
Vol.:(0123456789)

Sports Medicine 
https://doi.org/10.1007/s40279-020-01386-6

SYSTEMATIC REVIEW

Neuromuscular Function of the Knee Joint Following Knee 
Injuries: Does It Ever Get Back to Normal? A Systematic Review 
with Meta‑Analyses

Beyza Tayfur1  · Chedsada Charuphongsa1 · Dylan Morrissey1,2 · Stuart Charles Miller1

 
© The Author(s) 2020

Abstract
Background Neuromuscular deficits are common following knee injuries and may contribute to early-onset post-traumatic 
osteoarthritis, likely mediated through quadriceps dysfunction.
Objective To identify how peri-articular neuromuscular function changes over time after knee injury and surgery.
Design Systematic review with meta-analyses.
Data Sources PubMed, Web of Science, Embase, Scopus, CENTRAL (Trials).
Eligibility Criteria for Selecting Studies Moderate and high-quality studies comparing neuromuscular function of muscles 
crossing the knee joint between a knee-injured population (ligamentous, meniscal, osteochondral lesions) and healthy 
controls. Outcomes included normalized isokinetic strength, muscle size, voluntary activation, cortical and spinal-reflex 
excitability, and other torque related outcomes.
Results A total of 46 studies of anterior cruciate ligament (ACL) and five of meniscal injury were included. For ACL injury, 
strength and voluntary activation deficits were evident (moderate to strong evidence). Cortical excitability was not affected 
at < 6 months (moderate evidence) but decreased at 24+ months (moderate evidence). Spinal-reflex excitability did not 
change at < 6 months (moderate evidence) but increased at 24+ months (strong evidence). We also found deficits in torque 
variability, rate of torque development, and electromechanical delay (very limited to moderate evidence). For meniscus 
injury, strength deficits were evident only in the short-term. No studies reported gastrocnemius, soleus or popliteus muscle 
outcomes for either injury. No studies were found for other ligamentous or chondral injuries.
Conclusions Neuromuscular deficits persist for years post-injury/surgery, though the majority of evidence is from ACL 
injured populations. Muscle strength deficits are accompanied by neural alterations and changes in control and timing of 
muscle force, but more studies are needed to fill the evidence gaps we have identified. Better characterisation and therapeutic 
strategies addressing these deficits could improve rehabilitation outcomes, and potentially prevent PTOA.
Trial Registration Number PROSPERO CRD42019141850.
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Key Points 

Neuromuscular alterations are evident in both short- and 
long-term following knee injuries in strength, voluntary 
activation, cortical and spinal excitability, and in timing 
and control of muscle force production.

These alterations may be specific to ACL injury, since 
we could not identify long-term alterations for meniscus 
injury and no studies could be found for other ligamen-
tous or cartilage injuries to the knee, indicating a huge 
evidence gap.
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1 Introduction

Knee injury is an independent risk factor for the develop-
ment of knee osteoarthritis (OA) in young adults [1–3]. The 
prevalence of post-traumatic OA (PTOA) can be as high as 
80% at 10+ years after the initial injury [4], with 4–6 times 
higher odds compared to a non-injured knee [2]. PTOA 
mainly affects a younger and more active population when 
compared to non-traumatic OA, resulting in longer years 
lived with disability [5], and surgical interventions 7–9 years 
earlier in life [6]. Therefore, prevention strategies for PTOA 
development require particular attention.

Multiple anatomical, molecular, and physiological fac-
tors contribute to PTOA development [7]. Starting from the 
energy absorption at the time of trauma, damage to joint 
structures, including ligaments, meniscus, cartilage and sub-
chondral bone singly or in combination, creates an inflam-
matory cycle. This cycle of activation of cartilage-degrading 
enzymes and chondrocyte apoptosis with joint instability 
and biomechanical alterations may further contribute to the 
degenerative process [7]. Throughout this process starting 
from the initial injury to PTOA initiation, it is important to 
identify modifiable risk factors so that targeted preventive 
rehabilitation strategies can be applied.

Muscles around the knee joint play an important role in 
the biomechanical alterations and joint instability after a 
knee injury. Quadriceps muscle weakness is a modifiable 
risk factor for non-traumatic OA [8] and PTOA [7]. Deficits 
in quadriceps strength are also common following knee inju-
ries [9, 10], evident even at the end of the initial rehabilita-
tion period [11], and may persist for more than 20 years [12]. 
Quadriceps weakness is also associated with gait alterations 
following knee injuries [13], which are common in the long-
term [14], and hypothesised to be a contributor to PTOA 
initiation by abnormal knee cartilage loading [15]. These 
biomechanical alterations and joint instability may further 
contribute to the degenerative cycle within the knee joint 
[7]. Therefore, exercise therapy is at the core of PTOA pre-
vention strategies to theoretically delay or prevent PTOA 
onset, through increasing muscle strength and improving 
neuromuscular function [16, 17].

