MSE always
fluctuates, without monotonous change over time.

2) More than 88% of the absolute errors between the
predicted and measured channel attenuation are less than
1 dB.

3) In the channel models based on MLP, the general
prediction, sunny prediction, and rainy prediction are the
best in the general model, sunny model, and rainy model,
respectively. For instance, when we already know that it
is raining, the MSE of rainy prediction is 4.73 and 3.21
with the general model and rainy model, respectively.
This demonstrates the importance of weather classifica-
tion.

4) According to the comparison of the training time, load-
ing time, and test time, the complexity of the MLP-based
model does not change drastically with the prediction
time and weather classification.

IV. CHANNEL MODEL BASED ON LSTM

A. System model

The recurrent neural network (RNN) with LSTM, proposed
by S. Hochreiter and J. Schmidhuber in [35], can overcome the
vanishing or exploding gradient problem. It is typically used
in the learning problems related to sequential data to establish
dependencies between states at long intervals. As the Fig. 5
shows, a LSTM block has three gates (input gate, forget gate,
output gate), a block input, a memory cell, and a block output.
A LSTM forward pass can be formalized as the follow

Block input:

c̃t = g(Wc [xt + yt−1] + bc) (5)

Input gate:

it = σ(Wi [xt + yt−1] + bi) (6)

Forget gate:

ft = σ(Wf [xt + yt−1] + bf ) (7)

Cell:
ct = ft � ct−1 + it � c̃t (8)

Output gate:

ot = σ(Wo [xt + yt−1] + bo) (9)

Block output:
yt = ot � h(ct) (10)

where Wc, Wi, Wf , Wo and bc, bi, bf , bo are respectively
the weight matrix and the vector of bias in each gate; xt and
yt−1 are the input data at time t and the output vectors of
the upper cell respectively. In the above equations, c̃t is the
extraction of the features of the current input for calculating
the current memory cell ct. It represents the output of the
input gate which controls how many the information retains
from upper cell to current memory cell ct depend on current
input. The variable ft represents the output of the forget gate
which decides the volume of information forgotten from the
upper cell to the current memory depending on the current
input. ot is the output of the output gate which controls the
volume of information retained from upper cell to output yt
of this cell. ct−1 is the retained information of the upper cell
(upper memory). Ct represents the current memory of this
cell which contains the information at long intervals. yt is the
output of this cell. σ, g, h is the activation function where σ
is always the sigmoid function and g, h is usually the tanh
function.

The detail model we designed is shown in Fig. 6. Four
fully connected layers and 1 LSTM layer are applied. The
input layer is a vector of 7-dimension or 14-dimension of
atmosphere data. The output of LSTM layer is set to a
32-dimension vector. There are 16, 32, 64, 1 neurons for
each fully connected layer. The loss function is MSE. Back
propagation are applied end-to-end to optimize the weights of
the model where is the RMSProp in [36] with momentum of
0.9 and smooth factor of 10−6. The timestep is set different to
find the best performance. Keras is used to build this model.
The learning rate is set to 10−4. 1000 epochs training times
are set with early stop that has patience. The patience is set
as 5. The initialization of each layer use the Xavier uniform
initializer [37].

B. Weather classification and database description

For the comparison between the proposed channel model
based on MLP and LSTM, the consistence of databases and
datasets for training and testing the models should be kept.
Therefore, in this subsection, we follow the same way to do
the weather classification as well as the same definition given
in Subsection III B. This means that the same entire database,
sunny database, and rainy database are used to train and get
the general model, sunny model, and rainy model, respectively.
The definitions of the general prediction, sunny prediction, and
rainy prediction are the same as those given in Subsection III
B.
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Fig. 6: The Structure of model we designed.

C. Performance analysis

In this subsection, the accuracy and complexity of proposed
LSTM-based channel model modeling/predicting channel at-
tenuation 1 min–60 min in advance are shown.

1) Prediction accuracy: The accuracy of LSTM-based
channel model with time step θ=0, 5, 10, and 15 min predicting
channel attenuation 0 min–60 min in advance is measured
via CDF of absolute error and MSE between predicted and
measured channel attenuation.

As Table VII shows, the MSE between predicted and
measured channel attenuation increases with prediction time,
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Absolute error of signal excess attenuation, M, dB
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Prediction 0 min in advance

Prediction 5 min in advance

Prediction 20 min in advance

Prediction 45 min in advance

Prediction 60 min in advance

Fig. 7: The CDFs of absolute error of general prediction with
0 min–60 min in advance by using the general model based
on LSTM.

irrespective of whether the prediction time is 0 min or 60 min,
as well as whether θ takes the value of 0 min or 15 min. For
example, when θ=0 min, the MSE of the general prediction
with 60 min in advance by using the general model based
on LSTM is approximately larger 0.26 dB than that of the
general prediction with 0 min in advance. Similarly, the MSE
of the sunny prediction with 60 min in advance by using the
sunny model is approximately larger 0.43 dB than that of the
sunny prediction with 0 min in advance. However the rainy
prediction by using the general model, sunny model and rainy
model diverge. The MSEs of rainy prediction by using the
general model and rainy model always fluctuate around 3 dB,
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Fig. 8: The CDFs of absolute error of predicting channel
attenuation 10 min in advance by the LSTM-based channel
models.

without monotonous change over time. The MSEs of the rainy
prediction by using the sunny model always fluctuate around
4 dB.

The CDF of absolute error of the general prediction with
0 min–60 min in advance by using the general model based
on LSTM is shown in Fig. 7. When absolute error is below
0.5 dB, the cumulative distribution of absolute error of the
general prediction with 5 min, 20 min, and 45 min in advance
by using the general model increase faster. Especially, their
cumulative distribution of absolute error below 0.2 dB has
5 % higher proportion than that of the general prediction with
0 min in advance by using the general model. This suggests
prediction with 5 min, 20 min, and 45 min in advance have
better performance when absolute error is below 0.5 dB. When
absolute error is approximately above 0.8 dB, the prediction
with 0 min, 5 min, 20 min, 45 min, and 60 min in advance have
similar performance and increase slowly. As Fig. 7 shows,
more than 90% of the absolute errors between the predicted
and measured channel attenuation are less than 1 dB.

For researching the effectiveness of weather classification in
LSTM-based channel model, the performance of the general
prediction, sunny prediction, and rainy prediction by using the
general model, sunny model, and rainy model based on LSTM
is calculated and analyzed as follows.

