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Abbreviations 

GI = gastrointestinal, HRM = high resolution manometry, MRI = magnetic resonance imaging, MTS-1 = 

motility tracking system-1, 3D-Transit = Motilis 3D-Transit system, ROM = radio-opaque markers, WMC = 

wireless motility capsule, DM-1 = type 1 diabetes mellitus 

 

Abstract 
Objective: Capsule-based methods for assessment of gastrointestinal (GI) motility have seen great 

improvements in recent decades. The most recent development is the electromagnetic Motilis 3D-Transit 

system (3D-Transit). The aim of this paper is to review and discuss the development and technical 

properties of magnetic tracking of GI motility. 

Approach: We performed a comprehensive literature review on magnetic tracking in GI research. 

Main results: The Motility Tracking System was the first capsule based magnetic system to be used in GI 

motility research. However, the potential of the system was hampered by its stationary and hospitalizing 

nature. This led to the development of the electromagnetic Motilis 3D-Transit system. The 3D-Transit 

system is a portable system that allows for assessment of both whole gut and regional transit times and 

contraction patterns in a fully ambulatory setting in the patients’ home environment with only minor 

restrictions on movements. The spatiotemporal resolution of 3D-Transit allows assessment of segmental 

colonic transit times and permits an analysis of gastric and colonic movements with a degree of detail 

unrivalled by other ambulatory methods, such as the Wireless Motility Capsule. Recently, robust normative 

data on 3D-Transit have been published. 

Significance: This review provides a current perspective on the use of capsule-based magnetic tracking 

systems in GI research and how they represent a potentially valuable clinical resource for GI physicians and 

in GI research.  
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Introduction 
Gastrointestinal (GI) motility is a product of numerous and sophisticated autonomic functions. These 

include hormonal, muscular, and myoelectrical mechanisms. The interstitial cells of Cajal are responsible 

for the phasic contractile activity of the GI tract, by spontaneous generation of slow waves that spread 

throughout the smooth muscle cells of GI wall [1]. Disorders of GI motility, such as gastroparesis, 

constipation, and the irritable bowel syndrome occur when these critical controlling mechanisms of GI 

motility may not function properly. They affect up to one-third of the general population, and constitute a 

significant healthcare and socioeconomic burden and cause substantial decrease in quality of life of those 

affected [2-4]. GI dysmotility manifests as abdominal pain, nausea, bloating, vomiting, diarrhea, as well as 

infrequent and incomplete rectal evacuation [5, 6]. Such symptoms are often associated with delayed or 

accelerated GI transit or uncoordinated peristaltic activity in one or more segments of the GI tract [7, 8].  

Motility assessment of the gut is usually performed either by measuring transit times (indices of 

content flow in the GI tract) or pressure amplitudes and frequencies (indices of GI contractions) [9]. 

Myoelectrical activity of the GI tract can be measured non-invasively using dense arrays of electrodes like 

the electrogastrography method for gastric evaluation and high-resolution electrical mapping for the 

remaining GI tract [10, 11]. 

Established and emerging methods for evaluation of GI motility are listed in Table 1. Principal methods 

for the evaluation of motility in the stomach and duodenum are primarily scintigraphic gastric emptying 

(GE), antroduodenal manometry, and the wireless motility capsule (WMC; SmartPill™, Medtronic, MN, 

USA) [12, 13]. Principal methods for evaluation of motility in the small intestine and/or colon include 

antropyloroduodenojunal manometry, hydrogen breath tests, radio-opaque markers (ROM), colonic 

scintigraphy and colonic manometry [14-18]. All these methods are well established in clinical practice, but 

all have their recognized limitations (Table 1). For example, the ROM method for assessing whole gut 

transit lacks standardization, depends on the compliance of the patient, and exposes the subject under 

study to ionizing radiation. Moreover, it only gives a rough temporal estimate of the transit time through 

the intestines [19]. Hydrogen breath tests are subject to several sources of error, as small bowel bacterial 

overgrowth is associated with motility abnormalities and lactulose markedly accelerates transit of the small 

intestine [9, 20]. Scintigraphy is expensive, time-consuming, involves exposure to radiation, and is 

restricted to specialized centers [21]. More importantly, these methods only provide snapshots of GI transit 

rather than single continuous measurements [9]. High resolution manometry (HRM) provides continuous 

recording of GI pressure waves within a specific region of the GI tract, usually the esophagus, 

antroduodenal region, or the distal colon and rectum. HRM, however, is invasive, time-consuming, and 

require specialized centers because of high technical requirements [9].  
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Magnetic resonance imaging (MRI) is an emerging technique for assessment of small intestinal [22] and 

colonic [23] contractions as well as orocecal and whole-gut transit times [24]. Unfortunately, MRI is costly 

and does not allow for ambulatory evaluation.  

The purpose of this topical review is to outline the current use of magnetic tracking in GI research. 

Accordingly, we conducted a comprehensive search (March 1st 2020) in PubMed for the years 1980–2020 

using the following search terms: ‘‘gastrointestinal motility method”, “3D transit”, “magnetic tracking”, and 

“motility tracking system”. Only papers written in English were included. Reference lists in the papers were 

read for any missed papers in the search.  

 

–– Table 1 near here ––  

 

Historical perspective of magnetic tracking in gastrointestinal motility 
research 
Early studies from the 1990’s have used magnetic markers as a non-invasive tool for tracking of movements 

within the GI tract. Weitschies et al. used the seven channel DC superconducting quantum interference 

device (Biomagnetic Technologies Inc., San Diego, USA), which consisted of multiple highly sensitive 

magnetic sensors. The system used magnetically marked pellets enclosed in a cylindrical silicone capsule. 

The device proved itself accurate, but required a shielded environment and was heavily expensive [25, 26].  