While longitudinal data are available for quadriceps 
strength, less often considered is the overall neuromuscular 
function of the knee joint. Neuromuscular alterations after 
knee injury have been reported in case–control studies for 
strength [18], voluntary activation [19], cortical and spi-
nal neural pathways [9, 10, 20], muscle structure [21] and 
muscle activation patterns [22, 23] in muscles including the 
quadriceps [9, 10, 18–21], hamstrings [22, 23] and gastroc-
nemii [23]. Knee joint loading is also not only determined by 
quadriceps femoris muscle but by the interaction of quadri-
ceps, hamstrings, gastrocnemius and soleus muscles [24]. 

The neuromuscular alterations in these muscles controlling 
the knee joint may exacerbate the degenerative process after 
a knee injury through muscle weakness and abnormal car-
tilage loading [15]. It is therefore important to comprehen-
sively understand neuromuscular alterations in all the mus-
cles controlling the knee joint. This would further facilitate 
improved rehabilitation programs targeting these alterations.

Previous systematic reviews of this type of research typi-
cally considered isolated muscles, particular injuries, spe-
cific time-points or limited neuromuscular outcomes [19, 
25–28]. There is a need to consider the importance of all 
injuries on all peri-articular knee muscles, the focus of this 
review, to fully understand the consequences of injury and 
possible links to PTOA. This review also aimed to identify 
where the main gaps in the literature manifest, so that future 
research and clinical recommendations can be optimally 
informed.

Injuries to knee ligaments, meniscus or cartilage are sig-
nificantly associated with higher PTOA risk when compared 
to unspecified injuries [1–3, 29]. Therefore, the injured 
population should include ligament, meniscus and cartilage 
injuries to the knee if the aim is to understand the asso-
ciation with PTOA development. There is also evidence of 
bilateral neuromuscular changes following unilateral knee 
injury [30, 31], suggesting a requirement for healthy control 
groups instead of using the contralateral ‘healthy leg’ for an 
unbiased evaluation of post-traumatic neuromuscular altera-
tions. Therefore, we aimed to determine how neuromuscular 
function of the knee joint changes over time following knee 
injuries involving ligament, meniscus or cartilage compared 
to healthy controls.

2  Methods

This systematic review and meta-analysis complied with the 
PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) guidelines [32]. The study protocol was 
registered on PROSPERO (International Prospective Register 
of Systematic Reviews) (CRD42019141850, 25 July 2019).

2.1  Search Strategy

We conducted a comprehensive systematic search of the fol-
lowing electronic databases without date restrictions until Feb-
ruary 2020: PubMed, Embase, Web of Science, Scopus, and 
Cochrane Central Register of Controlled Trials (CENTRAL). 
The search terms included medical subject headings (MeSH) 
terms and text words. We modified the search strategy for 
each specific database with keywords and concepts remain-
ing identical. The main concept included (knee injury [anterior 
cruciate ligament (ACL), posterior cruciate ligament (PCL), 
medial collateral ligament (MCL), lateral collateral ligament 



Neuromuscular Function Following Knee Injuries: Does It Ever Get Back to Normal?

(LCL), meniscus, cartilage, chondral] AND neuromuscular 
[strength, reflex, activation, electromyography, size] AND 
lower limb muscles [quadriceps, hamstring, gastrocnemius, 
soleus, popliteus]). Search strategies for all databases can be 
found in Electronic Supplementary Material Appendix S1. 
Two reviewers (BT and CC) independently conducted the 
searches, removed duplicates, screened all abstracts for eli-
gibility and retrieved full-text versions of the eligible articles. 
Disagreements between reviewer’s judgements were resolved 
with a third reviewer (SCM). We also searched the reference 
lists of the included articles and of the systematic reviews for 
additional studies.

2.2  Selection Criteria

Studies comparing neuromuscular function of the knee joint 
in participants with a previous knee injury and/or knee sur-
gery (all ligamentous, meniscal, osteochondral lesions) to an 
age- and sex-matched control group were eligible for inclu-
sion. Studies without a control group, comparing involved 
limb to uninvolved limb of participants, were excluded, as 
there is evidence of bilateral neuromuscular changes follow-
ing unilateral injury [30, 31]. Observational studies both with 
cross-sectional or prospective designs and interventional stud-
ies were included. We only used the baseline data of interven-
tional studies. Only studies published in the English language 
were included.

2.3  Outcome Measures

Studies had to report at least one of the following neuromus-
cular outcome measures as the main outcome to be included: 
body-mass normalized muscle strength as measured by an 
isokinetic dynamometer or fixed force transducer, torque 
related outcomes such as rate of torque development, torque 
variability or electromechanical delay, muscle size or vol-
ume, voluntary activation deficits as measured by central 
activation ratio or twitch interpolation technique, spinal 
reflex excitability, or corticomotor excitability as measured 
by active motor threshold. We defined neuromuscular as 
including muscle size or volume, spinal reflex excitability 
and corticomotor excitability although we are aware that 
others may define it as outcomes specifically related to the 
force-generating capacity of the muscles.