According to the comparison of MSE between predicted
and measured channel attenuation, the general prediction with
0 min-60 min in advance has the best prediction performance
by using the general model, better performance by using the
sunny model, and the worst performance by using the rainy
model, i.e. the MSEs of the general prediction with 4 min in
advance by using the general model, sunny model, and rainy
model are 0.516, 0.843, and 2.700, respectively. The sunny
prediction with 0 min-60 min in advance has very similar
prediction performance by using the general model and sunny
model, but better performance by using the sunny model, i.e.
the MSEs of the sunny prediction with 45 min in advance
by using the general model and sunny model are 0.780 and

0.816, respectively. It has inferior performance when using
the rainy model based on LSTM. The rainy prediction with
0 min-60 min in advance has the best prediction performance
by using the rainy model, better performance by using the
general model, and the worst performance by using the sunny
model. The MSE of the rainy prediction with 2 min in advance
by the sunny model is up to 6.280, which is the highest value
in Table VII.

The CDFs of absolute error of predicting channel attenua-
tion 10 min in advance by using LSTM-based channel models
is shown in Fig. 8. The cumulative distributions of absolute
error of the sunny prediction by using the sunny model and
general model are on a basic agreement. Combined with their
MSE between predicted and measured channel attenuation,
these results are summarised in Table VII. These results
indicate that the accuracy of the sunny prediction by using
the sunny model and the general model based on LSTM are
in par. When absolute error is approximately 0 dB-1.6 dB, the
low absolute error distribution of the rainy prediction by using
the rainy model is higher than that of the rainy prediction by
general model. Meanwhile, the low absolute error distribution
of the sunny prediction by using the sunny model and general
model is higher than that of the general prediction by using the
general model. Combined with their MSEs between predicted
and measured channel attenuation shown in Table VII, the
advantage of the sunny prediction by using the sunny model
is more obvious in the analysis of CDFs of absolute error than
the analysis of MSE. In conclusion, it can be seen the weather
classification is critical for the LSTM-based channel model.

2) Model complexity: The complexity of LSTM-based
channel model predicting channel attenuation 0 min–60 min
in advance is measured via training time, loading time, and
test time.

This is shown in Table VIII. The training time and loading
time of channel model and test time do not vary with predic-
tion time. In general, the training time of the sunny model is
longer than that of the general model and the rainy model.
However, the test times of the general prediction by using the
general model, the sunny model, and the rainy model are very
similar. The same conclusion applies to the training time and
loading time. It’s worth noting that training time, loading time,
and test time in Table VIII show 0 if it is very very small.

The LSTM has in total five layers (1 LSTM layer and 4
fully connection layers). The number of parameters of each
layer is shown in Table IV. Most of the parameters are in the
LSTM layer, accounting for more than 60 % of the model.
The parameters of the LSTM layer are related to the input
layer. There are 5120 parameters when then input layer is a
7-dimension vector. The first to the fourth fully connection
layers have 512, 512, 2048, and 64 parameters, respectively.
Then the number of total parameters of the model is 8256
parameters when the input layer is a 7-dimensional vector.
Compared to the MLP, the deep of the model is more shallow,
but the parameters of the model are larger.

3) Analysis of time step: Fig. 9 shows the comparison
among MSEs of predicting channel attenuation 0 min-60 min
in advance by LSTM-based channel models with different θ.
In general, the prediction accuracy of LSTM-based channel
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(1) Blind prediction by blind model based on LSTM (2) Sunny prediction by blind model based on LSTM (3) Rainy prediction by blind model based on LSTM

(4) Blind prediction by sunny model based on LSTM (5) Sunny prediction by sunny model based on LSTM (6) Rainy prediction by sunny model based on LSTM

(7) Blind prediction by rainy model based on LSTM (8) Sunny prediction by rainy model based on LSTM (9) Rainy prediction by rainy model based on LSTM

Fig. 9: The comparison of predicting channel attenuation 0 min-60 min in advance by the LSTM-based channel models with
different θ.

TABLE IV: Number of parameters of LSTM.

Layers Number of parameters
LSTM layer 5120

Fully connection layer 1 512
Fully connection layer 2 512
Fully connection layer 3 2048
Fully connection layer 4 64

Total 8256

model with θ=15 min is better and more stable as the purple
line in Fig. 9 shows.

As Table VIII shown, the rank of training times of LSTM-
based channel model with different θ is θ = 15 > θ = 10 >
θ = 5 > θ = 0. Meanwhile, the rank of test times of LSTM-
based channel model with different θ is also θ = 15 > θ =
10 > θ = 5 > θ = 0. So, the bigger θ, the higher the accuracy,
and the model more complex.

In summary, the conclusions of prediction accuracy and
model complexity of channel model based on LSTM are as
follows.

1) Under the general prediction and sunny prediction, MSE

between predicted and measured channel attenuation
increases with the prediction window. However, the
rainy prediction behaves differently. Its MSE always
fluctuates, instead of steadily increasing with the pre-
diction window.

2) More than 90% of the absolute errors between predicted
and measured channel attenuation are less than 1 dB.

3) According to the CDF of absolute error and MSE
analysis, the weather classification is critical for the
channel models based on LSTM. The general predic-
tion, sunny prediction, and rainy prediction are the best
with the general model, sunny model, and rainy model,
respectively.

4) Summarizing, the bigger the time step of LSTM, the
higher the accuracy, and the model more complex.
However, the influence of the time step is smaller in
comparison with the weather classification.

V. COMPARISON OF CHANNEL MODELS BASED ON MLP
AND LSTM WITH WEATHER CLASSIFICATION

Fig. 10 depicts the comparison between MSEs of channel
models based on MLP and LSTM predicting channel attenu-
ation 0 min-60 min in advance. As shows, only in the sunny
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(1) Blind prediction by blind model based on LSTM (2) Sunny prediction by blind model based on LSTM (3) Rainy prediction by blind model based on LSTM

(4) Blind prediction by sunny model based on LSTM (5) Sunny prediction by sunny model based on LSTM (6) Rainy prediction by sunny model based on LSTM

(7) Blind prediction by rainy model based on LSTM (8) Sunny prediction by rainy model based on LSTM (9) Rainy prediction by rainy model based on LSTM

Fig. 10: The comparison between channel models based on MLP and LSTM predicting channel attenuation 0 min-60 min in
advance.

prediction by using the general model and sunny model, the
LSTM-based channel model has the similar accuracy perfor-
mance with the MLP-based channel model. The accuracy of
the LSTM-based channel model is better than that of the MLP-
based channel model in other situations. The atmosphere data
which affects the satellite channel attenuation significantly is
in the form of time series, i.e. it is associated with time
correlation. It has time correlation. Because of the memory
feature of LSTM, the LSTM has its advantages in learning
time series data. Therefore, the LSTM-based model has better
performance on the satellite attenuation prediction than the
MLP-based model. As Table VI and VII show, the test time
of the LSTM-based channel model is more than that of the
MLP-based channel model for the same prediction. In general,
the LSTM-based channel model is more accurate and more
complex than the MLP-based channel model.

