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Abstract

We live and cooperate in networks. However, links in networks only
allow for pairwise interactions, thus making the framework suitable
for dyadic games, but not for games that are played in groups of
more than two players. Here, we study the evolutionary dynamics of
a public goods game in social systems with higher-order interactions.
First, we show that the game on uniform hypergraphs corresponds
to the replicator dynamics in the well-mixed limit, providing a for-
mal theoretical foundation to study cooperation in networked groups.
Secondly, we unveil how the presence of hubs and the coexistence of
interactions in groups of different sizes affects the evolution of co-
operation. Finally, we apply the proposed framework to extract the
actual dependence of the synergy factor on the size of a group from
real-world collaboration data in science and technology. Our work
provides a way to implement informed actions to boost cooperation
in social groups.

Introduction

Cooperation among unrelated individuals distinguishes humans markedly from
other mammals, and it is one of the central pillars of our evolutionary success [1].
Past research has emphasized that the structure of social interactions is crucial
for the evolution of cooperation, but thus far predominantly in the realm of
networks where links connect pairs of players [2, 3]. However, since cooperation
often unfolds in groups, the need for a paradigm shift in the way we model
social interactions is evident and indeed urgent. Regardless of the model that
we use to describe human interactions, cooperation remains at odds with the
fundamental principles of Darwinian evolution, and it is fascinating that we
have succeeded in collectively holding off self-interest over most of the last two
million years, ever since the genus Homo first emerged [4].

Given this puzzle, the search for reasons and mechanisms that may allow
cooperation to evolve and proliferate is an evergreen and vibrant subject across
the social and natural sciences [5, 6, 7, 8, 9, 10, 11]. Evolutionary game theory
is long established as the theory of choice for addressing the puzzle mathemat-
ically [12, 13, 14], wherein social dilemmas constitute a particularly important
class of games. Namely, social dilemmas capture the essence of the problem
since defection is the individually optimal strategy, whilst cooperation is the
optimal strategy for the highest social welfare [15]. An important mechanism
for cooperation in social dilemmas is network reciprocity [16], which stands for
the fact that a limited interaction range, as dictated by lattices or other types of
networks, facilitates the formation of compact clusters of cooperators that are
in this way protected against invading defectors. This basic mechanism could
also be seen if the degree distribution of the interaction network is strongly
heterogeneous [17, 18, 19], if there is set or community structure [20, 21], or
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if the evolution unfolds on two or more network layers that mutually support
cooperative clusters [22, 23, 24, 25, 26, 27, 28, 29].

Despite the wealth of important insights concerning the evolution of co-
operation on networks and fundamental discoveries [30, 31, 32], an important
unsolved problem remains accounting for cooperation in groups, such as for
example in the public goods game (PGG) [33, 34]. The simplest remedy is to
consider members of a group to be all the players that are pairwise-connected to
a central player [35, 36]. However, since the other players are further connected
in a pairwise manner, one would also need to consider all the groups in which the
central player is a member but is not central. Evidently, classical networks do
not provide a unique procedure for defining a group. Moreover, members of the
same group are commonly not all directly connected with one another, which
prevents strategy changes among them, either in terms of imitation, replication,
or exploration. These facts posit a lack of common theoretical foundation for
studying the evolution of cooperation in networked groups. Without knowing
who is connected to whom in a group, it is also impossible to implement fun-
damental mechanisms that promote cooperation, such as reciprocity [37, 38],
image scoring [39, 40, 41], and reputation [42, 43, 44].

As a solution, we here introduce and study higher-order interactions in evolu-
tionary games that are played in groups. The distinctive feature of higher-order
interactions is that, unlike in classical networks [45], a link can connect more
than just two individuals [46]. Thus, higher-order networks naturally account
for structured group interactions [47], wherein a group is simply made up of all
players that are connected by a so-called hyperlink, which is the higher-order
analogous of the link. As a paradigmatic example, we consider a standard public
goods game on the higher-order analogous of a network, referred to as a hyper-
graph, see Figure 1. We first show that it corresponds exactly to the replicator
dynamics in the well-mixed limit as long as no hyperdegree-hyperdegree corre-
lations exist. As such, it thus provides a formal theoretical foundation to study
cooperation in networked groups – effectively a null model – that is amenable to
further upgrades. Next, we consider the public goods game on hypergraphs with
heterogeneity either in their node hyperdegrees (number of hyperlinks a node
is involved into) or in the order of their hyperlinks (number of nodes that form
each hyperlink), which allow us to describe the dynamics induced by the pres-
ence of highly connected players and to consider scenarios in which the synergy
factor depends on the group size in a systematic and consistent way. We show,
for example, how synergy factors that are given by different powers of the group
size lead to a critical scaling in the transition from defection to cooperation.
Lastly, we also demonstrate how the proposed higher-order interaction frame-
work can be used to determine the synergy factor as a function of the group size
from empirical data on cooperation and collaborations. Under the assumption
that the structure of the hypergraph is the outcome of an optimisation process
of the game it hosts, we extract the game parameters from datasets describing
collaborations in science and technology, showing that higher-order interactions
induce diverse benefits and costs in different social domains.

The public goods game constitutes the fundamental example of a social
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dilemma when multiple individuals interact simultaneously. It presents a sit-
uation where the gain or loss of an initial investment is shared symmetrically
between the members of a group, even if the investment itself can be asymmet-
ric. In other words, there is no correlation between the individual effort and the
distribution of the reward, meaning that some players receive more than what
they give or deserve, while some others receive less. Metaphorically, one would
say that the game has no memory, in the sense that the payoff is assigned blindly
to all the players as if the system had lost the information about the original
contribution of each player. More formally, the public goods game describes a
setting where N players are requested to contribute to a common pool with a
token of value c [10].