2.4  Methodological Quality Assessment

Risk of bias of the included studies was assessed using a 
modified version of the Downs and Black checklist [33, 
34], a methodological quality assessment tool for both ran-
domised and non-randomised interventional studies with 
high internal consistency and inter-rater reliability [33]. 
The modified version consists of 15 questions, excluding 

the questions about randomisation and interventions from 
the original version (Electronic Supplementary Material 
Appendix S2). The highest score of the modified version is 
16, and thresholds for low, moderate and high quality were 
accepted as < 60% (≤ 9), 60–74% (10–11), and > 75% (≥ 12), 
respectively, consistent with previous studies [14, 35]. We 
excluded low-quality studies from this systematic review as 
they may cause over- or under-estimation of effect sizes and 
may distort results, therefore leading to incorrect conclu-
sions [36, 37]. Two independent reviewers (BT and CC) 
assessed methodological quality and disagreements were 
resolved by asking a third reviewer (SCM).

2.5  Data Extraction

Data regarding the study design, participant characteristics 
(number of participants, age, sex, injury/surgery details, 
time since injury/surgery) and outcome measures (meas-
ured muscle groups and outcome) were extracted by two 
independent reviewers (BT and CC) in an Excel spreadsheet. 
Disagreements were resolved by asking a third reviewer 
(SCM). Group means and standard deviations were extracted 
for the main outcome measures. Where the reported data 
were insufficient, corresponding authors were contacted by 
e-mail to request unreported data or additional details.

2.6  Data Analysis

We analysed data according to time since injury/surgery, 
consistent with previous systematic reviews [14, 27], as fol-
lows: (1) less than 6 months (< 6 months); (2) 6 months to 
less than 12 months (6–12 months); (3) 12 months to less 
than 2 years (1–2 years); and (4) 2 years and over (≥ 2 years). 
When pre-surgery data were reported in surgical treatment 
papers, time since injury was used to determine the time 
subgroup of pre-surgery data and time since surgery was 
used for the post-surgery data.

Data were pooled for meta-analysis when there were 
more than two studies reporting the same outcome measure, 
using the Cochrane Review Manager software (Version 5.3. 
Copenhagen: The Nordic Cochrane Centre, the Cochrane 
Collaboration, 2014). Standardised mean differences (SMD; 
Hedges’ adjusted g) with 95% confidence intervals (CIs) were 
calculated for variables of interest as the difference between 
the injured leg and healthy control leg. Heterogeneity of the 
pooled data was analysed with I2 and was considered as no 
heterogeneity (≤ 25%), low heterogeneity (> 25%), moder-
ate heterogeneity (> 50%), and high heterogeneity (> 75%) 
[38]. We used fixed (for homogenous data, I2 ≤ 25%) or ran-
dom (for heterogeneous data, I2 > 25%) effects models for 
each meta-analysis according to the statistical heterogeneity. 
The magnitude of the pooled SMD was interpreted based on 
Cohen’s criteria, where SMD ≥ 0.8 indicated large, 0.5–0.8 
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moderate, and 0.2–0.5 small effect sizes [39]. Potential pub-
lication biases were also examined by funnel plots for meta-
analyses when 10 or more studies were included [37]. Level 
of evidence was reported by the following criteria: strong 
evidence (multiple high-quality studies that were statistically 
homogenous); moderate evidence (multiple studies including 
at least one high-quality study, or from multiple moderate-
quality studies that are statistically homogenous); limited 
evidence (high-quality study or multiple moderate-quality 
studies that are statistically heterogeneous); very limited evi-
dence (one moderate-quality) [40].

We also provided an evidence gap map, showing the level 
of evidence of available literature with findings, and areas 
that need further research. This aims to avoid research waste 
in areas with strong evidence and guide future studies.

3  Results

3.1  Study Selection

The search strategy retrieved 22,496 papers after duplicate 
removal (Fig. 1). Following title and abstract screening, 374 
articles were assessed in full-text and 137 studies were eli-
gible to undergo quality assessment.

Following quality assessment, 84 low-quality studies 
were excluded, leaving 13 high-quality (HQ) and 38 mod-
erate-quality (MQ) studies for final inclusion. Details of 
methodological quality assessment of included studies can 
be found in Table 1 and of excluded studies in Electronic 
Supplementary Material Appendix S3.