The MTS-1 was first described in 2005 by Stathopoulos et al., who demonstrated it possible to obtain a 

3D configuration of the gut and dynamics of the magnet displacement (velocity, transit time, length 

estimation, rhythms) [27]. Hence, the MTS-1 was a promising tool in gastroenterological research. 

However, it was severely limited by its stationary nature that confined the subject to stay still in a specially 

designed bed during the entire investigation. 

This led to the development of an ambulatory system, 3D-Transit. Though sharing many principal 

characteristics with MTS-1, 3D-Transit is fundamentally different as it replaces the permanent magnet in 

the capsule with an electromagnetic transmitter system. 3D-Transit was first described in 2014 by Haase et 

al., who proved the system feasible in healthy subjects and correlating well with whole gut transit times 

assessed by ROM [28]. 

 

Capsule-based technologies for assessment of gastrointestinal motility 
Over recent decades, there has been a growing interest in capsule-based technologies providing 

information on whole-gut and regional GI transit times through the tracking of one or more capsules during 
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their passage through the GI tract. Such methods may be useful in clinical settings for diagnostic evaluation 

and management of unexplained GI symptoms or when a generalized or multiregional motility disorder is 

suspected. Furthermore, they can provide valuable insights into normal and pathological GI physiology [7].  

The WMC system is the most used and currently the only commercial available capsule-based system 

for evaluation of GI motility [29]. It features an ingestible capsule that measures pressure, pH, and 

temperature as it passes through gut. The WMC system is considered the method of choice in situations 

where multiregional or whole gut motility disorders are suspected as it allows for ambulatory assessment 

of gastric emptying, small intestinal transit time, colorectal transit time, and whole gut transit time [30-33]. 

The location of the WMC is primarily determined by stereotypical changes in pH at the pylorus and 

ileocecal junctions as well as temperature change (drop on expulsion from the body). This enables an 

assessment of regional gut function (stomach, small bowel, large bowel), but more precise measurement is 

limited as the capsule location within each GI region is unknown at any time point. Accordingly, detailed 

information on segmental colonic transit is, for example, not available [29, 34].  

The PillCam (Pillcam SB video capsule; Given Imaging, Yokneam, Israel) is an endoscopic capsule 

system, normally used to diagnose intraluminal epithelial diseases in the small bowel. By means of a 

computerized endoluminal image analysis of the small bowel, the system allows for detection of wall 

dynamics and movement of content, and thus provides a noninvasive, simple procedure for automatic 

identification of intestinal motor dysfunction. Accordingly, the system can automatically discriminate 

between hypodynamic and hyperdynamic motor disorders, displaying a higher sensitivity than manometry 

[35-37]. However, the system is currently restricted to research and does not provide any data on GI 

transit, as with manometry. 

The original motility tracking system-1 (MTS-1, MTS Record, Motilis, Lausanne, Switzerland) was 

developed to allow for detailed spatiotemporal tracking during passage through the GI tract. It consists of a 

small magnet (Ø 6 x 15 mm, weight 0.9 g) which is continuously tracked by a stationary detector [27]. The 

system has been validated and used in several studies to assess GI motility in patients with liver cirrhosis 

and portal hypertension, cystic fibrosis, neuroendocrine tumors, spinal cord injuries, and systemic sclerosis 

[38-42]. The major shortcoming of the method is its non-ambulatory nature, requiring the subject under 

study to be immobile during recordings. The system was last used in a clinical study in 2014 [43] and has 

been replaced by the newer 3D-transit system (3D-Transit, Motilis Medica SA, Lausanne, Switzerland). 

3D-Transit is a completely ambulatory, non-invasive tool to assess both whole-gut and regional transit 

times as well as movement patterns within the GI tract. Using a body-worn detection matrix, the system 

simultaneously tracks the precise position and general orientation of up to three electromagnetic capsules 

Page 5 of 28 AUTHOR SUBMITTED MANUSCRIPT - PMEA-103827.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 6 

from ingestion to expulsion. Given its ambulatory nature and the electromagnetic technology, it is possible 

to perform the examination in the home environment, under near-normal physiological conditions [28].  

 

General principles of MTS-1 and 3D-Transit 
During recording, an iterative algorithm in the software converts the electromagnetic field into five 

spatiotemporal coordinates displayed on the computer: three position coordinates (x, y, z) and two angle 

coordinates (q, j) (Figure 1B). The x, y, and z represent the three-dimensional spatial position, thus being a 

reflection of GI transit time between two anatomical positions. The q and j represent orientation 

coordinates with respect to the four sensors in the detector, thus being a surrogate measure of contraction 

frequency. Using the dedicated software, all movements of each capsule are converted into detailed scalar 

and vectoral representations. Velocity of movements and orientation of the capsules reflect progression 

dynamics of the luminal content in the GI tract. Changes in position angles reflect contractile activity in the 

GI tract [27, 44, 45].  

Assessment of regional gastrointestinal motility requires easy interpretation of specific anatomical 

landmarks. Hence, four landmarks must be recognized: 1) ingestion, 2) pyloric passage, 3) ileocecal 

passage, and 4) the exit of the capsule. Recognition is carried out by examination of the 2D-plot alongside 

detection of changes in contraction frequencies (Figure 1B). 

Whole gut transit time is defined as the time between capsule ingestion and it being expelled from the 

body. The latter is confirmed by a centered vertical drop followed by a signal loss from the capsule. The 

signal loss is due to the capsule having exited the body and thus exceeding the maximum distance to the 

detector required for connection. This corresponds with time of a bowel movement noted in a diary kept 

by the subject under study. Gastric emptying time is defined as the time from ingestion of the capsule until 

pyloric passage. Small intestinal transit time is defined as time from the pyloric passage until ileocecal 

passage.  

