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Hierarchical Species Sampling Models

Federico Bassetti∗, Roberto Casarin†, and Luca Rossini‡§

Abstract. This paper introduces a general class of hierarchical nonparametric
prior distributions which includes new hierarchical mixture priors such as the
hierarchical Gnedin measures, and other well-known prior distributions such as
the hierarchical Pitman-Yor and the hierarchical normalized random measures.
The random probability measures are constructed by a hierarchy of generalized
species sampling processes with possibly non-diffuse base measures. The proposed
framework provides a probabilistic foundation for hierarchical random measures,
and allows for studying their properties under the alternative assumptions of dif-
fuse, atomic and mixed base measure. We show that hierarchical species sampling
models have a Chinese Restaurants Franchise representation and can be used as
prior distributions to undertake Bayesian nonparametric inference. We provide a
general sampling method for posterior approximation which easily accounts for
non-diffuse base measures such as spike-and-slab.
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sampling, hierarchical random measures, spike-and-slab.
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1 Introduction

Cluster structures in multiple groups of observations can be modelled by means of
hierarchical random probability measures or hierarchical processes that allow for het-
erogenous clustering effects across groups and for sharing clusters among groups. As
an effect of the heterogeneity, in these models the number of clusters in each group
(marginal number of clusters) can differ, and due to cluster sharing, the number of clus-
ters in the entire sample (total number of clusters) can be smaller than the sum of the
marginal number of clusters. An important example of hierarchical random measure is
the Hierarchical Dirichlet Process (HDP), introduced in the seminal paper of Teh et al.
(2006). The HDP involves a simple Bayesian hierarchy where the common base measure
for a set of Dirichlet processes is itself distributed according to a Dirichlet process. This
means that the joint law of the random probability measures (p1, . . . , pI) is

pi|p0 iid∼ DP (θ1, p0), i = 1, . . . , I,

p0|H0∼DP (θ0, H0),
(1.1)
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where DP (θ, p) denotes the Dirichlet process with base measure p and concentration
parameter θ > 0. Once the joint law of (p1, . . . , pI) has been specified, observations
[ξi,j ]i=1,...,I;j≥1 are assumed to be conditionally independent given (p1, . . . , pI) with

ξi,j |(p1, . . . , pI) ind∼ pi, i = 1, . . . , I and j ≥ 1.

Hierarchical processes are widely used as prior distributions in Bayesian nonparametric
inference (see Teh and Jordan (2010) and reference therein), by assuming ξi,j are latent
variables describing the clustering structure of the data and the observations in the i-th
group, Yi,j , are conditionally independent given ξi,j with

Yi,j |ξi,j ind∼ f(·|ξi,j),

where f is a suitable kernel density.

In this paper, we introduce a new class of hierarchical random probability measures,
called Hierarchical Species Sampling Model (HSSM), based on a hierarchy of species
sampling models.

A Species Sampling random probability (SSrp) is defined as

p =
∑
j≥1

δZjqj , (1.2)

where (Zj)j≥1 and (qj)j≥1 are stochastically independent sequences, the atoms Zj are
i.i.d. with common distribution H0 (base measure) and the non-negative weights qj ≥ 0
sum to one almost surely. By Kingman’s theory on exchangeable partitions, any random
sequence of positive weights such that

∑
j≥1 qj ≤ 1 can be associated to an exchangeable

random partition of the integers (Πn)n≥1. Moreover, the law of an exchangeable ran-
dom partition (Πn)n≥1 is completely described by an exchangeable partition probability
function (EPPF) q0. Hence the law of the measure p defined in (1.2) is parametrized
by q0 and H0, and it will be denoted by SSrp(q0, H0).

A HSSM is a vector of random measures (p1, . . . , pI) with

pi|p0 iid∼ SSrp(q, p0), i = 1, . . . , I,

p0∼SSrp(q0, H0),
(1.3)

where H0 is a base measure and q0 and q are two EPPFs.

The proposed framework provides a general probabilistic foundation of both exist-
ing and novel hierarchical random measures, and relies on a convenient parametrization
of the hierarchical process in terms of two EPPFs and a base measure. Our HSSM
class includes the HDP, its generalizations given by the Hierarchical Pitman–Yor pro-
cess (HPYP), see Teh (2006); Du et al. (2010); Lim et al. (2016); Camerlenghi et al.
(2017) and the hierarchical normalized random measures with independent increments
(HNRMI), first studied in Camerlenghi et al. (2018), Camerlenghi et al. (2019) and
more recently in Argiento et al. (2019). Among the novel measures, we study hierar-
chical generalizations of Gnedin (Gnedin (2010)) and of finite mixture (e.g., Miller and
Harrison (2018)) processes and asymmetric hierarchical constructions with p0 and pi of
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different type (Du et al. (2010)). Another motivation for studying HSSMs relies on the
introduction of non-diffuse base measures (e.g., the spike-and-slab prior of George and
McCulloch (1993)) now widely used in Bayesian parametric (e.g., Castillo et al. (2015)
and Rockova and George (2018)) and nonparametric (e.g., Kim et al. (2009), Canale
et al. (2017)) inference.