Fig. 1  Flow diagram of the 
study selection process
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Table 1  Methodological quality assessment of included studies based on a modified Downs and Black scale [33, 34]

Numbers in the top row are the item numbers in the original Downs and Black scale
H high quality, M moderate quality

Study 1 2 3 5 6 7 10 11 12 15 18 20 21 22 25 Total score Quality level

Almeida et al. [41] 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 11 M
Chung et al. [42] 1 1 1 2 1 1 1 1 0 0 1 1 1 0 1 13 H
Clagg et al. [43] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 10 M
Engelen-van Melick et al. [44] 1 1 1 2 1 1 0 1 0 0 1 1 0 0 1 11 M
Freddolini et al. [45] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Garrison et al. [46] 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 10 M
Goetschius and Hart [47] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 0 10 M
Goetschius et al. [48] 1 1 1 2 1 1 1 0 0 0 1 1 1 0 1 12 H
Hall et al. [49] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 10 M
Harkey et al. [10] 1 1 1 2 1 1 1 0 0 0 1 1 1 0 1 12 H
Holsgaard-Larsen et al. [50] 1 1 1 2 1 1 1 0 0 0 1 1 1 1 1 13 H
Hsiao et al. [51] 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 11 M
Hsieh et al. [52] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 10 M
Ilich et al. [53] 1 1 1 2 1 1 1 0 0 0 1 1 1 0 0 11 M
Johnson et al. [54] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 0 10 M
Kaminska et al. [55] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 10 M
Kellis et al. [56] 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 10 M
Kline et al. [57] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 10 M
Krishnan and Williams [58] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Kuenze et al. [20] 1 1 1 2 1 1 0 1 0 0 1 1 1 0 1 12 H
Kuenze et al. [59] 1 1 1 2 1 1 1 0 0 0 1 1 1 1 1 13 H
Kvist et al. [60] 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 10 M
Larsen et al. [11] 1 1 1 2 1 1 0 1 0 0 1 1 1 0 0 11 M
Lepley et al. [61] 1 1 1 2 1 1 1 0 0 0 1 1 1 0 1 12 H
Lepley et al. [9] 1 1 1 2 1 1 1 0 0 0 1 1 1 0 1 12 H
Lepley et al. [62] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Maeda et al. [63] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Norte et al. [64] 1 1 1 2 1 1 1 0 0 0 1 1 1 0 0 11 M
Oeffinger et al. [65] 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 10 M
O’Malley et al. [66] 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 10 M
Pamukoff et al. [22] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Pamukoff et al. [67] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Reed-Jones and Vallis [68] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 10 M
Ristanis et al. [69] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Roos et al. [70] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 0 10 M
Scheurer et al. [71] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Sturnieks et al. [72] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Tengman et al. [12] 1 1 1 2 1 1 1 1 0 0 1 1 1 0 1 13 H
Thomas et al. [73] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Thorlund et al. [74] 1 1 1 2 1 1 1 1 0 0 1 1 1 1 0 13 H
Thorlund et al. [75] 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 12 H
Tourville et al. [76] 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 12 H
Tsarouhas et al. [77] 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 10 M
Vairo [78] 1 1 1 2 1 1 1 1 0 0 1 1 0 0 1 12 H
Vairo et al. [79] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Ward et al. [80] 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 11 M
Welling et al. [81] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 10 M
Xergia et al. [82] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 0 10 M
Zarzycki et al. [83] 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 10 M
Zult et al. [84] 1 1 1 2 1 1 1 0 0 0 1 1 0 0 1 11 M
Zwolski et al. [85] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 11 M
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3.2  Study Characteristics

The characteristics of the included studies and outcome 
measures in each study can be found in Electronic Supple-
mentary Material Appendix S4. Overall, 46 studies included 
patients with ACL injury and five studies included patients 
with a meniscus injury. ACL studies included patients with 
ACL deficient knees and ACL reconstruction patients with 
different graft types (i.e. hamstring tendon graft (HT), patel-
lar tendon graft (PT), allograft), while all meniscus studies 
included patients who had had a meniscectomy. ACL stud-
ies included a younger population (i.e. participants in their 
20 s) when compared to meniscus studies (i.e. participants 
in their 40 s) at the time of testing. We could not identify any 
studies including patients with other ligamentous injuries to 
the knee (i.e. PCL, MCL, and LCL) or cartilage/chondral 
injuries as isolated injuries. In addition, studies generally 
tested quadriceps and hamstring muscles, with no studies 
reporting any outcomes pertaining to the gastrocnemius, 
soleus or popliteus muscles.

3.3  Findings

Initial meta-analyses showed that injury type caused large 
heterogeneity in the pooled data (i.e. opposing direction 
of effects based on injury type). Therefore, we performed 
our meta-analyses for studies of ACL and meniscus injury 
separately. ACL-deficient and ACL-reconstructed cohorts 
yielded similar results and did not cause heterogeneity; 
therefore, they were pooled together in all meta-analyses.