Pyloric passage is characterized by cessation of the 3 min-1 contraction frequency typical for the 

stomach [46], the appearance of the duodenal arch, and the beginning of 8-11 contractions min-1 typical for 

the proximal small intestine [47]. Similarly, ileocecal passage is characterized by change from a 6 min-1 

contraction frequency typical for the distal ileum to a 3 min-1 typical for the colon [48, 49], and the 

occurrence of a short fast movement in the lower right quadrant [45].  

Contractility patterns in the stomach are analyzed with specialized Motilis software (MTS Tool, Motilis, 

Lausanne, Switzerland). Mean contraction frequencies in the stomach can be calculated using the rotations 

of the capsule. Frequency peaks are identified using a convolution of the fast Fourier transforms with the 

“shape of a peak” described by a Gaussian function is applied. To avoid a Doppler effect whereby 
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contraction frequencies intensify due to higher velocities of the magnet, only frequencies obtained during 

stagnation of the magnet are used [45]. 

Data are analyzed on a computer running customized software (MTS Record, Motilis, Lausanne, 

Switzerland) showing a real-time position and orientation of the magnetic capsule. Both systems 

accommodate for artifacts introduced by respiration and movements by use of accelerometers and 

respiratory belts. These measures are subsequently filtered out during the post-processing of the data [27, 

44, 45]. It should be noticed that both the recording and analysis methods of 3D-Transit are still under 

development and there are progressive improvements underway regarding both software and hardware. 

 

–– Figure 1 near here ––  

 

Motility Tracking System 1 (MTS-1) 
Technical properties of MTS-1 
MTS-1 consisted of a magnetic capsule, a detection matrix, and dedicated computer software. The capsule 

measured Ø 6 x 15 mm, weighed 0.9 g and contained a permanent cylindrical magnet with a composite 

density of 1.8 g cm–3. The detection matrix consisted of 4 x 4 magnetic field sensors separated by 5 cm and 

placed in front of the abdomen with the umbilicus as an anatomical landmark. The system was stationary 

and thus confined the subject under study to stay in a specially designed wooden bed during investigations. 

Before starting measurements, the matrix was calibrated by off-setting the earth’s magnetic field [45].  

 

Use of MTS-1 in research 
The use of MTS-1 was identified in 11 studies over an 9-year period (2005–2014) as listed in Table 2. The 

first clinical study was carried out in 2009 by Hiroz et al., who used the system to track colonic motility in 

healthy subjects [44]. A validation of pyloric and ileocecal passage was later carried out in 2011 by gluing 

the magnet to a PillCam (PillCam, Given, Yoqnaem, Israel). This showed that the MTS-1 was a reliable and 

precise tool to determine pyloric and ileocecal passages. Furthermore, mean contraction frequencies of 

2.85 (± SD 0.29) min-1 in the stomach and 9.90 (± SD 0.14) min-1 in the small intestine corresponded well to 

those published with other methods [45].  

Worsøe et al. used the MTS-1 to examine potential effects of sacral nerve stimulation on gastric and 

small intestinal motility in patients with fecal incontinence [50]. The study followed a randomized double-

blind crossover design with patients being assigned to either a week with or without sacral nerve 

stimulation, followed by an investigation with MTS-1. This led to the finding that turning off sacral nerve 

stimulation does not have any measured effects on gastric or small intestinal motility patterns. Using a 
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similar crossover design in patients with irritable bowel syndrome, Fassov et al. also found no effects of 

sacral nerve stimulation on gastric emptying and small intestinal transit time [43].  

Fynne et al. used MTS-1 to determine orocecal transit time and gastric emptying in patients with 

neurogenic bowel problems due to spinal cord injury [40]. Importantly, patients had a significantly 

prolonged upper GI transit time, whatever the spinal cord injury being high or low (p < 0.01). Hedsund et al. 

described GI motility in patients with cystic fibrosis. Contraction frequencies of the stomach and small 

intestine were normal, but the magnet reached the cecum after 7 hours in only 20% of patients as 

compared to 88% of controls [41]. This can be explained by the distal obstruction syndrome, with stasis in 

the distal small intestine due to excessively low viscosity of mucus in cystic fibrosis [41].  

Karlsen et al. examined patients with moderately severe liver cirrhosis and portal hypertension [38]. 

Previous studies in these patients had used ROM or lactulose breath tests, the latter which is limited to 

investigation of orocecal transit times. The use of MTS-1 thus permitted the authors to distinguish between 

gastric emptying and small intestinal transit time, detecting no difference in gastric emptying, but 

surprisingly a significantly faster transit through the proximal small intestine in cirrhotic patients than in 

healthy controls [38]. In another study with MTS-1, Gregersen et al. found similar faster transit times of the 

small intestine in patients with neuroendocrine tumors [39]. Contrary to these findings, Fynne et al. found 

patients with systemic sclerosis (SSc) to have a significantly reduced transit time through the proximal small 

intestine [42]. 

Clinicians in pediatric gastroenterology face diagnostic difficulties as conventional methods like ROM, 

scintigraphy, and PillCam™ involve radiation or the discomfort of swallowing a large pill (11 x 26 mm). 

Therefore, Hedsund et al. trialed the used of the smaller MTS-1 capsule (6 x 15 mm) in healthy children 

aged 7-12. Despite having the inherent restriction of being non-ambulatory, the MTS-1 allowed minimally 

invasive evaluation of GI motility in children [51]. 

 

–– Table 2 near here ––  

 

3D-Transit electromagnetic capsule system (3D-Transit) 
Technical properties of 3D-Transit  
3D-Transit consists of a wireless electronic capsule for ingestion, an extracorporeal portable detector 

containing four sensors, and a computer with display and analysis software (Figure 1). The capsule emits a 

magnetic field modulated at a given low frequency, which allows to filter out the earth’s magnetic field and 

background noise from the surroundings. This feature enables 3D-Transit to be a portable system assessing 
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both whole gut and regional transit times and contraction patterns in a fully ambulatory setting in the 

patients’ home environment with only minor restrictions on movements.  