Cooperators do contribute, and defectors do not. The collected amount is
then multiplied by the so-called synergy factor R, and the benefit is shared
amongst all the members of the group. The payoff for the defectors and co-
operators playing in a group of g members is given by πD = RcwC/g and
πC = RcwC/g− c respectively, with wC representing the number of cooperators
in the group. Typically c has a fixed value of c = 1, so that the behaviour of
the system is determined by the synergy factor R, or the reduced synergy factor
r = R/g. Besides, it is common to represent the state of the system by the
fraction of players adopting each strategy, xC for the cooperators and xD for
the defectors.

The evolutionary dynamics determines how the strategies of the players
evolve with each iteration of the PGG, that is, how the fractions xC and xD
change with time. Here, we implement the so-called fixed cost per game ap-
proach, where cooperators contribute with an entire token to each game they
play. Individual updates constitute micro-steps of the dynamics, whereas a
(global) time step corresponds to N individual steps, so that all the players in
the system have the chance to play the game and update their strategies. Play-
ers interact among them following the links of the network they are embedded
in. As mentioned before, the standard network implementation [35], henceforth
referred to as graph implementation (GI), is not able to account for the most
general type of interaction in groups. One of the first proposals to overcome the
limitation of a GI is Evolutionary Set Theory [20], that considers a structure of
interaction in which the players are organised as the elements of a set. Yet, the
game itself is pairwise, and thus different from the type of approach proposed
here. However, it is worth pointing out that the set theory description is equiv-
alent to the hypergraph formalism, and therefore, one should expect the same
results when studying the same game on both structures. In this work we have
opted for hypergraphs because, as a higher-order generalization of graphs, they
inherit the whole family of graph tools with which evolutionary game theory
scholars are more familiar with. A few years later, it was proposed to address
higher-order interactions by bipartite graphs, having a set of nodes for the play-
ers and a second set for the groups [48, 49, 50]. The authors adapted the PGG to
the bipartite graph, in what we call the bipartite implementation (BI). In such a
case the game is indeed polyadic, but the update process is still dyadic, and the
constrains associated to the formalism do not make it suitable for an analytical
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treatment. Here, we generalise the BI to a fully higher-order implementation
and provide the theoretical foundation to study higher-order cooperative games
in uniform and heterogeneous hypergraphs. Finally, we mention that in a more
recent work [51], the authors have considered games played by agents belonging
to subpopulations and whose interactions occur across and within the popula-
tion, providing a useful methodology for situations in which one can get rid of
the fine details of the individual connections.

Results

Game Implementation

In order to account for higher-order interactions, we use hypergraphs [46]. A
hypergraph, H(N ,L), is a mathematical object that consists of a set of N
nodes N = {n1 = 1, .., nN = N} and a set of L hyperlinks L = {l1, ..., lL}.
Each hyperlink is a subset of two or more elements of N and represents a group
interaction. For instance, in Figure 1a, the hyperlink l1 contains nodes n1 and
n3, whereas the hyperlink l3 is the subset made up by nodes n4, n5 and n6.
Furthermore, the cardinality of a subset, known as the order of the hyperlink,
is the number g of nodes in the group. In the previous example, l1 has order 2
and l3 has order 3. In a hypergraph, the hyperdegree, ki, of a node i represents
the number of hyperlinks in which the node is involved into, thus, the number
of groups of a specific order g that contains i can be denoted by kgi . Hence, the

hyperdegree of i is given as ki =
∑g+

g=g− k
g
i , where g− and g+ account for the

minimal and maximal orders in L. For example, in Figure 1a, k4 = 3 = k2
4 +k3

4,
with k2

4 = 1 (the hyperlink l4) and k3
4 = 2 (the hyperlinks l2 and l3). As 〈k〉

we indicate the average hyperdegree of node i, where the averages are evaluated
over all the nodes in the system, i.e. 〈k〉 = 1

N

∑
i∈N ki.

Although hypergraphs are not the only possible representation of group in-
teractions, they allow exploiting the analogy between the links representing
pairwise interactions in contact networks and hyperlinks, which are based on
higher-order, group interactions. As we will show next, the differences between
these two approaches lead to fundamentally distinct outcomes of the PGG evo-
lutionary dynamics. To see how the evolutionary dynamics evolves in hyper-
graphs, let us consider the first step of a standard graph implementation of the
PGG. When a node ni and one of its neighbours nj are selected on a graph,
it is equivalent to say that a node and one of its links are selected. Such a
procedure can be easily generalised to group interactions of more than g = 2
individuals, see Figure 1b. Note that if we choose more neighbours of ni to gen-
erate higher-order interactions, such an extension would still be based on dyadic
ones. Instead, we propose a hypergraph implementation (HI) of the game that
consists of selecting one of the hyperlinks of ni. That is, in the HI setup, we
select at random with uniform probability a node ni in the hypergraph and one
of its hyperlinks, li. Then, all the members of the hyperlink li play a game for
each of the hyperlinks they are part of, as illustrated in Figure 1. Finally, as it
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is customary, the nodes accumulate the payoffs of all the rounds they play, and
we normalise this quantity by the total number of played games, such that each
node’s performance is represented by its average payoff.

The second part of each micro-step of the evolutionary dynamics of the
game involves updating the strategy of node ni. To this end, we normalise
the discrete replicator dynamics for the case of higher-order interactions. We
propose to compare the payoff πi of a node ni with the maximal payoff of the
selected hyperlink li. Under this rule, ni will adopt the strategy of the node
with the maximal payoff with a probability 1

∆ [(maxli πj)− πi], where ∆, whose
precise definition is provided in the Supplementary Equation (3), accounts for
the maximal payoff difference, and is employed to guarantee that the probability
is normalised. The rationale behind the choice of this expression is that node i
will compare its payoff to that of the node with the largest payoff in hyperlink
li. Note that the previous expression reduces to the standard one of the GI
when g = 2. Summing up, the HI accounts for a more realistic update than
that in the BI, since the player inspiring a strategy change is the one with the
highest payoff of the group, and not a randomly chosen one.