The overall findings (direction, effect size and level of 
evidence) of all meta-analyses for each outcome measure for 
the given time period post-injury/surgery were summarised 
in evidence gap maps (Fig. 2 for ACL studies and Fig. 3 for 
meniscus studies). We broke down the first 6 months in more 
detail to show the evidence gap for the post-injury rehabili-
tation period. However, the data for the first 6 months are 
pooled together in the meta-analyses and the gap map is only 
showing which months the data are derived from. We could 
not identify any publication bias for eligible outcomes (i.e. 
with more than ten studies in the meta-analysis; quadriceps 
isometric strength) as measured by funnel plots. The forest 
plots for quadriceps cortical excitability (Fig. 4), quadri-
ceps spinal excitability (Fig. 5), quadriceps voluntary activa-
tion (Fig. 6), quadriceps slow concentric strength (Fig. 7), 
and hamstring slow concentric strength (Fig. 8) for ACL 
studies are presented. All other meta-analyses, forest plots 

and funnel plots can be found in Electronic Supplementary 
Material Appendix S5.      

Our results showed consistent quadriceps and ham-
string strength deficits in both the short- and long-term 
after ACL injury/surgery regardless of contraction type 
(i.e. isometric, concentric or eccentric) with moderate and 
strong evidence. These deficits were in parallel to voluntary 
activation deficits in the short- (limited evidence) and long-
term (moderate evidence). Cortical and spinal excitability 
were not affected in the short-term (moderate evidence); 
however, they were altered in the long-term differently. 
Cortical excitability decreased in the long-term (moderate 
evidence), while spinal excitability increased (strong evi-
dence). Muscle size was reported in only one study, provid-
ing very limited evidence of no long-term change. Other 
findings for the quadriceps femoris muscle for patients 
with ACL injury/surgery included decreased rate of torque 
development (limited to very limited evidence), decreased 
(< 6 months) then increased (6–12 months) time to peak 
torque (very limited evidence), increased torque variability 
(very limited to moderate evidence), and unaffected elec-
tromechanical delay (very limited evidence). Additionally, 
hamstring rate of torque development was not affected 
(very limited evidence); however, electromechanical delay 
increased in the long-term (limited to moderate evidence). 
No change was seen in hamstring to quadriceps strength 
ratios (very limited to moderate evidence).

Meniscus studies reported quadriceps and hamstring 
strength deficits in the short-term (i.e. the first 6 months after 
injury/surgery), with quadriceps strength greater than controls 
in the second year following injury/surgery, and similar to con-
trols in the long-term (i.e. 24+ months post injury/surgery), 
albeit with limited or very limited evidence. Also, no change 
was reported for quadriceps rate of torque development in the 
long-term (limited evidence). Other neuromuscular outcomes 
for meniscus injuries have not been investigated, leaving a 
huge evidence gap for this voluminous patient population.

4  Discussion

Neuromuscular alterations around the knee joint are com-
monly reported following knee injuries but remain poorly 
understood due to lack of adequate synthesis. The aim of this 
systematic review was to identify changes in neuromuscular 
function of the knee joint over time following knee injury/
surgery. Central and peripheral neural changes, morphologi-
cal muscle changes, and the clinical manifestations of altered 
amplitude and timing of muscle activation and torque control 
were included in the analysis to provide a comprehensive 
overview. The timeline of these changes was also provided, 
enabling the comparison of short- and long-term changes 
after injury. Following ACL injuries, we found evidence for 

Fig. 2  Findings and literature gap map for anterior cruciate ligament 
studies. Colours represent the evidence level as by van Tulder et al. 
[40] and directions represent injured group data when compared to 
control, with the effect size. SMD standardised mean difference, ST 
semitendinosus, BF biceps femoris, Ham:Quad hamstring:quadriceps

◂
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deficits in quadriceps and hamstring strength and quadriceps 
voluntary activation, changes in cortical and spinal-reflex 
neural pathways, deficits in force control and delays in rapid 
force generation post-injury. Following meniscus injuries, 
there was limited evidence for immediate strength deficits, 
with these being restored long-term. Importantly, we iden-
tified major gaps in the evidence base, with no studies on 
patients with cartilage injuries or ligamentous injuries other 
than ACL, and no studies measuring gastrocnemius, soleus 
or popliteus muscles for any of the injuries.