Each capsule measures 21.5 mm x 8.3 mm with a density of 1.6 g/cm2. Capsules emit a signal with a 

sampling rate of 10 Hz or 5 Hz. Recording at 10 Hz will in theory make it easier to distinguish capsule 

movement from signal noise. However, all “real” movements are easily shown even at 5 Hz, which is more 

than enough to calculate movement velocity and movement distances. The lifetime of the battery within 

the capsule is approximately 48 hours with a sampling rate at 10 Hz. Adjusting the sampling rate to 5 Hz will 

double the lifetime of the battery to approximately 96 hours. The increased recording duration at 5 Hz 

outweighs the potential lower signal/noise-ratio when studying subjects with suspected long GI transit 

times, e.g. patients with constipation. Most of the studies using 3D-Transit have recorded with a sampling 

rate of 5 Hz. 

Capsules are synchronized, hence they have no interference with each other. This enables the system 

to simultaneously record up to three capsules without any interference impediments, even if residing in the 

same part of the GI tract [28]. By the use of wireless Bluetooth communication, the movements and 

changes in orientation can be monitored in real time on a computer while also being stored on a memory 

card within the detector. At the end of the investigation, data are downloaded to the computer. These are 

then analyzed and used to determine total and regional gastrointestinal transit times and contractile 

patterns by the use of dedicated software (3D-Transit, Motilis, Lausanne, Switzerland). 

The detector has an inbuilt accelerometer for identification of posture changes and body movement 

artifacts. Likewise, a thoracic belt registers breathing movements. This is particularly convenient during 

analysis of data from the small intestine where slow wave contractile frequency (9 min-1) is close to 

breathing frequency. Both are also stored on the memory card and can be monitored in real time. 

Due to electromagnetic noise from the surrounding environment possibly affecting the wireless 

connection between the capsule and the detector, the minimal distance allowable from external electronic 

devices (e.g. old computers with spinning magnetic hard drives) is approximately 40 cm. There are no 

restrictions regarding cell phones or tablets as these do not interfere with the connection. To gain reliable 

data, the detector should be worn continuously throughout the study and only be removed briefly, e.g. 

when a shower is needed [28].  

 

Data analysis of 3D-Transit  
The 3D-Transit software contains an overview function which depicts the full recording with shifts in 

contraction frequencies plotted against time (time-frequency plot), thus aiding the analysis (Figure 1A). A 

recent refinement of 3D-Transit data analysis now enables a much more detailed computation of transit 
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times through four segments of the colorectum. This is done by assessing six distinct anatomical landmarks 

in the colon: (i) start of the colon, (ii) hepatic flexure, (iii) midpoint of the transverse segment, (iv) splenic 

flexure, (v) end of the descending colon, and (vi) end of the rectum. The 3-dimensional position data can be 

visualized after down sampling the data from 5-10 datapoints per second using an algorithm that plots data 

points when the capsule moves 5 mm within a 3 minutes period (see Figure 2B). Due to the threshold set by 

the 5 mm distance, the plotting algorithm enables visualization of time points of slow movement and fast 

movement without showing much non-movement data. 

This enables investigators to define transit through six colonic segments: 1) Caecum/ascending colon, 

2) transverse colon, 3) descending colon, 4) rectosigmoid colon, 5) total right colon, and 6) total left colon 

(see Figure 2) [52]. Further, because 3D-Transit allows for highly detailed tracking of the capsules through 

the entire colon, the system can detect capsule movements that through post-processing can be classified 

according to movement length, velocity, and direction [53]. The capsule movement through the colon was 

analyzed using an estimated ‘centerline’ of capsule progression on to which all capsule position data points 

were projected [54]. Antegrade and retrograde activity was then analyzed and classified according to 

thresholds proposed by Hiroz et al. and from analysis of the data distribution of capsule velocity and 

displacement length in recordings of healthy volunteers [44]. Colonic motility was classified as five specific 

movement patterns (see Table 3) [53].  

No data has been reported on the time-consuming aspect of data analysis. However, from our 

group’s experience, analysis of regional transit times takes approx. 30 minutes while segmental colonic 

transit times requires approximately 2 hours.  

 

–– Table 3 near here –– 

 

–– Figure 2 near here –– 

 

Use of 3D-Transit in research 
Fifteen studies were identified using the 3D-Transit over a six-year period (2014–2020), as listed in Table 5. 

In healthy volunteer studies, use of the 3D-Transit capsule has provided normative values for region-

specific gastric, small intestinal, and segmental colonic GI transit times [52, 55]. In volunteer and patient 

studies, the system has provided detailed information on colonic motility not available by any other 

ambulatory method [53, 56-58]. In clinical studies, the 3D-Transit system has been used to investigate 

transit times and movement patterns in patient groups including those with severe ulcerative colitis, 

Parkinson’s disease, idiopathic gastroparesis, diabetes mellitus, and carcinoid diarrhea [55, 57, 59-61]. 
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Further, the system has shown itself valuable to evaluate the effects of different medications on the GI 

tract [56, 58, 62-64]. 

 

–– Table 5 near here ––  

 
Normative values 

Based on recordings from 132 healthy subjects, Sutter et al. established normative data for gastric motility 

assessed with 3D-Transit [55]. The median gastric emptying time (GET) was 2.7 hours, reproducing previous 

results found with WMC (3.2 hours) [65]. Gastric contractions were detectable for a median of 92% of the 

time. Their median frequency was 3.1 min-1 which corresponds very well to those described by 

electrogastrography and antroduodenal manometry [66]. A representative examination of capsule 

progression through the stomach is shown in Figure 3. 

 

–– Figure 3 near here –– 

 

Haase et al. assessed GI motility during sleep monitored by polysomnography and found that the amplitude 

of gastric contractions decreased with the depth of sleep (light sleep versus deep sleep). Moreover, basal 

colonic activity decreased significantly across sleep stages and was significantly less during deep sleep and 

light sleep compared with wake periods [58].  