Fig. 11 compares the MSE of the general prediction, sunny
prediction, and rainy prediction by using channel models based
on MLP and LSTM predicting channel attenuation 0 min-
60 min in advance. When the weather condition is unknown,
the general model based on LSTM has the best prediction
performance. For the sunny prediction, the accuracy of the

general models based on MLP and LSTM and the sunny
models based on MLP and LSTM are similar, and they are
better than these of the rainy models based on MLP and
LSTM. For the rainy prediction, the accuracy of the general
models based on MLP and LSTM and the rainy models based
on MLP and LSTM are very similar, but they are better than
these of sunny model based on MLP and LSTM. Meanwhile,
the accuracy of the general model and rainy model based on
LSTM are better than these of the general model and rainy
model based on MLP. With prediction time increases, the
accuracy of the rainy model based on LSTM is better than
that of the general model based on LSTM.

In summary, considering both the accuracy and complexity,
the best tool for general prediction, sunny prediction, and rainy
prediction are respectively: the general model based on LSTM,
the sunny model based on MLP, and the rainy model based
on LSTM.

VI. CONCLUSIONS

In this paper, we have proposed an atmosphere-informed
data-driven predictive satellite channel model at Q-band based
on MLP and LSTM to model/predict channel attenuation at
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(1) Blind prediction (2) Sunny prediction (3) Rainy prediction

Fig. 11: The comparison among the general prediction, sunny prediction, and rainy prediction by using the channel models
based on MLP and LSTM predicting channel attenuation 0 min-60 min in advance.

any interesting and specific time. Based on atmosphere data
at a certain time, the proposed channel model can not only
model the channel attenuation at this certain time, but also
predict the channel attenuation of any specific time afterward.
The propagation measurement by Alphasat beacon receiver
and corresponding atmosphere measurement have been car-
ried out at Chilbolton, Hampshire, UK. Based on the estab-
lished measurement campaign, the accuracy and complexity
of the proposed channel model has been investigated and
analyzed in detail. Statistical analysis demonstrated that the
weather classification can further improve the accuracy of
the proposed channel model. Compared with the MLP-based
model, the LSTM-based model has a significant advantage
in modeling/predicting satellite channel attenuation. However,
the performance of LSTM-based model increases slightly with
the time step window. Considering both the accuracy and
complexity, the optimal option is that the sunny model based
on MLP and the rainy model based on LSTM are preferred for
sunny prediction and rainy prediction with simple inspection
of weather conditions as a prior information. Moreover, the
utility of the proposed model has been validated by the close
agreement between the attenuation modeled/predicted by the
proposed model and the one from real measured data. These
interesting observations and useful conclusions are important
and useful for the better design of B5G/6G satellite-terrestrial
wireless communication systems.

APPENDIX A
THE MSE AND COMPLEXITY OF THE MLP-BASED

CHANNEL MODEL

Tables V and Tables VI list the MSE and complexity of the
MLP-based channel model in this paper.

APPENDIX B
THE MSE AND COMPLEXITY OF THE LSTM-BASED

CHANNEL MODEL

Table VII and Table VIII list the MSE and complexity of
the LSTM-based channel model in this paper.
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TABLE V: The MSE of the MLP-based channel model.

Model MSE 0 1 2 3 4 5 10 15 20 25 30 45 60

Train Set 6.15E-01 6.92E-01 7.58E-01 8.76E-01 7.55E-01 7.76E-01 8.35E-01 9.11E-01 9.11E-01 9.06E-01 9.23E-01 9.41E-01 1.04E+00

Validation Set 9.06E-01 1.03E+00 1.17E+00 1.19E+00 1.15E+00 1.02E+00 1.28E+00 1.28E+00 1.40E+00 1.33E+00 1.44E+00 1.42E+00 1.59E+00

Blind Prediction 5.22E-01 5.75E-01 6.42E-01 6.69E-01 6.24E-01 5.58E-01 7.21E-01 6.76E-01 7.98E-01 7.01E-01 7.72E-01 7.24E-01 9.58E-01

Sunny Prediction 2.64E-01 2.74E-01 2.80E-01 3.08E-01 3.16E-01 3.70E-01 5.33E-01 5.22E-01 5.66E-01 6.65E-01 6.22E-01 8.09E-01 7.18E-01

Rainy Prediction 3.10E+00 3.53E+00 4.10E+00 4.24E+00 3.69E+00 2.73E+00 3.17E+00 2.69E+00 3.47E+00 2.60E+00 3.37E+00 2.43E+00 4.73E+00

Train Set 2.26E-01 2.29E-01 2.36E-01 2.34E-01 2.51E-01 2.62E-01 3.27E-01 3.61E-01 3.83E-01 4.13E-01 4.64E-01 5.04E-01 5.40E-01

Validation Set 1.94E-01 1.95E-01 2.28E-01 2.35E-01 2.24E-01 2.21E-01 2.54E-01 2.75E-01 3.14E-01 4.15E-01 5.17E-01 7.81E-01 7.37E-01

Blind Prediction 9.77E-01 9.36E-01 1.04E+00 8.41E-01 1.07E+00 8.58E-01 1.01E+00 1.07E+00 9.03E-01 1.03E+00 1.12E+00 1.03E+00 1.02E+00

Sunny Prediction 2.52E-01 2.58E-01 2.70E-01 2.96E-01 3.16E-01 3.61E-01 5.27E-01 5.20E-01 5.58E-01 6.62E-01 6.30E-01 8.07E-01 7.01E-01

Rainy Prediction 7.23E+00 6.82E+00 7.65E+00 5.68E+00 7.39E+00 5.31E+00 5.50E+00 5.83E+00 4.36E+00 5.20E+00 6.14E+00 4.76E+00 5.23E+00

Train Set 6.62E+00 7.26E+00 7.39E+00 7.06E+00 7.59E+00 7.50E+00 7.45E+00 7.71E+00 7.96E+00 7.70E+00 7.03E+00 6.34E+00 6.31E+00

Validation Set 7.40E+00 7.74E+00 6.65E+00 6.82E+00 7.22E+00 8.79E+00 7.37E+00 8.70E+00 8.92E+00 7.89E+00 7.80E+00 7.09E+00 7.38E+00

Blind Prediction 2.25E+00 2.16E+00 1.66E+00 1.65E+00 1.42E+00 1.87E+00 1.88E+00 2.06E+00 2.46E+00 1.98E+00 1.42E+00 1.53E+00 1.87E+00

Sunny Prediction 2.07E+00 1.96E+00 1.47E+00 1.48E+00 1.21E+00 1.69E+00 1.85E+00 2.00E+00 2.47E+00 2.04E+00 1.36E+00 1.63E+00 1.90E+00

Rainy Prediction 3.76E+00 3.99E+00 3.45E+00 3.38E+00 3.40E+00 3.52E+00 2.69E+00 2.87E+00 2.73E+00 2.60E+00 3.02E+00 2.62E+00 3.21E+00

Blind Model

Sunny Model

Rainy Model

TABLE VI: The complexity of the MLP-based channel model.