We consistently found quadriceps and hamstring strength 
deficits in the ACL injured group both in the short- and 
long-term. Increasing muscle strength is a primary focus of 
rehabilitation guidelines [86–88]; however, impairments are 
evident despite these efforts. We also found that quadriceps 
voluntary activation deficits are evident in the short-term and 
do not recover in the long-term, providing a potential under-
lying neural mechanism of the quadriceps muscle weakness. 
This neural dysfunction, often described as arthrogenic 
muscle inhibition (AMI), is hypothesised to be a protective 
mechanism to avoid further joint damage following knee 

injuries [89]. However, it can be problematic if not restored 
through rehabilitation, which would appear to be the case for 
most of the participants measured in the included studies. We 
could not control for the effects of rehabilitation received 
post-injury and, therefore, cannot comment on whether AMI 
persistence is mediated by the appropriateness of a particular 
rehabilitation approach. A recent scoping review suggested 
the use of cryotherapy and exercise in the management of 
AMI, albeit partly based on experimentally induced AMI 
in healthy knees [90]. It was also shown that after ACLR, 
a 2-week rehabilitation programme including cryotherapy 
application and physical exercise together improves AMI 
more than cryotherapy or exercise alone [91]. Currently, 
exercise treatment is accepted as common practice [86–88], 
and our meta-analysis of 14 studies (Fig. 6) showed a lack 
of activation deficit resolution in the long-term, suggest-
ing either the rehabilitation approaches undertaken by the 
recruited participants in the included studies were insufficient 
for resolving these deficits, adherence was sub-optimal or 
the implementation of rehabilitation strategies were lacking.

Quadriceps muscle strength and voluntary activation 
deficits were evident at the time return to sport commonly 
occurs (i.e. 6–12 months post-injury/surgery). Current 
rehabilitation and return to sport guidelines recommend a 
limb symmetry index threshold of 85–90% as a criterion 
for strength recovery [86–88, 92, 93]. However, the pres-
ence of neuromuscular alterations in the contralateral limb 

Fig. 3  Findings and literature gap map for meniscus studies. Colours 
represent the evidence level as by van Tulder et  al. [40] and direc-
tions represent injured group data when compared to control, with the 
effect size. SMD standardised mean difference, ST semitendinosus, 
BF biceps femoris, Ham:Quad hamstring:quadriceps

◂

Fig. 4  Forest plot of quadriceps active motor threshold from anterior cruciate ligament studies (increased active motor threshold meaning 
decreased cortical excitability)
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Fig. 5  Forest plot of quadriceps Hoffman reflex (spinal excitability) from anterior cruciate ligament studies

Fig. 6  Forest plot of quadriceps voluntary activation from anterior cruciate ligament studies
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may cause overestimation of the injured-limb function [30, 
31]. As such, use of symmetry-based strength outcomes 
may reduce the ability to detect the strength deficits we 
found in this systematic review, as we did not accept con-
tralateral knee as a control group. It may be that identifica-
tion of normative ranges from future research would better 
inform return-to-play decisions.

We aimed to understand the nature of relevant central 
and peripheral nervous system changes, including cortical 
and spinal-reflexive pathways and found that these change 
with time. We found no change in cortical excitability or in 
spinal-reflex excitability in the short-term, with moderate 
evidence. Short-term swelling and pain may be present 
following knee injury/surgery, which does not affect corti-
cal excitability but decreases spinal-reflex excitability [94, 
95]. Experimental joint effusion studies have also shown 
that effusion decreases spinal-reflex excitability immedi-
ately after injection [96, 97]. Therefore, the observed acute 
unaffected values of spinal-reflex excitability may be due 
to both swelling and pain shadowing an increased spinal 
reflex excitability in the short-term.

In the longer term, there is strong evidence of decreased 
cortical excitability and increased spinal-reflex excit-
ability, suggesting that neuromodulation of quadriceps 
activation adapts and changes through time after injury/
surgery. Decreased cortical excitability means that knee-
injured patients need more stimulation to yield sufficient 
excitation in the primary motor cortex to generate mus-
cle activation [98]. While the clinical importance of these 
changes in corticospinal and spinal-reflexive pathways is 
not fully understood, recently it has been shown that cor-
ticospinal adaptations are correlated with muscle strength 
and patient-reported knee function satisfaction following 
ACLR [99]. It may be that the decrease in cortical excit-
ability is a protective long-term motor cortex adapta-
tion, while a compensatory reflex mechanism maintains 
required muscle function when needed i.e. as a preparatory 
mechanism to avoid a sudden collapse of the knee joint in 
knee-injured patients [100]. It has been suggested that elec-
tromyographic biofeedback, transcranial magnetic stimula-
tion or transcutaneous electrical nerve stimulation may be 
beneficial in changing neural pathways to improve muscle 
function [101]; however, empirical data are lacking to sup-
port these recommendations [90]. Further studies exploring 
the effects of different interventions on neuromodulation 
of quadriceps may be helpful to understand the clinical 
usefulness of these, or novel, modalities and approaches.