Uniform Hypergraphs

To get some insights into the dynamics of the system in a simple configuration,
we first studied the PGG on uniform random hypergraphs (URH) with hyper-
links of order equal to g =2, 3, 4 and 5 (see Methods for details on how to
generate URH). Numerical simulations have been carried out for hypergraphs
with N = 1000 nodes (players), and the game has been iterated for T = 104

time steps. The results obtained are reported in Fig. 2. Panel (a) shows the
final fraction of cooperators as a function of the reduced synergy factor r. In
each case, the simulations refer to hypergraphs with L = Lc hyperlinks, where
Lc accounts for the minimal number of hyperlinks that guarantees the connect-
edness of the hypergraph. As it can be seen in the figure, there is a value of r
beyond which cooperation emerges. We define this critical value of the reduced
synergy factor, rc, which depends on g, as the lowest value of r for which the
fraction of cooperators is nonzero.

The results show that rc decreases when the order g of the hyperlinks of
the hypergraph increases. This is equivalent to say that rc decreases when the
same number of N = 1000 individuals play in larger groups. We believe that
this observation is important, since determining how r varies with the size of
the group, allows us to get more realistic insights. Admittedly, the well-mixed
limit of population-size groups is rarely applicable in reality, thus, the study of
the impact of having large groups inside large populations, as allowed by our
higher-order framework, is key. The panel (b) of Fig. 2 displays how the value
of rc depends on the number of hyperlinks L in the hypergraphs. For each value
of g, we observe an increase of rc with L, and a tendency, for large hypergraph
densities, to the value rc = 1, which corresponds to the well-mixed replicator
approximation [52]. The replicator equation approximation relies on the indis-
tinguishability of the nodes, and as such, it is exact when the hypergraph is fully
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Figure 1: Higher-order vs pairwise interactions in a Public Goods Game (PGG):
Comparison of the proposed hypergraph implementation (HI) with a standard
graph implementation (GI) of the game based on pairwise interactions only.
(a) In the HI implementation, a node, n2, and one of its hyperlinks, l2, are
randomly selected. All the nodes in the hyperlink l2, namely node n2, and the
two nodes highlighted in red n3 and n4, play all the games they are involved into,
corresponding, in this example, to PGG defined for the subset of nodes of the
hyperlinks l1, l2, l3 and l4. Then, the strategy of n2 is updated by comparing
its payoff with that of the node with the highest accumulated payoff of the
hyperlink l2. This is not equivalent to play the PGG in the graph generated by
projecting the interactions of the hypergraph, which is shown in panel (b). In
the standard GI implementation, a neighbour of n2, let us say n3 −highlighted
in red− is randomly selected. The two nodes n2 and n3 then play all the games
of the groups they are part of, that is, of the groups made up by the subsets of
nodes {n1, n3}, {n2, n3, n4}, {n1, n2, n3, n4} and {n2, n3, n4, n5, n6, n7}. These
subsets, coloured as indicated in the figure, could be represented by a different
set of hyperlinks l̄1, l̄2, l̄3 and l̄4, respectively, which are different from the set
of hyperlinks of the original hypergraph. Finally, the strategy of n2 is updated
by comparing its accumulated payoff to that of node n3.

connected, i.e. contains all the possible hyperlinks. However, we show that the
approximation is good also for sparse hypergraphs, with a number of hyperlinks
of the order of the critical value for ensuring a giant component. Therefore it is
natural that the higher the value of L, the closer rc is to 1. The same argument
can be used to explain the results in (a). The ratio Lc/C

N
g , which represents

the fraction between the critical number of hyperlinks Lc and the total possible
number of hyperlinks, given by the binomial coefficient CNg , decreases with g.
This implies that, if two hypergraphs have L = Lc, but different values of g, the
one with lower g will be denser, and thus will exhibit a critical point closer to the
analytic prediction. Therefore, we can say that at fixed reduced synergy factor
r, large groups are better to foster cooperation in sparse hypergraphs, as the
number of hyperlinks required for connecting all the players represents a smaller
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a) b) c)

Figure 2: Public Goods Game with higher-order interactions in uniform random
hypergraphs: Numerical simulation of the Hypergraph Implementation of the
game on uniform random hypergraphs of N = 1000 players and different orders
g. (a) Fraction of cooperators, xC , as a function of the synergy factor, r, for
hypergraphs with hyperdegree 〈k〉 = kc, or total number of hyperlinks L = Lc,
where kc and Lc stand for the critical hyperdegree or number of hyperlinks
guaranteeing a connected hypergraph. (b) Critical value of the synergy factor,
rc, as a function of the ratio between the number of hyperlinks L and the critical
value Lc in hypergraphs of different density. (c) Relaxation times as a function
of the synergy factor, r, for hypergraphs with hyperdegree 〈k〉 = 5kc. In all
plots, triangles correspond to numerical simulations, while the solid lines are
the results of our theoretical predictions.