Model Time (s) 0 1 2 3 4 5 10 15 20 25 30 45 60

Training Time 2.88E+01 1.89E+01 3.24E+01 1.00E+01 1.95E+01 1.97E+01 1.87E+01 1.28E+01 1.41E+01 1.97E+01 2.19E+01 1.98E+01 1.00E+01

Loading Time 5.98E-03 6.01E-03 9.97E-03 9.00E-03 1.00E-02 9.00E-03 9.00E-03 1.00E-02 1.00E-02 1.00E-02 9.01E-03 9.01E-03 9.01E-03

Blind Prediction 1.87E-01 1.62E-01 1.64E-01 1.61E-01 1.73E-01 1.71E-01 1.67E-01 1.65E-01 1.71E-01 1.66E-01 1.67E-01 1.72E-01 1.66E-01

Sunny Prediction 1.35E-01 1.31E-01 1.32E-01 1.31E-01 1.29E-01 1.30E-01 1.37E-01 1.33E-01 1.39E-01 1.31E-01 1.33E-01 1.36E-01 1.28E-01

Rainy Prediction 3.29E-02 2.89E-02 3.19E-02 2.99E-02 3.00E-02 3.29E-02 2.99E-02 2.99E-02 2.99E-02 2.99E-02 2.99E-02 2.99E-02 2.99E-02

Training Time 4.72E+01 3.00E+01 2.08E+01 3.78E+01 1.55E+01 4.53E+01 2.60E+01 2.00E+01 2.07E+01 1.65E+01 9.25E+00 4.04E+01 2.04E+01

Loading Time 1.00E-02 8.97E-03 8.98E-03 1.00E-02 9.00E-03 9.00E-03 1.00E-02 1.00E-02 1.00E-02 1.00E-02 9.97E-03 9.97E-03 8.98E-03

Blind Prediction 1.67E-01 1.63E-01 1.67E-01 1.70E-01 1.59E-01 1.70E-01 1.70E-01 1.70E-01 1.65E-01 1.68E-01 1.68E-01 1.67E-01 1.69E-01

Sunny Prediction 1.26E-01 1.32E-01 1.39E-01 1.31E-01 1.25E-01 1.35E-01 1.33E-01 1.41E-01 1.39E-01 1.32E-01 1.37E-01 1.35E-01 1.38E-01

Rainy Prediction 2.99E-02 2.89E-02 3.00E-02 2.99E-02 2.90E-02 2.99E-02 2.99E-02 2.99E-02 2.99E-02 2.89E-02 2.99E-02 3.09E-02 2.99E-02

Training Time 5.90E+00 4.86E+00 4.81E+00 4.79E+00 6.15E+00 6.21E+00 5.69E+00 5.31E+00 4.37E+00 3.43E+00 3.54E+00 2.85E+00 7.90E+00

Loading Time 5.98E-03 9.97E-03 9.97E-03 9.97E-03 1.00E-02 1.00E-02 1.00E-02 9.00E-03 9.00E-03 8.90E-03 9.96E-03 8.98E-03 8.98E-03

Blind Prediction 1.67E-01 1.71E-01 1.69E-01 1.68E-01 1.74E-01 1.64E-01 3.92E-01 1.69E-01 1.73E-01 1.67E-01 1.65E-01 1.67E-01 1.74E-01

Sunny Prediction 1.35E-01 1.33E-01 1.35E-01 1.37E-01 1.33E-01 1.38E-01 1.38E-01 1.35E-01 1.30E-01 1.32E-01 1.30E-01 1.33E-01 1.36E-01

Rainy Prediction 2.99E-02 2.89E-02 2.99E-02 2.99E-02 2.99E-02 2.90E-02 2.99E-02 2.99E-02 2.89E-02 2.99E-02 2.99E-02 2.90E-02 2.99E-02

Blind Model

Sunny Model

Rainy Model

TABLE VII: The MSE of the LSTM-based channel model.
Prediction Time

Time Step 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Train Set 5.10E-01 4.68E-01 5.00E-01 4.58E-01 5.12E-01 4.96E-01 4.93E-01 5.24E-01 7.23E-01 5.39E-01 5.27E-01 5.65E-01 5.70E-01 5.70E-01 5.59E-01 5.47E-01 5.89E-01 5.97E-01 7.05E-01 5.82E-01 6.09E-01 7.11E-01 6.37E-01 6.12E-01

Validation Set 7.86E-01 7.16E-01 7.89E-01 7.25E-01 7.97E-01 7.78E-01 7.88E-01 7.80E-01 8.95E-01 8.68E-01 8.67E-01 8.17E-01 9.15E-01 8.96E-01 8.79E-01 8.58E-01 9.62E-01 9.82E-01 9.43E-01 8.81E-01 9.72E-01 1.03E+00 9.12E-01 9.26E-01

Blind Prediction 4.64E-01 4.20E-01 5.81E-01 4.20E-01 5.84E-01 4.49E-01 4.59E-01 4.84E-01 5.21E-01 5.58E-01 4.36E-01 5.04E-01 5.60E-01 4.98E-01 5.93E-01 5.72E-01 5.16E-01 5.08E-01 5.98E-01 5.03E-01 5.75E-01 7.31E-01 5.36E-01 5.60E-01

Sunny Prediction 2.44E-01 2.40E-01 3.85E-01 2.80E-01 3.36E-01 2.84E-01 3.38E-01 3.17E-01 2.77E-01 3.36E-01 3.35E-01 3.37E-01 2.92E-01 3.47E-01 4.24E-01 3.67E-01 2.95E-01 3.77E-01 4.85E-01 3.53E-01 3.61E-01 5.10E-01 4.35E-01 4.13E-01

Rainy Prediction 2.40E+00 2.22E+00 2.66E+00 1.87E+00 3.08E+00 2.27E+00 1.91E+00 2.21E+00 2.94E+00 2.85E+00 1.77E+00 2.25E+00 3.25E+00 2.09E+00 2.78E+00 2.64E+00 2.82E+00 2.03E+00 2.54E+00 2.15E+00 2.98E+00 3.38E+00 2.13E+00 2.44E+00