We show that the arrays of observations from HSSMs have a Chinese Restaurant
Franchise representation, that is appealing for the applications to Bayesian nonparamet-
rics, since it sheds light on the clustering mechanism of the observations and suggests
a simple and general sampling algorithm for posterior computations. The sampler can
be used under both assumptions of diffuse and non-diffuse (e.g. spike-and-slab) base
measure, whenever the EPPFs q0 and q are known explicitly.

By exploiting the properties of species sampling sequences, we are able to provide the
finite sample distribution of the number of clusters for each group of observations and
the total number of clusters for the hierarchy. We provide some new asymptotic results
when the number of observations goes to infinity, thus extending to our general class of
processes the asymptotic approximations given in Pitman (2006) and Camerlenghi et al.
(2019) for species sampling and hierarchical normalized random measures, respectively.

The paper is organized as follows. Section 2 introduces exchangeable random parti-
tions, generalized species sampling sequences and species sampling random probability
measures. Section 3 defines hierarchical species sampling models and shows some use-
ful properties for the applications to Bayesian nonparametric inference. Section 4 gives
finite-sample and asymptotic distributions of the number of clusters under both assump-
tions of diffuse and non-diffuse base measure. A general Gibbs sampler for hierarchical
species sampling mixtures is established in Section 5. Section 6 presents some simulation
studies and a real data application.

2 Background Material

Our Hierarchical Species Sampling Models build on exchangeable random partitions
and related processes, such as species sampling sequences and species sampling random
probability measures. We review some of their definitions and properties, which will be
used in the rest of the paper. Supplementary material (Bassetti et al., 2019a) provides
further details, examples and some new results under the assumption of non-diffuse base
measure.

2.1 Exchangeable Random Partitions

Exchangeable random partitions are used in a wide range of theoretical and applied
problems in various fields, such as population genetics (Ewens, 1972; Kingman, 1980;
Donnelly, 1986; Hoppe, 1984), combinatorics, algebra and number theory (Donnelly and
Grimmett, 1993; Diaconis and Ram, 2012; Arratia et al., 2003), machine learning (Teh,
2006; Wood et al., 2009), psychology (Navarro et al., 2006), model-based clustering
(Lau and Green, 2007; Müller and Quintana, 2010), and Bayesian nonparametrics (e.g.,
see Hjort et al. (2010) and references therein). For a comprehensive review see Pitman
(2006).
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A (set) partition πn of [n] := {1, . . . , n} is an unordered collection (π1,n, . . . , πk,n) of
disjoint non-empty subsets (blocks) of {1, . . . , n} such that ∪k

j=1πj,n = [n]. A partition
πn = [π1,n, π2,n, . . . , πk,n] has |πn| := k blocks (with 1 ≤ |πn| ≤ n) and we denote by
|πc,n|, the number of elements of the block c = 1, . . . , k. We denote with Pn the collection
of all partitions of [n] and, given a partition, we list its blocks in ascending order of their
smallest element. In other words, a partition πn ∈ Pn is coded with elements in order
of appearance.

A random partition of N is a sequence of random partitions, Π = (Πn)n, such that
each element Πn takes values in Pn and the restriction of Πn to Pm, m < n is Πm

(consistency property). A random partition of N is said to be exchangeable if for every
n the distribution of Πn is invariant under the action of all permutations (acting on Πn

in the natural way).

Exchangeable random partitions are characterized by the fact that their distribu-
tion depends on Πn only through its block size. A random partition on N is exchange-
able if and only if its distribution can be written in terms of exchangeable partition
probability function (EPPF). An EPPF is a symmetric function q defined on the inte-

gers (n1, . . . , nk), with
∑k

i=1 ni = n, that satisfies the additions rule q(n1, . . . , nk) =∑k
j=1 q(n1, . . . , nj + 1, . . . , nk) + q(n1, . . . , nk, 1), (see Pitman (2006)). If (Πn)n is an

exchangeable random partition of N, there exists an EPPF such that for every n and
πn ∈ Pn

P{Πn = πn} = q (|π1,n|, . . . , |πk,n|) , (2.1)

where k = |πn|. In other words, q(n1, . . . , nk) corresponds to the probability that Πn

is equal to any of the partitions of [n] with k distinct blocks and block frequencies
(n1, . . . , nk).