In 2019, Nandhra et al. used 3D-Transit to establish normative values for total and region-specific GI 

and segmental colonic transit times [52]. Recordings were pooled from nine previously published clinical 

studies carried out between 2012 and 2017, totaling 111 healthy adults [28, 53, 59-61, 63, 64, 67, 68]. They 

found median transit times as presented in Table 4.  

These correlate well with those found by Wang et al. using WMC [65]. Nandhra et al. also analyzed 

for influence of gender, age, and BMI. Increasing age was significantly associated with longer colonic transit 

time and whole gut transit time while increasing BMI was associated with longer whole gut transit time 

[52]. Female gender was associated with longer transverse and descending colonic transit time but shorter 

rectosigmoid colonic transit time. The authors found good to excellent inter- and intra-rater reliability of 

the segmental colonic transit times [52]. 

Whole gut and colorectal transit times were found to cluster in groups separated by approximately 

24 hours. Notably, most capsules (38%) were expelled between 06:00 and 08:00, regardless of the group. 

Furthermore, capsules ingested in the evening trended towards a longer colorectal transit time than 

capsules ingested in the morning [28, 53]. This reflects that whole gut transit time (and colonic transit time) 
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is dependent on morning defecation habits as commonly seen in healthy individuals [65]. It also supports 

the knowledge of the non-continuous nature of GI transit [52]. Additionally, Kalsi et al. demonstrated that 

inter-rater and intra-rater reliability was high to excellent when performed by experienced raters whereas 

inexperienced raters had low to fair reliability [69]. This emphasizes that differences in transit times are 

caused by biological variations rather than methodological issues and that raters must be adequately 

trained. 

In the recent years, there has been an improvement in the 3D-Transit software algorithm, based on 

the analytical software for the stationary MTS-1. Besides detailed segmental colonic transit times, the 

software now enables detailed analyses of colonic movement patterns [44, 53]. Hence, Mark et al. 

reanalyzed recordings on healthy subjects from three previous studies and published their results in a 

comprehensive series of papers on colonic motility [28, 44, 53, 59, 64]. They found that capsule movement 

velocities varied greatly, ranging from 180 cm min-1 (antegrade displacement) to -180 cm min-1 (retrograde 

displacement), and peaked in three groups: fast antegrade (50 cm min-1), slow antegrade (0.5 cm min-1), 

and slow retrograde (-0.5 cm min-1). Moreover, Interestingly, recordings with comparable colorectal transit 

times could represent highly variable types of capsule progression through the various segments (Figure 4) 

[53]. 

A recent cine-MRI study also reported quantitative data of antegrade and retrograde contraction 

velocities, although they observed more retrograde activity using their novel imaging approach [70].  

 

–– Figure near 4 here –– 

 

3D-Transit studies in patients 

Gregersen et al. were the first to use 3D-Transit  in a group of patients suffering from bowel dysmotility 

[59]. In patients with carcinoid diarrhea due to neuroendocrine tumors, the authors found the median 

whole gut transit time to be about 50% that of healthy subjects while small intestinal transit time was 

86.4% of normal and median colonic transit time only 29% of normal. Corresponding to this, patients with 

carcinoid diarrhea had significantly more long fast antegrade colonic movements and their antegrade 

colonic movements covered twice the distance observed among healthy subjects [53, 59].  

In patients with diarrhea caused by severe ulcerative colitis, Haase et al. surprisingly found a 

prolonged median whole gut transit time of 44.5 hours compared to 27.6 hours in healthy subjects [60]. 

This was mainly due to extended transit through the right side of the colon. Likewise, there was a strong 

trend towards a prolonged transit in the small intestine. The conclusion drawn from this study was that 

severe inflammation of the distal colon inhibits motility in more proximal segments of the gut [60]. 
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Klinge et al. investigated patients with type 1 diabetes mellitus (DM-1) and symptoms of enteric 

neuropathy [57]. They found the median whole gut transit time to be more than twice longer in patients 

with DM-1 (72.3 hours) as compared to healthy controls (28.9 hours). Total colonic transit time was 

increased by 235%, mainly due to prolongations of transit through the right colon. This was mainly caused 

by an increased number of slow retrograde movements observed in the colon of patients [57]. 

In patients with Parkinson’s disease, Knudsen et al. found prolonged transit time of the proximal 

colon, allied to a reduction in fast antegrade movements. Patients also displayed significantly longer small 

intestinal transit times, while no difference was seen in gastric emptying time [61].  

 

3D-Transit in pharmacological studies 

A common side-effect of opioid use is constipation. Four studies have assessed gastrointestinal aspects of 

opioid treatment in healthy volunteers using 3D-Transit [56, 62-64]. 

Poulsen et al. compared the impact of opioids on regional GI transit in a double-blind, crossover trial 

with healthy subjects assigned to either oxycodone or placebo for five days. They found significantly 

prolonged cecum-ascending, rectosigmoid, and total colonic transit times [64]. Mark et al. subsequently 

found a significant reduction in long fast antegrade movements and an increase in slow antegrade 

movements in the oxycodone group. Finally, the oxycodone group had a significantly decreased capsule 

movement velocity compared with the placebo group [56].  

Olesen et al. examined the alleviating effects of the peripherally-acting opioid antagonist naloxegol 

on oxycodone-induced constipation [62]. Naloxegol significantly reduced colonic transit time by 23% 

compared to placebo. Of segmental colonic transit times, only rectosigmoid colonic transit time was 

significantly reduced compared to placebo [62]. Like the study by Poulsen et al., data were further 

processed, and it was found that naloxegol decreased the number of slow antegrade movements. Fast 

antegrade movements were also of a longer distance in the naloxegol group than in the placebo group [56]. 