fraction of the total number of hyperlinks. Finally, the value of r also influences
how long it takes for the system to converge to the stationary solution. This is
illustrated in panel (c), where we report the measured relaxation time T from
an initial configuration with xD = xC = 0.5, in a hypergraph with L = 5Lc.
These results are obtained by running the simulations up to a maximum of 104

steps. Furthermore, for the replicator approximation, the value of T can be ana-

lytically computed as T = ln(N−1)
|Q| , with Q = (1− r)/∆ (see the Supplementary

Equations (4) and (5) for the details of the calculation). As it can be seen in the
figure, the agreement between the theoretical predictions and the numerical re-
sults is not only qualitatively but also quantitatively very good. The absorbing
state, either full cooperation or full defection, emerges when the system is at
equilibrium, a condition that can only be reached if enough iterations have oc-
curred. On the other hand, real-world social interactions that can be modelled
as games usually take place over a limited time interval τ . Hence, the relation
between the relaxation time T , which depends on the synergy factor r, and τ is
crucial to determine if the system does or does not reach the equilibrium, and
consequently, if the replicator dynamics can or cannot predict the numerically
computed fraction of cooperators. All these results indicate that the dynamics
of the PGG on uniform random hypergraphs corresponds to the replicator dy-
namics in the well-mixed limit. In order to test the robustness of these findings
with respect to the implementation selection, we have also carried out numerical
simulations in the BI implementation (see the Supplementary Figure 1).
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Hyperdegree-Heterogeneous Hypergraphs

The previous section addressed the simplest scenario in which the individuals
of a population are assumed to be indistinguishable (URH). However, such an
assumption can be too oversimplified to describe real situations as it is well
known that social systems are heterogeneous. Think of your friends at college.
It is likely that a minority of those are involved in considerably more activi-
ties, and therefore social circles, than the rest. Such heterogeneity is typically
characterised by a non-exponential degree distribution, allowing the presence of
hubs, or highly connected individuals [45]. Hence, we consider here two fam-
ilies of hyperdegree-heterogeneous hypergraphs that we name power random
hypergraphs (PRH) and static scale-free random hypergraphs (SRH). The al-
gorithms we have used to generate these hypergraphs are reported in the Meth-
ods section, and their properties have been studied in Supplemantary Figure
2 and Supplementary Figure 3. Scale-free hypergraphs are characterised by a
power-law distribution, and represent the most hyperdegree-heterogeneous fam-
ily of hypergraph considered here. For this reason, these hypergraphs display
a hierarchy between the nodes, as a few of them are involved in most of the
hyperlinks and thus have a dominant position in the dynamics of the system.
In contrast, power random hypergraphs stay in between uniform and scale-free
hypergraphs, as their hyperdegree distribution combines exponential and non-
exponential functions.

To study the emergence of cooperators in hyperdegree-heterogeneous hyper-
graphs, we have run T = 104 time steps of the game on ensembles of hypergraphs
with N = 1000 nodes and orders g = 2, 3, 4, 5, respectively sampled from PRH
and SRH. In order to compare the simulations with those reported in Fig 2 a,
we have fixed the total number of hyperlinks to L = Lc. When, for high hetero-
geneity, some of the nodes (a minimal fraction of the total) do not belong to the
main component, we have neglected their contribution to the fraction of cooper-
ators. The results reported in Fig. 3 show an important difference between PRH
and SRH. In the case of PRH (top panels) the position of the transition does
not depend on the heterogeneity of the node hyperdegree distribution, tuned by
parameter µ, (see the Methods Section for the precise definition of µ), and the
critical point is the same as that obtained in URH. Conversely, the simulation
of the game on SRH (bottom panels) shows that, the larger the heterogeneity
in the hyperdegree distribution (larger values of µ), the more the solution de-
viates from that of URH, and the closer the critical point gets to r = 1. This
indicates that hierarchically structured systems inhibit cooperation in the PGG
with higher-order interactions at variance with numerical simulations obtained
on traditional networks under the same evolutionary dynamics.

In order to be able to explain these results we need to consider a refinement
of the replicator approximation that takes into account the possible presence of
correlations between the hyperdegrees of nodes belonging to the same hyperlink.
Let K be the set of all possible hyperdegrees a node can have, and let k ∈ K
be the hyperdegree of a randomly chosen node. We now denote as p(k′′|k) the
conditional probability that the node of hyperdegree k is part of a hyperlink
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a) b) c) d)

e) f) g) h)

Figure 3: Public Goods Game with higher-order interactions in hyperdegree-
heterogeneous random hypergraphs. Numerical simulation for the fraction of
cooperators xC as a function of the reduced synergy factor r on hyperdegree-
heterogeneous random hypergraphs of N = 1000 players and different orders g.
Top and bottom panels refer respectively to Power Random Hypergraphs (PRH)
and Static Random Hypergraphs (SRH), while the four different columns (a)-
(e), (b)-(f), (c)-(g) and (d)-(h) correspond to the values of g = 2, 3, 4, 5. Legends
in the PRH and SRH plots denote the value of µ characterising the hyperdegree
distribution, where larger values µ imply higher heterogeneity.

where the remaining g − 1 nodes have hyperdegrees k′′ = {k1, k2, . . . , kg−1},
where k′′ ∈ Kg−1 is a vector whose g − 1 components are elements of K. We
have been able to show that the system will fulfil the replicator approximation
as long as the conditional probability p(k′′|k) does not depend on k (see the
Supplementary Equation (6) and the section below it for the detailed analysis).
This is true for the case of the PRH. Conversely, in the case of the SRH, in-
creasing heterogeneity while maintaining the total number of hyperlinks in the
hypergraph requires reducing the number of effective nodes. This induces non-
trivial correlations in the model between the hyperdegrees of nodes belonging to
the same hyperlink, and has a similar effect of driving the system closer to the
rc = 1 threshold, as that we have observed when we increase the hyperlink den-
sity in the uniform case (URH). Intuitively this can be explained by the notion
of locality. When the density is low, or when no large hubs are present in the
system, there is a non-negligible probability that cooperator bubbles emerge be-
low the critical threshold, because there may be regions of the hypergraph that
are semi-isolated, and therefore protected from defectors, even if they belong
to the same component. However, either increasing the density or introducing
hubs will reduce the probability of finding these isolated groups of nodes, and
therefore will inhibit the formation of cooperator bubbles below r = 1.
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Order-Heterogeneous Hypergraphs