Given an EPPF q, one deduces the corresponding sequence of predictive distri-
butions. Starting with Π1 = {1}, given Πn = πn (with |πn| = k), the conditional
probability of adding a new block (containing n+ 1) to Πn is

νn(|π1,n|, . . . , |πk,n|) :=
q(|π1,n|, . . . , |πk,n|, 1)
q(|π1,n|, . . . , |πk,n|)

; (2.2)

while the conditional probability of adding n+1 to the c-th block of Πn (for c = 1, . . . , k)
is

ωn,c(|π1,n|, . . . , |πk,n|) :=
q(|π1,n|, . . . , |πc,n|+ 1, . . . , |πk,n|)

q(|π1,n|, . . . , |πk,n|)
. (2.3)

An important class of exchangeable random partitions is the Gibbs-type partitions,
introduced in Gnedin and Pitman (2005) and characterized by the EPPF

q(n1, . . . , nk) := Vn,k

k∏
c=1

(1− σ)nc−1,

where (x)n = x(x+1) . . . (x+n−1) is the rising factorial (or Pochhammer’s polynomial),
σ < 1 and Vn,k are positive real numbers such that V1,1 = 1 and

(n− σk)Vn+1,k + Vn+1,k+1 = Vn,k, n ≥ 1, 1 ≤ k ≤ n. (2.4)
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2.2 Species Sampling Models with General Base Measure

Kingman’s theory of random partitions sets up a one-one correspondence (Kingman’s
correspondence) between EPPFs and distributions for decreasing sequences of random

variables (q↓k)k with q↓i ≥ 0 and
∑

i q
↓
i ≤ 1 almost surely, by using the notion of random

partition induced by a sequence of random variables. Let us recall that a sequence of
random variables (ζn)n induces a random partition on N by equivalence classes i ∼ j if
and only if ζi = ζj .

If
∑

i q
↓
i = 1 a.s. then Kingman’s correspondence between EPPF and (q↓j )j can be

defined as follows. Let (Uj)j be an i.i.d. sequence of uniform random variables on (0, 1)

independent from (q↓j )j and let Π be the random partition induced by a sequence (θn)n
of conditionally i.i.d. random variables from

∑
j≥1 qjδUj where (qj)j is any (possibly

random) permutation of (q↓j )j . Then the EPPF in the Kingman’s correspondence is the
EPPF of Π. In point of fact, one can prove that

q(n1, . . . , nk) =
∑

j1,...,jk

E

[
k∏

i=1

qni
ji

]
, (2.5)

where (j1, . . . , jk) ranges over all ordered k-tuples of distinct positive integers. See Equa-
tion (2.14) in Pitman (2006).

A Species Sampling random probability of parameters q and H, in symbols p ∼
SSrp(q, H), is a random distribution

p =
∑
j≥1

δZjqj , (2.6)

where (Zj)j are i.i.d. random variables on a Polish space X with possibly non-diffuse
common distribution H and EPPF q given in (2.5). Such random probability measures
are sometimes called species sampling models. In this parametrization, q takes into
account only the law of (q↓j )j while H describes the law of the Zjs.

If H is diffuse, a sequence (ξn)n sampled from p in (2.6), i.e. with ξn conditionally
i.i.d. (given p) with law p ∼ SSrp(q, H), is a Species Sampling Sequence as defined
by Pitman (1996) (Proposition 13 in Pitman (1996)) and the EPPF of the partition
induced by (ξn)n is exactly q. On the contrary, when H is not diffuse then (ξn)n is
not a Species Sampling Sequence in the sense of Pitman (1996) and the EPPF of the
induced partition is not q. Nevertheless, as shown in the next Proposition, there exists
an augmented space X× (0, 1) and a latent partition related to (ξn)n with EPPF q.

Hereafter, for a general base measure H, we refer to (ξn)n as generalized species
sampling sequence, gSSS(q, H).

Proposition 1. Let (Uj)j be an i.i.d. sequence of uniform random variables on (0, 1),
(Zj)j an i.i.d. sequence with possibly non-diffuse common distribution H and (qj)j a
sequence of positive numbers with

∑
j qj = 1 a.s.. Assume that all the previous elements
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are independent and let (ζn)n := (ξn, θn)n be a sequence of random variables, with values
in X× (0, 1), conditionally i.i.d. from p′ given

p′ =
∑
j≥1

δ(Zj ,Uj)qj . (2.7)

Then, the EPPF of the partition induced by (ζn)n is q given in (2.5) and (ξn)n is a
gSSS(q, H).