Train Set 2.22E-01 2.25E-01 2.71E-01 3.11E-01 2.22E-01 2.52E-01 2.95E-01 3.24E-01 2.34E-01 2.55E-01 2.92E-01 3.23E-01 2.28E-01 2.67E-01 2.96E-01 3.34E-01 2.48E-01 2.81E-01 3.26E-01 3.35E-01 2.57E-01 2.87E-01 3.17E-01 3.23E-01

Validation Set 1.96E-01 2.00E-01 2.06E-01 2.16E-01 1.98E-01 2.04E-01 2.20E-01 2.13E-01 2.28E-01 2.19E-01 2.31E-01 2.28E-01 2.34E-01 2.15E-01 2.35E-01 2.25E-01 2.26E-01 2.16E-01 2.35E-01 2.37E-01 2.21E-01 2.20E-01 2.33E-01 2.47E-01

Blind Prediction 6.53E-01 5.92E-01 5.87E-01 5.44E-01 6.76E-01 5.94E-01 5.01E-01 5.10E-01 8.80E-01 5.85E-01 5.26E-01 6.29E-01 6.69E-01 6.75E-01 5.93E-01 5.34E-01 8.43E-01 5.71E-01 5.69E-01 5.70E-01 6.62E-01 6.03E-01 5.96E-01 5.76E-01

Sunny Prediction 2.60E-01 2.50E-01 3.77E-01 3.57E-01 2.63E-01 3.15E-01 3.88E-01 3.60E-01 2.68E-01 3.32E-01 4.14E-01 3.99E-01 2.92E-01 3.59E-01 4.18E-01 3.82E-01 3.03E-01 3.90E-01 4.35E-01 4.03E-01 3.62E-01 4.12E-01 4.41E-01 4.09E-01

Rainy Prediction 4.30E+00 3.69E+00 2.70E+00 2.25E+00 4.56E+00 3.18E+00 1.97E+00 2.08E+00 6.28E+00 2.89E+00 2.08E+00 2.89E+00 4.16E+00 3.45E+00 2.78E+00 2.11E+00 5.57E+00 2.39E+00 2.35E+00 2.31E+00 3.55E+00 2.72E+00 2.49E+00 2.48E+00

Train Set 8.22E+00 6.06E+00 5.53E+00 5.07E+00 8.46E+00 6.22E+00 5.32E+00 5.41E+00 8.71E+00 6.36E+00 5.74E+00 5.34E+00 8.74E+00 6.09E+00 5.54E+00 5.51E+00 8.45E+00 5.90E+00 5.47E+00 5.62E+00 8.36E+00 6.37E+00 5.90E+00 6.13E+00

Validation Set 7.57E+00 5.49E+00 5.37E+00 5.41E+00 8.03E+00 6.33E+00 5.69E+00 5.87E+00 8.78E+00 6.57E+00 5.49E+00 5.54E+00 8.89E+00 5.85E+00 5.36E+00 5.82E+00 8.34E+00 5.80E+00 5.34E+00 5.65E+00 8.30E+00 5.99E+00 6.35E+00 6.03E+00

Blind Prediction 1.36E+00 4.55E-01 5.39E-01 7.05E-01 1.80E+00 5.61E-01 7.11E-01 6.83E-01 3.59E+00 5.94E-01 6.33E-01 6.37E-01 3.91E+00 6.07E-01 6.08E-01 6.10E-01 2.70E+00 5.41E-01 6.10E-01 6.38E-01 2.49E+00 6.62E-01 6.30E-01 6.26E-01

Sunny Prediction 1.16E+00 2.74E-01 4.40E-01 5.93E-01 1.62E+00 3.98E-01 5.59E-01 5.59E-01 3.59E+00 3.67E-01 5.49E-01 4.96E-01 3.96E+00 4.96E-01 5.27E-01 4.95E-01 2.61E+00 4.23E-01 5.19E-01 5.28E-01 2.44E+00 5.96E-01 4.87E-01 5.16E-01

Rainy Prediction 3.12E+00 2.41E+00 1.93E+00 2.18E+00 3.38E+00 2.34E+00 2.76E+00 2.17E+00 3.67E+00 2.99E+00 2.17E+00 2.27E+00 3.53E+00 1.97E+00 2.23E+00 2.03E+00 3.29E+00 2.10E+00 2.30E+00 1.99E+00 2.97E+00 1.96E+00 2.64E+00 2.24E+00

5

Blind Model

Sunny Model

Rainy Model

0 1 2 3 4

Prediction Time

Time Step 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Train Set 7.06E-01 7.04E-01 6.97E-01 6.93E-01 7.39E-01 8.10E-01 7.42E-01 7.31E-01 7.83E-01 7.58E-01 7.65E-01 7.58E-01 8.96E-01 7.98E-01 7.80E-01 8.36E-01 8.32E-01 8.68E-01 8.20E-01 8.10E-01 8.60E-01 9.15E-01 8.39E-01 9.01E-01 9.81E-01 9.41E-01 9.32E-01 8.81E-01

Validation Set 1.05E+00 1.05E+00 1.06E+00 1.04E+00 1.14E+00 1.24E+00 1.14E+00 1.13E+00 1.19E+00 1.20E+00 1.19E+00 1.21E+00 1.24E+00 1.29E+00 1.26E+00 1.29E+00 1.34E+00 1.35E+00 1.36E+00 1.33E+00 1.43E+00 1.45E+00 1.42E+00 1.39E+00 1.45E+00 1.44E+00 1.46E+00 1.43E+00

Blind Prediction 6.19E-01 6.05E-01 5.68E-01 5.73E-01 6.99E-01 6.39E-01 7.01E-01 6.31E-01 6.65E-01 6.82E-01 6.05E-01 6.40E-01 6.52E-01 6.96E-01 6.03E-01 6.22E-01 6.88E-01 6.89E-01 6.40E-01 6.79E-01 7.30E-01 7.61E-01 7.27E-01 6.96E-01 7.20E-01 7.52E-01 7.93E-01 7.36E-01

Sunny Prediction 5.17E-01 5.14E-01 4.74E-01 5.04E-01 5.49E-01 5.02E-01 6.04E-01 4.94E-01 5.53E-01 6.18E-01 5.12E-01 7.71E-01 6.49E-01 5.80E-01 7.72E-01 4.86E-01 6.15E-01 8.58E-01 5.09E-01 6.35E-01 8.16E-01 8.87E-01 6.26E-01 5.75E-01 6.78E-01 8.10E-01 8.84E-01 8.21E-01