Heterogeneity can also arise in the order of the hyperlinks. Indeed, the proposed
HI of the PGG allows studying the more general, realistic and interesting case
of hypergraphs where not all the hyperlinks have the same order. Important
examples of such systems include teams of different sizes working for a common
goal or one-to-many communication via apps like WhatsApp, where users can
create and belong to several groups of different sizes. In what follows, we con-
sider order-heterogeneous random hypergraphs with an assigned distribution of
hyperlinks. Such hypergraphs are characterised by their total number of hy-

perlinks L and by a probability vector p = {pg}g
+

g=g− , whose entry pg = kg/k
specifies how likely it is, on average, that the hyperdegree k of the node contains

kg groups of order g. p is normalised such that
∑g+

g=g− p
g = 1. Considering

groups of different orders in the same hypergraph allows us to focus on another
important aspect of the PGG on higher-order structures, namely, the possible
dependence of the rescaled synergy factor r on the order of the group. This is
important for practical purposes, given the increasing interest in understanding
how the size of a group impacts its performance. As it has been shown recently
[53], large and small teams play different roles in science and technology ecosys-
tems. Thus, it is natural to assume that the synergy factor of a group depends
on its size. This is particularly true in scientific publications, where it has been
shown that the larger the group, the more citations a produced publication is
likely to attract [54, 55]. Therefore, as a general form for such a dependence
we assume that the synergy factor R is an increasing power-law function of g,
namely:

R(g) = αgβ (1)

with parameter α > 0 and exponent β ≥ 0. The value of the exponent allows to
tune the benefit that the players are able to produce when working as a group. In
particular, adopting a superlinear scaling β > 1, means considering a synergistic
effect of a group that goes beyond the sum of the individual contributions [56,
57]. Notice, however, that the assumed dependence in Eq. (1) is only a first
approximation as it neglects saturation effects or even possible disadvantages
due to difficulties in coordinating large groups, which, as we will see later on,
appear in real systems. Under this assumption, the average payoff difference
between cooperation and defection can be written as:

πD − πC =

g+∑
g=g−

pg(1− αgβ−1) (2)

where g− and g+ are again the minimal and maximal orders of hyperlinks,
respectively. The relaxation time is again given by T = ln(N − 1)/|Q|, where
Q = (πD − πC)/∆ (see the Supplementary Equation (5) for the definition of ∆
in the general case and for explicit calculations). It is then possible to derive
the critical value of the parameter α as a function of the exponent β as:

αc(β) =
1∑g+

g=g−
pggβ−1

=
1

Kβ
, (3)
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where, for simplicity, we have defined Kβ ≡
∑g+
g=g−

pggβ−1. We remark here
that α = αc for a fixed value of β is the critical point separating the defection
and cooperation phases. This means that when α < αc the system will converge
to full defection, while for α > αc it will converge to full cooperation.

To explore how the dynamics evolves in order-heterogeneous random hy-
pergraphs, we have performed numerical simulations of the PGG considering
four different values of g = 2, 3, 4 and 5 and allowing the values of pg to take
only multiples of 0.25. This leads to 35 possible hypergraphs, one for each
of all conceivable convex sums of {p2, p3, p4, p5} with the previous constraints.
This means that the hypergraphs we consider are composed by hyperlinks of
different orders, where each order g takes Lpg hyperlinks out of the total num-
ber L. For instance, on a hypergraph with L = 100 and order probabilities
(0, 0.25, 0.25, 0.5), on average we would expect 25 hyperlinks of order g = 3,
another 25 of order g = 4 and the remaining 50 of order g = 5. Results are
reported in Fig. 4 for four different values of the power exponent β, namely,
β = 0, 1, 2, 3, shown with different colours. Notice that the case β = 1 corre-
sponds to the underlying linear assumption of the standard PGG: in this case,
α plays the role of the reduced synergy factor r. Panels a) through d) plot
the colour-coded fraction of cooperators as a function of the parameter α in
the definition of the synergy factor. The hypergraphs Hi have 〈k〉 = 2kc and
are displayed according to their value of Kβ , i.e., the value of the critical point
αc(β). As for the case of uniform random hypergraphs, we find that although
the critical point is slightly overestimated for low densities by the analytical ap-
proximation, there is still a good agreement between the theoretical predictions
of the well-mixed replicator approximation and the numerical simulations. We
next explore the behaviour of the relaxation time. Panels e) through h) show
results obtained for order-heterogeneous hypergraphs with 〈k〉 = 5kc. As it was
done for the homogeneous scenario, we follow the dynamics of the system up to
a maximum of T = 104 time steps. The plots show that the relaxation times
depend on α for all values of β 6= 1, albeit rather differently with respect to the
dependence of the critical value αc for β < 1 and β > 1. In order to further
explore this relationship, we analysed how the average relaxation time varies as
a function of the critical point αc. Results shown in panels i) to l) reveal that
the dependence is always linear. However, when the synergy factor increases su-
per linearly, there appear different curves, each one corresponding to a distinct
family of hypergraphs and characterised by a different linear relation between
the average relaxation time and the critical value. This behaviour introduces
an additional degree of freedom that can turn very useful, since the degeneracy
that is observed for β ≤ 1 is broken for β > 1, and therefore one can inde-
pendently set a critical point and a relaxation time by opportunely choosing
the corresponding hypergraph. We remind the reader that cases with β > 1
are those in which the synergy factor r(g) has a superlinear dependence on the
order g. Those values of β are a priori the most interesting ones to study, and
the ones more likely to be found in real situations. Therefore, our results about
the relaxation are particularly relevant, because in this case one can potentially
turn an unstable system into a stable one, and the opposite, by changing the
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order of the hyperlinks, while still respecting the value of the critical point.