Mark et al. suggests that increased transit times during opioid treatment can be attributed to a 

decrease in long fast movements, despite an increase in the number of slow antegrade movements [56] 

Finally, Poulsen et al. compared the effects of slow-release naloxone and the osmotically acting 

laxative macrogol 3350 (both administered with slow-release oxycodone to induce bowel dysfunction) in a 

randomized, double-blind, crossover trial. Both drugs seem to have comparable effects on GI transit as no 

difference was found in regional GI transit times nor segmental colonic transit times [63]. 

The 3D-Transit motility measurements have been shown to detect motility disturbances induced by 

pharmacological interventions, however the clinical value of such information of motility patterns may be 

difficult to understand as of now. Additional studies in relevant patient groups may find interesting 
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associations between clinical parameters and the number, distance or velocity of different motility 

patterns.    

 
Challenges and limitations of 3D-Transit  
Assessing gastrointestinal motility with electromagnetic capsule-based methods, such as the 3D-Transit 

system, is challenging due to data loss, manual analysis, lack of availability, and the non-direct 

measurement of GI contractions. Data loss has been reported in between 13.3% and 21% of recordings [52, 

53], mainly due to loss of transmission signal and poor recording quality. This issue may be circumvented to 

an extent if subjects under study are urged to reduce their physical activity during recording, though true, 

inactivity may itself impact motility of the gut.  

Manual analysis of the 3D-Transit recordings is a limitation, especially if performed by inexperienced 

investigators [69]. However, when performed by adequately or highly trained investigators the system has 

shown excellent intra-rater and inter-rater reliability [52]. Furthermore, manual extraction of data from 

each recording is heavily time-consuming. Both drawbacks inform the need for automatization of the 

system to ensure consistency and to improve the speed of processing.  

Another obvious limitation to the 3D-Transit system is its lack of approval from the US Food and Drug 

Administration and the European Union through CE-marking. 3D-Transit is thus currently restricted to use 

in research facilities and is not commercially available. 

Finally, a limitation inherent to all telemetric capsule systems, is the lack of information at segments 

where the capsule is not present, which means that assessment of contractions is only carried out at the 

exact location of the capsule(s) and important information may be missed. Additionally, the 3D-Transit 

system does not directly measure the pressure amplitude of contractions. Both of these limitations are 

overcome by HRM, where changes in pressure in each centimeter of the colon are directly measured, 

though clearly HRM is a much more invasive method [71]. A validation study comparing 3D-Transit and 

HRM must be done to directly associate motor patterns recorded with the 3D-Transit system. 

 

Future perspectives 
Electromagnetic tracking of GI motility shows great promise as a future clinical diagnostic tool. 3D-Transit is 

the only available tool to provide simultaneous assessment of GI transit and movement patterns, and thus 

aid in characterizing and diagnosing GI diseases and the effects of treatment. Another potential advantage 

of capsule-based magnetic tracking is its ability to potentially determine the velocity at which medication 
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reach a specific segment of the GI tract, although further studies are needed to compare size and 

composition of the pills and the 3D-Transit capsule.  

3D-Transit also holds promising potentials for pediatric gastroenterology as a minimally invasive 

procedure. As described, a previous study has applied the MTS-1 system in healthy children, but studies 

validating the use of 3D-Transit in the pediatric population are warranted. 

 

Conclusions 
3D-Transit shares similarities with the wireless motility capsule (WMC) as they are both capsule-based, 

ambulatory, and minimally invasive. Both methods enable assessment of regional transit times throughout 

the gut, which is essential as most motility disorders affect more than a single region of the GI tract. The 

3D-Transit system, however, differs in two essential ways. Its spatiotemporal resolution allows assessment 

of segmental colonic transit times. Moreover, the 3D-Transit system permits an analysis of gastric and 

colonic movements with a degree of detail unrivalled by other ambulatory methods. Recently, robust 

normative data have been published. The system still holds notable limitations. It is neither CE approved 

nor generally commercially available. Data analysis need further improvement and automatization before 

the system can be widely adopted in clinical practice.  
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Legends for illustrations 
Figure 1: Motilis 3D-Transit system 
The 3D-Transit system. A) Overview function: The frequency of contractions helps determine pyloric and 

ileocecal passages by changes in gastrointestinal contraction frequency. Pyloric passage is found around the 

increase from 3 to 9–12 contractions min-1, and ileocecal passage is found around the decline from 

approximately 6 to 3 contractions min-1. B) 3D-Transit recording of a single capsule as seen in dedicated 3D-

Transit software. Pyloric passage of electromagnetic capsule (yellow line). The position (x, y, z) and 

orientation (q, j) of the capsule are displayed. The 2D-plot (x, y) in the upper left corner displays 

movement through the duodenal arch and is monitored and verified with respect to changes in trajectory 

and loss of three contractions min-1 (arrows) characteristic of gastric motility. 
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Figure 2: Colonic anatomy and landmarks.  
Graphical overview of colonic anatomy and the colonic progression of a 3D-transit capsule. A) Colonic 

anatomy with segments and six distinct anatomical landmarks marked according to the 3D-Transit analysis: 

(I) Ileo-cecal passage, (II) hepatic flexure, (III) midpoint of the transverse colon, (IV) splenic flexure, (V) end 

of the descending colon, and (VI) distal end of the rectum. B) Graphical presentation of processed colonic 

data from a healthy male. Arabic numerals specify location of the capsule in relation to hours spent in the 

colon.  
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Figure 3: Gastric emptying time 
3D-Transit recording from a healthy subject displayed in two projections. The capsule mostly resided in the 

antrum of the stomach. Position of the capsule at 20-min intervals is marked with Arabic numerals, 

connected by the dashed blue line. 
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Figure 4: Progression through the colon 
Three types of colonic progression patterns recorded with the 3D-Transit system. Anatomical position in 

colon is represented by the distance in cm from cecum to the rectum (Y-axis) plotted against time in hours 

spent in the colon (X-axis). Analysis of progression patterns are divided into fast progression (red), slow 

progression (blue), and very slow/no progression (black). A) Typical example of recording in a healthy 

young male with a normal progression pattern and a total colonic transit of just below 20 hours. B) 

Representative sample of recording in a patient with diarrhea demonstrating a fast progression pattern and 

a total colonic transit time below 6 hours. Two long fast antegrade movements accounts for approx. 40-50 

cm, respectively. C) Recording from a representative male with opioid-induced constipation demonstrating 

a slow progression pattern during the first 90 hours and a long fast antegrade movement for the last 50 cm. 