Meniscus injury caused heterogeneity and showed better 
long-term outcomes when compared to ACL studies. Altered 
sensory function is reported following ACL injuries and has 
been hypothesised to be the cause of alterations in motor 
response [102]. Our results provide enough evidence to sup-
port that these changes in neuromuscular function are seen 

in ACL-injured patients. However, it should be noted that 
included studies were not investigating only isolated ACL 
injury effects as many of the ACL-injured participants had 
a concomitant meniscal injury. Due to a lack of reporting 
in most studies, we could not pool or detail the differences 
between isolated ACL injuries vs those with concomitant 
meniscus damage. There is evidence that combined injuries 
may increase PTOA development risk when compared to iso-
lated ACL injuries [103, 104]; however, from the neuromus-
cular perspective, no difference was reported in quadriceps 
strength or voluntary activation for isolated ACL injuries vs 
ACL injuries with concomitant meniscus injury [105]. There-
fore, neuromuscular alterations, mediated through quadriceps 
weakness, may not be a critical pathway towards PTOA onset 
in patients with isolated meniscus injuries, although the num-
ber of studies included in this study was insufficient to draw a 
conclusion. We speculate that our findings show preliminary 
data supporting injury-specific changes, and should stimulate 
further investigation in injury-specific groups, perhaps group-
ing injuries into cogent sub-groups.

There is a decreased rate of quadriceps torque develop-
ment, albeit with limited evidence, which would limit rapid 
force production in knee-injured populations [106, 107]. 
This may be due to an increased neural processing time or 
a delay in the transmission of force within the muscle and/
or tendon [108, 109]. Rapid force production may be more 
relevant to daily life activities and sports than maximum 
strength, as most of these activities require a quick muscle 
response [106, 107]. Rapid force production is also corre-
lated with self-reported knee function [52] and functional 
performance [110], and may not recover even if maximum 
peak torque is regained [107]. Therefore, the rate of torque 
development may be an important descriptor of muscle func-
tion and further attention should be given to strengthen the 
evidence and clarify the clinical relevance.

There is moderate evidence that quadriceps torque vari-
ability increases in the long-term, suggesting muscle control 
impairments. Precise control of movement is essential for 
optimal knee function, and insufficiency may cause altera-
tions in joint loading which may, in turn, lead to degenera-
tive cartilage changes [111]. Increased torque variability is 
also evident in knee OA patients [112]; thus, we speculate 
that motor control of the quadriceps muscle may be another 
component of neuromuscular alterations in the long-term 
following injury/surgery potentially contributing to the ini-
tiation of knee OA.

We found an important evidence gap in the literature 
concerning the change of muscle morphology. Our search 
yielded several studies on muscle size; however, they either 
did not include a suitable control group or were of low qual-
ity; due to procedural and reporting issues rather than the 
absence of valid measurement tools. Only one moderate 
quality study, providing very limited evidence, found no 
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difference in quadriceps muscle volume in the long-term. 
However, it has been reported that both neural alterations 
and muscle size can predict up to 60% of the variance in 
muscle strength post-injury [113]. Muscle atrophy may 
also explain strength deficits more than activation failure 
[114]. Muscle size may have played an important role in 
the strength deficits found in this systematic review; there-
fore, future studies should consider measuring muscle size 
in knee-injured populations together with other neuromus-
cular outcomes.

Future research is needed to improve our understanding 
of neuromuscular changes post-injury, with morphological 
and neural alterations being measured in the same knee-
injured populations to understand their interactions and 
effects on muscle strength, as well as muscle control and 
the timing of movement generation. Another future step 

should be understanding the impact of these neuromuscu-
lar alterations on movement patterns and joint loading, and 
therefore their potential implications for PTOA onset. We 
suggest including structural measurement of OA presence 
in knee-injured populations to understand possible asso-
ciations of neuromuscular alterations with OA presence. A 
clear association would further inform prospective studies to 
determine whether these associations are causal.

Despite the increasing number of publications, and 
accepted functional importance [115], we still do not have 
strong evidence for key short- and long-term neuromuscu-
lar outcomes post-injury. The main research focus has been 
on muscle strength, while the underlying neural mechanism 
or morphological changes within the muscle have been of 
less interest. More data are required to determine changes 
in neuromuscular outcomes such as muscle size, timing of 

Fig. 7  Forest plot of quadriceps slow concentric strength from anterior cruciate ligament studies
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muscle force production (i.e. rate of torque development, 
electromechanical delay) and force control (i.e. torque vari-
ability). While the importance of measuring these factors in 
the quadriceps muscle, especially post-ACL injury, is well-
established, changes in other muscles are often neglected 
and should be further investigated.

Understanding the effects of different interventions may 
help the development of better rehabilitation protocols that 
may address the persistent neuromuscular impairments we 
have shown in our systematic review. Future studies should 
consider repeated measurement of neuromuscular function 
to better understand its relation to changes in the patient’s 
reported outcome measures and function. Further, such 
data may yield useful findings about the prognostic value of 
neuromuscular functional measures, which could help guide 
both optimised rehabilitation and detection of osteoarthri-
tis development, while explaining individual differences 

in responses. Therefore, the effects of novel rehabilitation 
strategies that target neuromuscular alterations of the knee 
joint in knee-injured populations should be investigated and 
further implemented in rehabilitation protocols to improve 
short- and long-term outcomes.