a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure 4: Public Goods Game with higher-order interactions in order-
heterogeneous random hypergraphs: We assume that the synergy factor grows
according to Eq. (1) and consider the set of hypergraphs Hi that contain hy-
perlinks of orders g = {2, 3, 4, 5} with probabilities pg taking values in the set
{0, 0.25, 0.5, 0.75, 1} −there are 35 possible such hypergraphs. (a-d) Fraction
of cooperators as a function of α for each of the 35 hypergraphs Hi and sev-
eral values of β. The hypergraphs are ordered according to their value of Kβ .
Simulations have been carried out up to T = 104 time steps for hypergraphs
with 〈k〉 = 2kc, and triangles correspond to the theoretical predictions in the
replicator approximation (see the Supplementary Information for details). (e-h)
Relaxation time as a function of α for the set of hypergraphs Hi. Now hyper-
graphs have 〈k〉 = 5kc. (i-l) Predictions for the critical value αc as a function of
the average relaxation time, calculated for each hypergraph in Hi by averaging
over the intervals of α [0,8], [0,2], [0,1] and [0,0.5] for β = 0, 1, 2, 3 respectively.

Synergy factor of real games

From the previous results, a natural question arises: is it possible to determine
the value of the synergy factor for a real PGG for each of the possible group
sizes? A plausible answer to this question can be obtained under the assumption
that the very same structure of the hypergraph is the result of an evolutionary
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process in which nodes select the groups they belong to. We hypothesise that
each individual tries to optimise the ideal number of groups of each order, based
on the perceived dependence of the synergy factor on the group size. In this
way, each real-world hypergraph would be the optimal structure that supports
the game it hosts. We could then extract the functional form R(g) directly
from the hyperdegree distribution of the hypergraph. More precisely, the goal
would be to use the information in the vector p of the hypergraphs on which the
PGG occurs to determine the functional form, R(g), of the synergy factor by
imposing two conditions. The first condition comes from the assumption that
the unknown reduced synergy factor r(g) is proportional to pg. This originates
in the intuition that the distribution of the hyperdegree of a generic player
should be aligned with the potential benefit that each player expects to obtain
for each higher-order interaction. The second condition imposes that the average
payoff of cooperators is equal to the average payoff of defectors. This implies
that the system is at equilibrium and guarantees the coexistence of cooperators
and defectors. Thus, given that these two conditions are satisfied, it is possible
to extract the curves of r(g) and R(g) from empirical data on higher-order
interactions.
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Figure 5: Synergy factors of scientific collaborations: (a) Empirical synergy
factors extracted from the structure of hypergraphs describing co-authorships
from publications in the American Physical Society journals. Solid lines are fit
of the empirical dots according to Eq. (6). Different symbols and colours refer to
different journals, i.e. to different scientific communities. (b) Journal (labelled
from 1 to 13) position in the costs-benefits diagram. The synergy factors are
factorized as a function of two competing terms, one modeling the benefits of
cooperation, which is dominant for small group size, and another one accounting
for costs associated to an excessively large number of co-authors, which describes
for the exponential decays observed in the first two panels.

In order to show how the above-mentioned procedure works in practice in real
cases, we have studied collaboration in science and technology. We believe that
this could constitute an example in which the benefit of a group depends on its
size and at the same time, all group members do not contribute the same to the
collective task, which essentially leads to a PGG dynamics. Although there is
not a single way of classifying in a binary manner (either cooperator or defector)
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the authors of a scientific publication, one can think of two type of players
mimicking cooperators and defectors. A cooperator can be considered as anyone
that has contributed at least a “fair” amount of work. The reverse applies to
defectors, which can be considered those that put less effort in producing a
teamwork than the average or the “fair” amount of work. Note that whatever
the effort of the team members is, they all receive the same benefit, for instance,
in terms of citations (the citation is to the paper, not to the individual). Thus,
given that there are cooperators and defectors, what is the optimal collaboration
(group) size? And that of the synergy factor?

In particular, we have considered a large data set of all the scientific articles
published in the last century in thirteen journals of the American Physical
Society (APS). For each journal, we have constructed a hypergraph whose nodes
and hyperlinks represent respectively scientists and co-authored publications
(see the Supplementary Table 1 for further details). The reduced synergy factors
have then been obtained from information on the number of authors in each
publication (see Methods). From the plots of r(g) vs g reported in Fig.5a we
notice the existence of a maximum value of r at intermediate group orders
g. This indicates that there is an optimal trade-off between the positive and
negative effects of increasing the group size. The optimal value of g depends
on the specific scientific community, as it varies from journal to journal. In
the case of PhysRevLett the maximum of r(g) is located at g = 3. Different
journals are associated with other optimal collaboration sizes. For instance, for
PhysRevApplied r(g) is maximum at g = 5, indicating that larger collaborations
are more beneficial in applied topics, such as device physics, electronics and
industrial physics. For almost all journals, the synergy factor is low for g = 1,
showcasing the difficulty of publishing alone in physics, a research area where
teamwork has been becoming increasingly important in the last decades [58].
Interestingly, a paradigmatic case is the one of PhysRevSeriesI, the very first
journal published by the APS in the early 1900s, for which a sharp peak is
located at g = 1, showing how most publications where produced by single
scientists, in contrast with current trends. In order to shed light on this result
we have factorised the synergy factor as the product of an increasing function
of g times a decreasing function of g, and we have performed a numerical fit to
extract the benefit exponent β and the so-called cost parameter γ (see Methods).
This enables us to interpret the synergy factor as a combination of two contrary
effects of the higher-order interactions in this particular dataset.