Rainy Prediction 2.60E+00 2.43E+00 2.30E+00 2.48E+00 2.94E+00 2.67E+00 3.03E+00 2.92E+00 2.69E+00 2.84E+00 2.65E+00 2.67E+00 2.41E+00 3.00E+00 2.36E+00 3.04E+00 2.95E+00 2.68E+00 2.98E+00 2.75E+00 2.56E+00 3.13E+00 3.04E+00 3.48E+00 3.08E+00 2.89E+00 3.46E+00 3.31E+00

Train Set 3.19E-01 3.30E-01 3.44E-01 3.70E-01 3.54E-01 3.56E-01 3.64E-01 3.88E-01 3.76E-01 3.78E-01 4.32E-01 4.16E-01 4.04E-01 4.26E-01 4.33E-01 4.43E-01 4.49E-01 4.60E-01 4.74E-01 4.62E-01 4.97E-01 4.95E-01 5.03E-01 5.09E-01 5.37E-01 5.39E-01 5.55E-01 5.50E-01

Validation Set 2.53E-01 2.54E-01 2.64E-01 3.25E-01 2.72E-01 2.79E-01 3.38E-01 4.10E-01 3.13E-01 3.64E-01 4.46E-01 4.95E-01 4.14E-01 4.71E-01 5.27E-01 6.49E-01 5.10E-01 5.65E-01 6.81E-01 7.02E-01 7.92E-01 7.56E-01 7.47E-01 7.12E-01 7.36E-01 7.30E-01 7.76E-01 7.87E-01

Blind Prediction 7.17E-01 7.00E-01 5.96E-01 6.30E-01 7.95E-01 6.87E-01 6.05E-01 5.39E-01 7.03E-01 6.31E-01 6.51E-01 7.07E-01 7.46E-01 6.75E-01 6.51E-01 6.97E-01 7.82E-01 7.33E-01 6.99E-01 6.92E-01 7.24E-01 7.37E-01 7.30E-01 6.85E-01 9.41E-01 7.40E-01 7.96E-01 8.04E-01

Sunny Prediction 5.17E-01 4.87E-01 4.53E-01 5.31E-01 5.16E-01 5.02E-01 5.31E-01 4.45E-01 5.53E-01 5.75E-01 5.24E-01 7.76E-01 6.67E-01 5.49E-01 7.94E-01 4.86E-01 6.16E-01 8.79E-01 5.23E-01 5.97E-01 7.80E-01 8.36E-01 6.06E-01 5.68E-01 6.95E-01 7.85E-01 8.34E-01 8.01E-01

Rainy Prediction 3.12E+00 3.11E+00 2.42E+00 2.65E+00 3.60E+00 2.86E+00 2.60E+00 2.42E+00 2.74E+00 2.53E+00 2.74E+00 3.13E+00 2.84E+00 2.92E+00 2.56E+00 3.56E+00 3.47E+00 2.76E+00 3.30E+00 2.92E+00 2.44E+00 2.94E+00 2.98E+00 3.29E+00 4.64E+00 2.76E+00 3.58E+00 3.88E+00

Train Set 8.03E+00 6.21E+00 5.94E+00 5.68E+00 7.93E+00 6.78E+00 6.00E+00 5.60E+00 7.93E+00 6.58E+00 5.82E+00 5.51E+00 7.55E+00 6.39E+00 5.71E+00 5.58E+00 6.90E+00 5.83E+00 5.67E+00 5.05E+00 6.16E+00 5.57E+00 6.01E+00 5.65E+00 6.26E+00 5.75E+00 5.02E+00 4.98E+00

Validation Set 8.20E+00 6.15E+00 5.90E+00 5.40E+00 8.38E+00 6.34E+00 6.08E+00 6.24E+00 8.44E+00 5.85E+00 6.65E+00 4.26E+00 7.72E+00 6.73E+00 4.49E+00 6.89E+00 7.80E+00 4.67E+00 6.74E+00 6.25E+00 6.90E+00 4.78E+00 7.03E+00 6.43E+00 7.57E+00 6.15E+00 5.33E+00 5.05E+00

Blind Prediction 2.44E+00 6.01E-01 6.13E-01 6.36E-01 2.98E+00 5.85E-01 6.60E-01 7.55E-01 3.81E+00 6.34E-01 6.57E-01 5.93E-01 2.96E+00 7.10E-01 6.26E-01 6.87E-01 1.57E+00 6.36E-01 6.38E-01 7.37E-01 2.44E+00 6.68E-01 9.54E-01 7.46E-01 2.03E+00 8.86E-01 7.40E-01 7.38E-01

Sunny Prediction 2.49E+00 5.22E-01 5.28E-01 6.00E-01 3.06E+00 5.14E-01 5.73E-01 6.71E-01 3.99E+00 6.22E-01 5.34E-01 7.67E-01 3.14E+00 6.42E-01 8.28E-01 5.65E-01 1.56E+00 8.43E-01 5.28E-01 7.53E-01 2.66E+00 8.25E-01 9.08E-01 6.65E-01 2.08E+00 9.47E-01 8.28E-01 8.48E-01

Rainy Prediction 2.44E+00 2.23E+00 2.10E+00 2.23E+00 2.61E+00 2.06E+00 2.83E+00 2.61E+00 2.65E+00 2.21E+00 2.92E+00 2.11E+00 2.45E+00 2.37E+00 2.09E+00 2.88E+00 2.62E+00 2.26E+00 2.73E+00 2.18E+00 2.30E+00 2.39E+00 2.41E+00 3.04E+00 3.12E+00 2.48E+00 3.20E+00 2.91E+00

Blind Model

Sunny Model

Rainy Model

30 45 6010 15 20 25

TABLE VIII: The complexity of the LSTM-based channel model.
Prediction Time

Time Step 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Training Time (s) 6.01E+00 1.51E+01 3.88E+01 7.86E+01 4.49E+00 1.60E+01 4.03E+01 8.22E+01 4.53E+00 1.65E+01 4.12E+01 8.54E+01 4.62E+00 1.74E+01 4.20E+01 8.57E+01 4.85E+00 1.80E+01 4.44E+01 9.19E+01 4.81E+00 1.86E+01 4.50E+01 8.45E+01

Loading Time (s) 8.24E-02 1.56E-02 1.54E-02 1.30E-02 9.01E-03 1.56E-02 0.00E+00 1.57E-02 1.30E-02 0.00E+00 0.00E+00 1.53E-02 9.01E-03 1.54E-02 1.55E-02 0.00E+00 4.99E-03 1.55E-02 1.56E-02 4.66E-02 1.10E-02 1.54E-02 1.57E-02 1.57E-02