4.1  Limitations and Considerations for Future 
Studies

Studies systematically lacked reporting of participant selec-
tion procedures, possibly resulting in a high level of partici-
pant selection bias (Table 1). Included patients may be those 
still having symptoms in the long-term, which may result in 
an inflated alteration in the injured group. Ideally, recruit-
ment would be as close as possible to the index injury, with 
long-term follow-up, so as to include those who cope well 

Fig. 8  Forest plot of hamstring slow concentric strength from anterior cruciate ligament studies
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with injury as well as those who do not (i.e. a prospective 
study design).

There is evidence of altered neuro-muscular function in 
the lower limb being a risk factor for knee injury [116]. 
Therefore, we cannot assume that identified deficits are 
purely the result of the injury as they may have been predis-
posing factors to injury in the first place.

Our search strategy included terms of all knee ligaments 
(ACL, PCL, MCL, and LCL), meniscal injuries, cartilage 
injuries and post-traumatic OA. However, our results only 
showed studies on ACL-injured or meniscus-injured popula-
tions. We also found that knee injury was a source of hetero-
geneity in some of the outcomes; therefore, our findings may 
be specific to ACL and meniscus injuries, and not applicable 
to other injuries.

Another limitation was the heterogeneity of the included 
patients in most studies. ACL-injured patients included in 
the studies were mixed both in terms of concomitant injury, 
‘copers’ vs ‘non-copers’, and graft type if surgery was per-
formed. Due to a lack of reporting and inadequate study 
numbers, we could not draw any conclusions on the effects 
of concomitant injuries or different surgeries (i.e. different 
grafts), or comparison of ‘copers’ with ‘non-copers’.

Time since injury/surgery was used to define the short- 
and long-term changes and for grouping the studies to pool 
the data. Many of the included studies were not strict in 
their time since injury/surgery criteria; therefore, the vari-
ability was high. I.e. a study could include participants 
with a time since injury/surgery from 6 to 60 months, with 
a median of 24 months. We used the mean or median time 
to define the time groups; therefore, some variability in 
the data may be expected due to the heterogeneity of time 
since injury/surgery ranges of the included participants.

4.2  Clinical Implications

Persistent deficits found in our study may highlight pos-
sible failures in current post-injury treatment strategies. 
We found that quadriceps strength, voluntary activation, 
control and speed of muscle force generation and ham-
string strength are affected; therefore, targeting these 
deficits may improve functional outcomes of knee-injury 
rehabilitation. We acknowledge that measuring most of the 
neuromuscular outcomes reported in this study may not 
be feasible in clinical practice (i.e. cortical excitability, 
spinal reflexes, torque-related outcomes, etc.); however, 
research shows clinically applicable rehabilitation strate-
gies may improve these outcomes. For example, strength 
training alone may not be sufficient to improve neuromus-
cular function of the knee joint, if movement quality and 
speed of force production are being overlooked. It has been 
suggested that a training protocol including controlled 

muscle contractions with low-loads may improve muscle 
force control [117], and heavy- or explosive-type resist-
ance training [106], or sensorimotor training focusing on 
postural stabilization [118] may improve the rate of torque 
development. For strength recovery, cryotherapy combined 
with physical exercise has been shown to be effective in 
reducing muscle inhibition in the short-term after injury 
[90], while progressive strength training shows promising 
results in the long-term [81]. Implementing these differ-
ent exercise types may improve neuromuscular function 
of the knee joint, thus enhancing functional outcome post-
injury with repeated measures of neuromuscular function 
potentially useful to determine intervention mechanisms 
alongside clinical effectiveness. Such information could 
inform more detailed rules for return to physical activity/
sport criteria, such as including motor control and qual-
ity of movement as well as maximum force capacity of 
muscles. The subsequent effect on PTOA development or 
re-injury rates would be key impact markers. It should be 
noted that our findings are mainly based on ACL-injured 
populations; therefore future studies may yield different 
results for different injury types (i.e. injuries to the other 
ligaments in the knee joint, meniscus or cartilage).

5  Conclusion

Our study enhances understanding of neuromuscular func-
tion of the knee joint following injuries and shows that neu-
ral and muscular alterations are common and persistent in 
the short- and long-term after injury/surgery. Strength and 
voluntary activation deficits are accompanied by changes in 
cortical and spinal excitability for ACL patients in both the 
short- and long-term (moderate to strong evidence), as well 
as deficits in force control and rapid force production (very 
limited to moderate evidence). Only strength was investi-
gated in patients with meniscus injuries and short-term defi-
cits demonstrated. Our study facilitates clinical recognition 
of these deficits, and promotes future research to advance 
rehabilitation strategies to target these alterations, ultimately 
contributing to efforts made to optimise clinical outcomes 
following knee injury and/or surgery and minimise PTOA 
development or re-injury.
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