Fig.5b reports the values of β and γ obtained for each journal of the APS, and
it allows us to classify the different scientific communities in terms of benefits
and costs of higher-order interactions. These results provide a game-theoretic in-
terpretation of the APS dataset. Specifically, in the context of this bibliographic
dataset, hidden benefits and costs that conform to the synergy factor can be
associated with several aspects of the task of producing a publication. Benefits
(an increase of the synergy factor with increasing g) would correspond to the
potential reinforcement of the amount and quality of the ideas and the potential
increase in the outreach of the work with the number of co-authors involved.
On the contrary, the costs (decrease with increasing g) would be the additional
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organisational effort in the process of arriving at a consensus and carrying out
the tasks for publishing a paper. Experimental communities, such as that of
nuclear physicists publishing in PhysRevC, tend to have low costs. These ideas
are aligned with recent studies about the creation and production of research
ideas [59] and the role, group dynamics and success of teams [53, 54, 55]. Our
formalism allows for a quantitative analysis of these phenomena and could be
used in future applications to design ways to foster higher-order cooperation.

Discussion

Summing up, we have introduced higher-order interactions in evolutionary games
to study cooperation in groups. Since higher-order interactions allow for a single
link to connect more than just two individuals, they are naturally suitable to
define groups in networks. In doing so, higher-order interactions thus do away
with the arbitrary definitions of groups in classical networks, and they provide
a formal theoretical foundation to study cooperation in networked groups. We
have shown that the public goods game on a hypergraph is effectively a null
model that agrees exactly with the replicator dynamics in the well-mixed limit
as long as no hyperdegree-hyperdegree correlations exist. As such, it can be
used in future research towards upgrades that add additional layers of reality in
models of human cooperation, either by means of strategic complexity [10], or
by means of more complex interaction networks [60].

Towards the latter effect, we have also studied the public goods game on
hyperdegree-heterogeneous and on order-heterogeneous hypergraphs, where we
study the effects of the presence of highly connected individuals and of hyper-
links of different orders respectively. Due to the exact definition of a group in
the proposed framework, we have been able to systematically and consistently
consider synergy factors that are dependent on group size. Indeed, the frame-
work allows us to unveil the effects of group size on cooperation in its most
general form. As an example, we have considered synergy factors that are given
by different powers of the group size, showing a critical scaling in the transition
from defection to cooperation. In this case too, we have observed a significant
agreement between the simulations and the analytical predictions of the model.
Interestingly, we found that hierarchically structured hypergraphs could hin-
der cooperation in a structured population. Our framework enables analysis
of real systems, as we have shown for the APS publications dataset, providing
insights regarding the positive and negative effects associated to higher-order
interactions and the nature of group dynamics. However, even if our framework
includes diverse forms of higher-order interactions, we recognize that a current
limitation of this representation of human interactions is given by the constraints
imposedby the available data. Admittedly, the identification of interactions in
social networks beyond the traditional pairwise relationships constitutes nowa-
days an important challenge. Interestingly enough, this also represents an op-
portunity from an experimental point of view. It is also worth mentioning that
the application of our results to scientific publications is based on the hypothesis
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that the interaction structure is the outcome of an optimization process, where
the average distribution of groups that each node is part of coincides with the
synergy factor, such that the system is in a stationary state of the dynamics
of the PGG. This hypothesis, which constitutes a limitation of our method to
extract synergy factors from real data, could potentially be either validated or
refuted by models considering the dynamics within the topology of interactions
on top of the PGG. Moreover, the PGG imposes all cooperators to contribute
with the same amount, making this contribution a boolean variable in practice.
And therefore, an additional limitation arises when adapting real systems to the
rigid formalization of the PGG, as the role of cooperators and defectors cannot
be unequivocally defined when the contributions are not only 0 or 1.

It is also worth mentioning that in his essay titled Innate Social Aptitudes
of Man, W. D. Hamilton wrote, “There may be reasons to be glad that human
life is a many-person game and not just a disjointed collection of two-person
games”. He was referring to the fact that social enforcement works better in
groups with more than two members, which can offer at least a partial cure
for the problems with reciprocation in larger groups [38]. We note that the
theoretical framework of higher-order interactions also invites to re-examine
other fundamental mechanisms that may promote cooperation, such as image
scoring [39, 40, 41], rewarding [61], and punishment [62, 63, 64, 65].

Given the fundamental differences between pairwise and higher-order in-
teractions, it would also be of interest to revisit the role of specific network
properties and their role in the evolution of cooperation. In this regard, the
role of community structure [21], as well as two or more network layers [22, 23,
24, 25, 26, 27, 28, 29], promise to be fruitful ground for future explorations on
how interaction structure impacts cooperation. Overall, we believe that the in-
troduction of higher-order interactions to evolutionary games has the potential
to improve our understanding of the evolution of cooperation and other social
processes in networks.

Methods

Uniform random hypergraphs (URH): We detail here the procedure we
have adopted to sample g-uniform hypergraphs, i.e. hypergraphs with all hy-
perlinks of the same order g. A URH of order g can be constructed by assigning
a uniform probability p to each g-tuple of N . For each of them, a random num-
ber in the [0, 1) interval is generated, and if this number is lower than p, the
hyperlink containing the g-tuple is created. However, this method scales badly
with g since the number of g-tuples to be considered is equal to the binomial
coefficient CNg =

(
N
g

)
, which grows fast as a function of g. A more efficient

procedure is to fix the total number of hyperlinks, L, and generate a random
integer in the [1, CNg ] interval. One has to provide an ordering for the set of
all possible hyperlinks, so that each of the random integers corresponds to a
hyperlink. The hyperlinks selected through this process are then added to the
hypergraph. The hyperlink ordering is based on the following combinatorial
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identity