Blind Prediction (s) 5.08E-01 6.40E-01 1.36E+00 2.20E+00 3.80E-01 6.72E-01 3.00E+00 2.39E+00 3.90E-01 6.87E-01 1.41E+00 2.39E+00 3.96E-01 7.50E-01 1.39E+00 2.33E+00 3.97E-01 7.19E-01 1.49E+00 2.36E+00 3.87E-01 7.34E-01 1.48E+00 2.25E+00

Sunny Prediction (s) 1.38E-01 3.61E-01 9.22E-01 1.72E+00 1.37E-01 3.75E-01 9.69E-01 1.69E+00 1.50E-01 4.06E-01 9.53E-01 1.72E+00 1.44E-01 4.53E-01 9.69E-01 1.72E+00 1.51E-01 4.37E-01 9.69E-01 1.80E+00 1.57E-01 4.86E-01 1.02E+00 1.67E+00

Rainy Prediction (s) 3.19E-02 6.22E-02 1.09E-01 2.05E-01 3.19E-02 4.68E-02 9.37E-02 2.03E-01 3.05E-02 6.21E-02 9.37E-02 1.56E-01 3.29E-02 4.69E-02 9.38E-02 1.90E-01 3.09E-02 6.22E-02 9.37E-02 2.66E-01 3.29E-02 6.25E-02 1.11E-01 2.50E-01

Training Time (s) 4.42E+00 1.39E+01 3.57E+01 6.87E+01 4.24E+00 1.43E+01 3.72E+01 7.34E+01 4.66E+00 1.50E+01 3.80E+01 7.45E+01 4.44E+00 1.60E+01 3.89E+01 7.54E+01 5.63E+00 1.63E+01 3.94E+01 8.01E+01 5.03E+00 1.68E+01 4.12E+01 7.71E+01

Loading Time (s) 8.98E-03 1.53E-02 1.53E-02 1.00E-02 9.97E-03 0.00E+00 1.53E-02 1.53E-02 9.97E-03 1.53E-02 1.53E-02 1.56E-02 1.10E-02 1.53E-02 1.53E-02 3.10E-02 8.95E-03 1.53E-02 1.53E-02 4.65E-02 8.98E-03 1.53E-02 1.53E-02 1.54E-02

Blind Prediction (s) 3.80E-01 6.72E-01 1.28E+00 2.07E+00 3.82E-01 6.87E-01 1.27E+00 2.13E+00 3.84E-01 6.90E-01 1.28E+00 2.06E+00 4.08E-01 7.34E-01 1.31E+00 2.23E+00 3.88E-01 7.50E-01 1.30E+00 2.13E+00 8.17E-01 7.50E-01 1.42E+00 2.25E+00

Sunny Prediction (s) 1.37E-01 3.92E-01 9.06E-01 1.56E+00 1.43E-01 3.91E-01 9.06E-01 1.69E+00 1.43E-01 4.22E-01 9.21E-01 1.63E+00 4.49E-01 4.53E-01 1.03E+00 1.80E+00 1.48E-01 4.53E-01 1.05E+00 1.61E+00 1.57E-01 4.53E-01 1.08E+00 1.73E+00

Rainy Prediction (s) 3.09E-02 4.68E-02 9.37E-02 1.87E-01 3.19E-02 4.68E-02 9.37E-02 2.03E-01 3.29E-02 4.68E-02 1.25E-01 2.03E-01 3.30E-02 4.68E-02 1.09E-01 1.72E-01 3.19E-02 6.21E-02 1.09E-01 1.87E-01 3.19E-02 6.25E-02 1.09E-01 1.87E-01

Training Time (s) 2.14E+00 2.73E+00 4.97E+00 8.29E+00 1.93E+00 2.75E+00 4.91E+00 8.67E+00 1.94E+00 2.84E+00 4.98E+00 8.73E+00 2.27E+00 4.08E+00 1.11E+01 9.98E+00 1.98E+00 2.92E+00 5.51E+00 9.23E+00 1.93E+00 2.95E+00 5.17E+00 9.09E+00

Loading Time (s) 6.02E-03 1.53E-02 1.53E-02 1.53E-02 1.10E-02 1.67E-02 1.53E-02 0.00E+00 9.01E-03 1.53E-02 1.53E-02 1.53E-02 1.00E-02 1.53E-02 1.53E-02 1.53E-02 9.00E-03 1.53E-02 1.53E-02 1.53E-02 9.97E-03 0.00E+00 1.53E-02 1.54E-02

Blind Prediction (s) 3.82E-01 6.72E-01 1.19E+00 2.16E+00 3.87E-01 6.72E-01 1.20E+00 2.05E+00 3.85E-01 6.87E-01 1.36E+00 2.02E+00 3.87E-01 7.20E-01 1.33E+00 2.11E+00 3.87E-01 7.19E-01 1.31E+00 2.08E+00 3.94E-01 1.81E+00 1.38E+00 2.05E+00

Sunny Prediction (s) 1.32E-01 4.06E-01 8.45E-01 1.47E+00 1.44E-01 3.90E-01 9.84E-01 1.56E+00 1.39E-01 4.22E-01 9.68E-01 1.50E+00 1.45E-01 4.37E-01 9.53E-01 1.61E+00 1.53E-01 4.84E-01 9.53E-01 1.56E+00 1.41E-01 4.84E-01 9.84E-01 1.58E+00

Rainy Prediction (s) 3.29E-02 4.68E-02 9.37E-02 1.56E-01 2.97E-02 6.21E-02 9.38E-02 2.34E-01 3.19E-02 4.69E-02 1.25E-01 2.19E-01 3.19E-02 4.69E-02 1.09E-01 2.03E-01 3.19E-02 6.25E-02 9.37E-02 2.34E-01 3.12E-02 4.68E-02 1.11E-01 2.19E-01

Rainy Model

Sunny Model

Blind Model

0 1 2 3 4 5

Prediction Time

Time Step 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Training Time (s) 5.58E+00 1.88E+01 4.65E+01 9.49E+01 5.14E+00 1.99E+01 6.05E+01 9.16E+01 5.14E+00 2.02E+01 4.97E+01 9.19E+01 6.06E+00 2.06E+01 4.88E+01 1.12E+02 5.78E+00 2.33E+01 5.10E+01 9.42E+01 6.25E+00 2.18E+01 5.24E+01 1.00E+02 6.27E+00 2.28E+01 5.28E+01 1.06E+02