Total colonic transit time was approx. 70 hours. 

 

  

0 1 2 3 4 5 6

Time (h)

0

20

40

60

80

100

P
ro

g
re

ss
io

n
 in

 c
o

lo
n

 (
cm

)

0 5 10 15 20

Time (h)

0

50

100

150

P
ro

g
re

ss
io

n
 in

 c
o

lo
n

 (
cm

)

0 10 20 30 40 50 60 70

Time (h)

0

20

40

60

80

100

120

140

P
ro

g
re

ss
io

n
 in

 c
o

lo
n

 (
cm

)

Healthy male

Patient with diarrhea

Male with opioid-induced constipation

Sigmoid !exure

Splenic !exure

Hepatic !exure

Sigmoid !exure

Splenic !exure

Hepatic !exure

Sigmoid !exure

Splenic !exure

Hepatic !exure

0 5 10 15 20

Time (h)

0

50

100

150

P
ro

g
re

ss
io

n
 in

 c
o

lo
n

 (
cm

)

Fast progression

Slow progression

Very slow / no progressionA

B

C

Page 19 of 28 AUTHOR SUBMITTED MANUSCRIPT - PMEA-103827.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 20 

Table 1: Established and emerging methods to assess gastrointestinal motility  
Advantages and disadvantages of established and emerging methods to assess gastrointestinal motility. 

 Table 1: Established and emerging methods to assess gastrointestinal motility  

Method Measurement in the 
gastrointestinal tract Advantages Disadvantages 

Es
ta

bl
is

he
d 

Standard radio-opaque 
markers (ROM) 

Whole gut transit times 
Segmental colonic transit 
times (derived) 

Minimally invasive 
Inexpensive 
Poorly standardized 
Easy interpretation of data 

No direct information on colonic 
transit time 
Intake of markers depends on 
the compliance of the patient  

Scintigraphy Gastric emptying time 
Small intestinal transit 
time 
Colonic transit time 

Minimally invasive 
High reliability 

Subject irradiation 
Time consuming 
Difficult data analysis  
Expensive  
Limited to specialized centers  

Antroduodenal 
manometry 

Motility patterns in 
stomach and duodenum 

High reliability 
Radiation free 

Invasive 
Lacks standardization 
Time consuming 
Limited to specialized centers 

High-resolution 
manometry (HRM) 

Motility patterns in 
esophagus, stomach, 
duodenum, and colon 
 

Radiation free 
High resolution assessment 
of motility 

Invasive  
Expensive 
Difficult data analysis  
Bowel preparation (colon) 

Wireless motility 
capsule (SmartPill) 

Whole gut and regional 
transit times 

Minimally invasive 
High standardization 
Easy to perform 
Robust normative data 
Radiation free 
Ambulatory 

No information on segmental 
colonic transit times 

Hydrogen breath test Orocecal transit times Non-invasive 
High standardization 
Inexpensive 
Radiation free  

Confounding pitfalls  
Does not distinguish between 
gastric emptying and small 
intestinal transit 

Em
er

gi
ng

 

MRI motility 
assessments 

Whole gut and regional 
transit times 
Colonic and small 
intestinal motility patterns 

Non-invasive 
No radiation exposure 

No standardization  
Expensive 
Difficult data analysis 

Endoluminal image 
analysis 
 

Motility patterns in the 
small bowel 

Non-invasive 
Operator-independent High 
sensitivity 
 

No information on GI transit 
times 
Restricted to research  
Requires further validation  

3D-Transit system Whole gut and regional 
transit times 
Segmental colonic transit 
times 
Motility patterns in the 
stomach and colon 
 

Minimally invasive 
Radiation free 
Ambulatory 
Provides both motility and 
transit data under near 
normal physiological 
conditions 
Robust normative data 

No standardization 
Difficult data analysis 
Not commercially available 
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Table 2: Previous studies with MTS-1 
List of studies using the motility tracking system (MTS-1) and their main findings. Abbreviations: GI, 

gastrointestinal; GE, gastric emptying; SITT, small intestinal transit time; CTT, colonic transit time. 

Table 2: Previous studies with MTS-1 

Author (year) Subjects investigated (n) Main findings 

Stathopoulos et al. (2005) [27] Healthy subjects (n=10) MTS-1 proved feasible in healthy subjects  

Hiroz et al. (2009) [44] Healthy subjects (n=20) MTS-1 allowed detailed tracking of capsule 
movements within the colon 

Worsøe et al. (2011) [45] Healthy subjects (n=8) MTS-1 was validated against PillCam. 