CNg =

N−(g−1)∑
i=1

CN−ig−1

that allows us to partition set L of all the possible hyperlinks of a g-uniform hy-
pergraph in terms of disjoint hypergraphs, each one of them containing the
hyperlinks that form the corresponding g-star hypergraph [66]. This holds
true in general, which enables us to apply the same argument recursively,
such that we can order all the possible hyperlinks univocally, and even more,
the probability for having a specific node in a hyperlink is equal for all the

nodes. These properties arise from the combinatorial probabilities di =
CN−i

g−1

CN
g

for i = 1, . . . N − (g − 1) i.e. the normalised weights of each of the terms in the
summation. We have empirically found a distribution that can be used as an
approximation to ci =

∑i
j=1 dj , the cumulative distribution of di, namely given

by 1− (1−x)g, where x = i/(N − (g− 1)). See the Supplementary Figure 2 for
a numerical proof of the convergence between both expressions.

For the purpose of studying the stationary condition of a game, we are
interested in having a connected hypergraph. The critical thresholds for the
number of hyperlinks, Lc, and the hyperdegree, kc, are equal to Lc = N lnN/g
and kc = lnN . Hence, when L is larger than Lc, there is a high probability that
the resultant hypergraph is connected.

Power random hypergraphs (PRH): We have seen that using the combi-
natorial probabilities di allows us to create uniform random hypergraphs. There-
fore, increasing the value of the exponent g to g′ in ci, such that g′ > g, will
increase the probability of sampling the hyperlinks belonging to the g-star hy-
pergraphs of low index nodes, and therefore introduce heterogeneities in the
degree distribution. The control parameter that we use in the simulations in
the manuscript is µ ∈ [0, 1]. In terms of µ, one can obtain the power to use in
the cumulative distribution g′ as g′ = (1 + µ)g. In order to sample hyperlinks
of order g according to the new distribution, we transform the random number
r to a different random r′

r′ = ci−1(0) + [r − ci−1(µ)]
di(0)

di(µ)
(4)

Here i is the g-star to which the hyperlink would belong if it was sampled
according to r. In this expression di(µ) and ci(µ) account for the distributions
using the value of g′ as a function of µ. Accordingly, di(0) and ci(0) are simply
the distributions of the uniform case. See the Supplementary Figure 3 for the
analysis of degree distribution emerging from the PRH.

Scale-free random hypergraphs (SRH): The standard indicator of het-
erogeneity in graphs is the power-law decay of the degree distribution. Here we
employ the static scale-free algorithm [67] to generate such a profile. We use the
same control parameter as in the PRH, µ ∈ [0, 1], which in this case results in a
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power-law pk ∼ k−λ where the power λ is λ = 1 + 1/µ. See the Supplementary
Figure 3 for the degree distribution of the hypergraphs generated with the SRH.

Extracting synergy factors from real data: We show here how the depen-
dence of the reduced synergy factor r(g) on group size g can be derived for real
systems, based on the assumption that this information is encoded in the very
same structure of a hypergraph. In particular, we have considered a data set
of scientific publications and we have used it to investigate how benefits change
with the size of groups in scientific collaborations. The data set consists of
577886 papers published in the period from 1904 to 2015 in the collection of all
the journals of the American Physical Society (APS) [68]. We have constructed
the 13 hypergraphs corresponding to different journals, such as Physical Review,
Physical Review Letters, etc. of the APS. The nodes and hyperlinks of these
hypergraphs represent scientists and publications respectively. The order of a
hyperlink is equal to the number of authors of the corresponding publication.
For each hypergraph, we have extracted the number Lg of hyperlinks of a given
order g, which we used to compute the average number kg = gLg/N of hyper-
links of order g a node is involved in. The reduced synergy factor r(g) can then
be extracted from the proportion pg = kg/k of hyperlinks of order g of a node,
by assuming that r(g) = cpg and using the critical point relation:

g=g+∑
g=g−

pg(1− r(g)) = 0 (5)

to calculate the proportionality constant c.

Cost-benefit factorisation of the synergy factor: In scientific collabora-
tions across all journals of the APS, an optimal team size is associated with a
maximum in the synergy factor, suggesting that an excessively large number
of co-authors might lead to disadvantages in cooperation. In order to account
for these effects, we have modelled the synergy factor extracted from real-world
collaboration data as the following function of g:

f(g, α, β, γ) = αgβe−γ(g−1). (6)

ruled by the three parameters, α, β and γ. The first parameter, α, introduced
in Eq. (1), is determined by the critical point condition. The remaining two
parameters account respectively for the benefits and costs of the higher-order
interactions. Benefits are modelled as a power-law of the group size g with an
exponent β. Costs are described by an exponential decrease in the group size
tuned by the cost parameter γ. Different functions of g might also provide a
satisfactory fit of the data. Here we have opted for this expression because it
enables to factorize the group size dependence into two different contributions,
benefits and costs, that can be interpreted in terms of behaviors of the players.
The benefits grow as gβ , where β captures the synergistic effect of group inter-
actions. The term due to the cost associated to task organization in groups has
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its maximum at g = 1, and the exponential dependence has been adopted to
avoid possible singularities of other functional forms at g = 1. In conclusion,
Eq. (6) has a maximum at g = β/γ, which summarizes the result in a com-
pressed expression. To extract the pair of parameters (β, γ) for each journal,
we have explored the parameter space and performed an optimisation in order
to reproduce the empirical points correctly. For each considered pair (β, γ), we
have computed the normalised distance between the synergy factor inferred an-
alytically and the one associated to the data (see the Supplementary Equation
(7) for further details on the procedure). The pairs with the smallest distance
are selected as the outcome of the optimisation process and are those reported
in Fig.5c.
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