Loading Time (s) 1.57E-02 1.54E-02 1.54E-02 1.10E-02 0.00E+00 3.10E-02 1.60E-02 1.55E-02 0.00E+00 1.56E-02 1.56E-02 1.56E-02 0.00E+00 1.53E-02 1.53E-02 3.13E-02 1.53E-02 1.56E-02 1.56E-02 3.09E-02 1.56E-02 9.01E-03 1.56E-02 1.56E-02 1.56E-02 1.56E-02 1.54E-02 3.15E-02

Blind Prediction (s) 3.90E-01 7.34E-01 1.52E+00 2.39E+00 4.06E-01 7.65E-01 1.62E+00 2.36E+00 4.22E-01 7.81E-01 1.53E+00 2.47E+00 4.14E-01 7.97E-01 1.58E+00 2.53E+00 4.22E-01 8.44E-01 6.59E+00 2.30E+00 4.06E-01 8.17E-01 1.58E+00 4.72E+00 4.37E-01 8.28E-01 1.59E+00 2.58E+00

Sunny Prediction (s) 1.56E-01 5.00E-01 1.02E+00 1.83E+00 1.56E-01 5.15E-01 1.06E+00 1.72E+00 1.56E-01 5.31E-01 1.06E+00 2.02E+00 1.64E-01 5.31E-01 1.06E+00 1.83E+00 1.72E-01 5.33E-01 1.14E+00 1.72E+00 1.72E-01 5.67E-01 1.06E+00 1.87E+00 1.72E-01 5.47E-01 1.12E+00 2.02E+00

Rainy Prediction (s) 3.12E-02 6.25E-02 1.40E-01 2.03E-01 3.12E-02 6.25E-02 1.25E-01 1.71E-01 3.13E-02 6.25E-02 1.09E-01 2.36E-01 3.29E-02 7.78E-02 1.25E-01 2.03E-01 4.65E-02 6.24E-02 1.25E-01 2.34E-01 4.65E-02 6.68E-02 1.09E-01 2.66E-01 4.65E-02 7.78E-02 1.09E-01 2.34E-01

Training Time (s) 4.72E+00 1.73E+01 4.24E+01 8.16E+01 4.78E+00 1.82E+01 4.45E+01 8.14E+01 5.64E+00 1.88E+01 4.52E+01 9.04E+01 5.22E+00 1.95E+01 4.39E+01 8.76E+01 5.31E+00 1.99E+01 4.60E+01 8.38E+01 6.63E+00 2.00E+01 4.75E+01 9.40E+01 6.78E+00 2.05E+01 4.85E+01 9.33E+01

Loading Time (s) 1.54E-02 0.00E+00 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 9.01E-03 1.53E-02 1.56E-02 3.13E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 9.97E-03 1.53E-02 1.53E-02 1.53E-02 0.00E+00 1.53E-02 1.54E-02

Blind Prediction (s) 3.93E-01 7.81E-01 1.34E+00 2.17E+00 3.91E-01 7.81E-01 1.42E+00 2.25E+00 4.07E-01 7.81E-01 1.42E+00 2.30E+00 4.02E-01 8.15E-01 1.44E+00 2.26E+00 4.22E-01 7.81E-01 1.44E+00 2.33E+00 4.22E-01 8.34E-01 1.48E+00 2.41E+00 4.22E-01 8.12E-01 1.50E+00 2.50E+00

Sunny Prediction (s) 1.56E-01 4.69E-01 1.06E+00 1.64E+00 1.71E-01 5.00E-01 9.69E-01 1.91E+00 1.71E-01 5.00E-01 1.06E+00 1.77E+00 1.64E-01 5.31E-01 1.03E+00 1.91E+00 1.71E-01 5.47E-01 1.06E+00 1.86E+00 1.72E-01 5.46E-01 1.25E+00 1.74E+00 1.87E-01 5.62E-01 1.05E+00 1.89E+00

Rainy Prediction (s) 3.09E-02 6.25E-02 1.25E-01 1.72E-01 3.12E-02 6.25E-02 1.25E-01 2.50E-01 3.12E-02 6.25E-02 1.09E-01 2.19E-01 3.39E-02 6.25E-02 1.09E-01 2.50E-01 4.65E-02 6.59E-02 1.25E-01 1.72E-01 3.12E-02 6.25E-02 1.25E-01 2.66E-01 3.12E-02 7.78E-02 1.25E-01 1.87E-01

Training Time (s) 2.06E+00 3.03E+00 5.61E+00 9.66E+00 1.97E+00 3.09E+00 5.56E+00 9.88E+00 1.92E+00 3.11E+00 5.84E+00 9.94E+00 2.02E+00 3.19E+00 5.94E+00 1.00E+01 2.78E+00 3.28E+00 6.25E+00 9.69E+00 2.02E+00 3.27E+00 5.76E+00 1.10E+01 2.08E+00 3.25E+00 6.10E+00 1.08E+01

Loading Time (s) 0.00E+00 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.56E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 9.00E-03 1.54E-02 1.53E-02 1.53E-02 1.53E-02 9.01E-03 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 8.98E-03 1.56E-02 1.53E-02 1.53E-02 1.53E-02

Blind Prediction (s) 4.06E-01 7.65E-01 1.45E+00 2.08E+00 4.06E-01 7.81E-01 1.49E+00 2.24E+00 4.06E-01 7.68E-01 1.72E+00 2.14E+00 4.12E-01 7.83E-01 1.37E+00 2.33E+00 1.06E+00 8.34E-01 1.36E+00 2.30E+00 4.22E-01 7.97E-01 1.58E+00 2.70E+00 4.06E-01 8.28E-01 1.49E+00 2.95E+00

Sunny Prediction (s) 1.58E-01 4.71E-01 1.02E+00 1.62E+00 1.56E-01 5.00E-01 1.08E+00 1.98E+00 1.71E-01 5.31E-01 1.12E+00 1.69E+00 1.56E-01 4.87E-01 1.02E+00 1.86E+00 1.72E-01 5.25E-01 9.71E-01 1.74E+00 1.72E-01 5.47E-01 1.11E+00 1.75E+00 1.72E-01 5.31E-01 1.22E+00 2.14E+00

Rainy Prediction (s) 4.69E-02 4.69E-02 1.09E-01 1.87E-01 3.12E-02 6.25E-02 1.09E-01 3.29E-01 3.12E-02 6.25E-02 1.25E-01 2.03E-01 3.12E-02 6.25E-02 1.25E-01 1.72E-01 3.12E-02 6.48E-02 1.09E-01 1.87E-01 3.12E-02 6.25E-02 1.41E-01 1.87E-01 3.12E-02 7.78E-02 1.25E-01 2.34E-01
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