Worsøe et al. (2012) [50] Patients with fecal incontinence 
(n=8) 

No effects of sacral nerve stimulation on GE and 
SITT 

Fassov et al. (2014) [43] Patients with irritable bowel 
syndrome (n=20) 

No effects of sacral nerve stimulation on GE or 
SITT 

Fynne et al. (2012) [40] Patients with neurogenic bowel 
problems due to spinal cord injury 
(n=19) 
Healthy controls (n=15) 

Patients with spinal cord injury had prolonged GE 
Basic contraction frequencies of the stomach and 
small intestine were unaffected by spinal cord 
injury 

Hedsund et al. (2012) [41] Patients with pancreatic 
insufficiency caused by cystic 
fibrosis (n=10) 
Healthy controls (n=16) 

Patients with cystic fibrosis had distal obstruction 
syndrome in the small intestine 
 
 

Karlsen et al. (2012) [38] Patients with bowel problems due 
to liver cirrhosis and portal 
hypertension (n=15) 
Healthy controls (n=18) 

Patients with moderate cirrhosis had faster than 
normal transit through the proximal small 
intestine 
 

Fynne et al. (2011) [42] Patients with systemic sclerosis (n= 
15) 
Healthy controls (n=17) 

Patients with systemic sclerosis had prolonged 
SITT 
 

Gregersen et al. (2011) [39] Patients with carcinoid syndrome 
due to neuroendocrine tumors 
(n=12) 
Healthy controls (n=12) 

Patients with carcinoid syndrome had faster than 
normal SITT and WGTT 

Hedsund et al. (2013) [51] Healthy children (n=21) Regional contraction frequencies and transit 
times in healthy children were determined and 
corresponded well to those previously observed 
in adults 
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Table 3: Colonic motility movement patterns 
Colonic motility classified from the five predominant types of movement patterns [53]. 

Table 3: Colonic motility movement patterns 

Colonic movement Distance Velocity 

Long fast antegrade > 10 cm > 10 cm min-1 

Fast antegrade 4–10 cm > 4 cm min-1 

Slow antegrade > 4 cm < 4 cm min-1 
> 4 cm h-1 

Slow retrograde < 4 cm < 4 cm min-1 
> 4 cm h-1 

Fast retrograde < 4 cm > 4 cm min-1 

 
 

Table 4: Normative values for gastrointestinal transit times assessed with 3D-
Transit 
Normative values for total and region-specific gastrointestinal transit times, based on 111 healthy adults 

[52].   

Table 4: Normative values for gastrointestinal transit times assessed 

with 3D-Transit 

Gastrointestinal region Transit time 
(hours:min) 

95% CI 
(hours:min) 

Gastric emptying time 2:41 2:29–3:06 

Small intestinal transit time 4:47 4:20–5:06 

Colonic transit time 21:06 18:39–23:54 

Whole gut transit time 28:52 25:37–30:48 
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Table 5: Previous studies with 3D-Transit 
List of studies using the Motilis 3D-Transit system and their main findings. Abbreviations: GI; 

gastrointestinal, GE, gastric emptying; WGTT, whole gut transit time, SITT, small intestinal transit time; CTT, 

colonic transit time; CATT, caecum ascending transit time; DM-1, type 1 diabetes mellitus. 
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Table 5: Studies using the 3D-Transit system 

 Author (year) Subjects investigated (n) Main findings 

St
ud

ie
s w

ith
 h

ea
lth

y 
su

bj
ec

ts
 

Haase et al. (2014) 
[28] 

Healthy subjects (n=20) 3D-Transit proved feasible in healthy subjects. 
Good correlation of WGTT assessment between 
3D-Transit and ROM 

Mark et al. (2017) [67] Healthy subjects  
- 3D-Transit + MRI (n=25) 
- 3D-Transit x 2 (n=21) 

3D-Transit proved accurate determination of 
colorectal length compared with MRI and between 
days 

Kalsi et al. (2018) [69] Healthy subjects (n=36) Rating of 3D-Transit recordings require adequate 
training 

Nandhra et al. (2019) [52] Healthy subjects (n=111) 3D-transit used to establish normative reference 
values for region specific GITT and CTT 

Sutter et al. (2020) [55] Healthy subjects (n=132) 3D-transit used to establish normative reference 
values for gastric motility 

Mark et al. (2019) [53] Healthy subjects (n=34) 3D-transit used to establish normative reference 
values for segmental colonic motility established 

Haase et al. (2015) [58] Healthy subjects (n=9) 3D-Transit combined with polysomnography allows 
investigation of associations between sleep 
patterns and GI motility 

St
ud

ie
s w

ith
 p

at
ie

nt
s  

Gregersen et al. (2015) 
[59] 

Patients with carcinoid diarrhea 
due to neuroendocrine tumors 
(n=7) 
Healthy controls (n=15) 

Patients with carcinoid diarrhea had increased 
WGTT in different segments. 
Patients had increased frequency of pansegmental 
colonic movements 

Haase et al. (2016) 
[60] 

Patients with severe ulcerative 
colitis (n=20) 
Healthy controls (n=20) 

Patients with severe ulcerative colitis had 
prolonged WGTT, significantly in the proximal 
colon 

Knudsen et al. (2017) [61] Patients with Parkinson’s disease 
(n=22) 
Healthy controls (n=15) 

Patients with Parkinson’s disease had significantly 
increased SITT and CATT 

Klinge et al. (2020) 
[57] 

Patients with type-1 diabetes 
mellitus (DM-1) (n=18) 
Healthy controls (n=20) 

Patients with DM-1 had increased GE, CTT and 
WGTT  
Patients with DM-1 had an increased number of 
retrograde movements 

Ph
ar

m
ac

ol
og

ic
al

 st
ud

ie
s  

Poulsen et al. (2016) [64] Healthy subjects (n=25) 3D-Transit proved feasible in a pharmacological 
study 
Oxycodone treatment increases GI transit time in 
different GI segments 

Olesen et al. (2019) [62] Healthy subjects (n=24) Oxycodone-induced increase in WGTT and CTT is 
reversed by naloxegol 
 

Poulsen et al. (2018) [63] Healthy subjects (n=20) Oxycodone-induced increase of GI transit time is 
equally alleviated by naloxone and macrogol 3350 

Mark et al. (2019) [56] Healthy subjects (n=59) combined 
from [62] and [64] 

Increased GI transit time during opioid treatment is 
caused by a decrease in long fast movements 
rather than uncoordinated peristalsis 
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