From the previous Proposition, it follows that the partition induced by (ζn)n is in
general finer than the partition induced by (ξn)n, with the equality if H is diffuse. This
result is essential in order to properly define and study hierarchical models of type (1.3),
since the random measure p0 in (1.3) is almost surely discrete and hence not diffuse.
Further properties of the gSSS are proved in the supplementary material (Bassetti et al.,
2019a), whereas further results are available in Sangalli (2006) for normalized random
measures with independent increments. These properties are relevant to the compre-
hension of the implications of mixed based measures for Bayesian non-parametrics,
especially for hierarchical prior constructions.

3 Hierarchical Species Sampling Models

We introduce hierarchical species sampling models (HSSMs), provide some examples
and derive relevant properties.

3.1 HSSM Definition and Examples

In the following definition a hierarchy of species sampling random probabilities is used
to build hierarchical species sampling models.

Definition 1. Let q and q0 be two EPPFs and H0 a probability distribution on the Pol-
ish space X. A Hierarchical Species Sampling model, HSSM(q, q0, H0), of parameters
(q, q0, H0) is a vector of random probably measures (p0, p1, . . . , pI) such that

pi|p0 iid∼ SSrp(q, p0), i = 1, . . . , I,

p0 ∼ SSrp(q0, H0).

An array [ξi,j ]i=1,...,I,j≥1 is sampled from HSSM(q, q0, H0) if its elements are con-

ditionally independent random variables given (p1, . . . , pI) with ξi,j |(p1, . . . , pI) ind∼ pi,
where i = 1, . . . , I and j ≥ 1.

By de Finetti’s representation theorem it follows that the array [ξi,j ]i=1,...,I,j≥1 is
partially exchangeable (in the sense of de Finetti), i.e.

{(ξi,j)j≥1}i=1,...,I
L
= {(ξi,σi(j))j≥1}i=1,...,I

for any choice of (finite) permutations σ1, . . . , σI of the integers {1, . . . , I} (see e.g.
Kallenberg (2006)).
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Definition 1 is general and provides a probabilistic foundation for a wide class of
hierarchical random models. The properties of the SSrp and of the gSSS, guarantee
that the hierarchical random measures in Definition 1 are well defined also for non-
diffuse (e.g., atomic or mixed) probability measures H0.

The HSSM class in Definition 1 includes well-known (e.g., Teh et al. (2006), Teh
(2006), Bacallado et al. (2017)) and new hierarchical processes, as shown in the follow-
ing examples. We assume that the reader is familiar with basic non-parametric prior
processes. A brief account to these topics is included in the supplementary material
(Bassetti et al., 2019a).

Example 1 (Hierarchical Pitman-Yor process). Let PY P (σ, θ,H) denote a Pitman-
Yor process of parameters σ and θ, where 0 ≤ σ < 1 and θ > −σ (see Pitman (1995);
Pitman and Yor (1997)). A vector of dependent random measures (p1, . . . , pI), with law
characterized by the following hierarchical structure

pi|p0 iid∼ PY P (σ1, θ1, p0), i = 1, . . . , I,

p0|H0∼PY P (σ0, θ0, H0)
(3.1)

is called Hierarchical Pitman-Yor Process, HPY P (σ0, θ0, σ1, θ1, H0), of parameters 0 ≤
σi ≤ 1, −σi < θi, i = 0, 1 and H0 (see Teh (2006); Du et al. (2010); Lim et al.
(2016); Camerlenghi et al. (2019)). By Definition 1, a HPY P (σ0, θ0, σ1, θ1, H0) is then
a HSSM of parameters (q, q0, H0) where q and q0 are Pitman-Yor EPPFs of parameters
(σ1, θ1) and (σ0, θ0), respectively.

If σ0 = σ1 = 0, one recovers the Hierarchical Dirichlet process, in symbols HDP (θ0,
θ1, H0). It is also possible to define some mixed cases, where one considers a DP in
one of the two stages of the hierarchy and a PYP with strictly positive discount pa-
rameter in the other, that are: HDPY P (θ0, σ1, θ1, H0) = HPY P (0, θ0, σ1, θ1, H0) and
HPYDP (σ0, θ0, θ1, H0) = HPY P (σ0, θ0, 0, θ1, H0). For an example of HDPY P see
Dubey et al. (2014).

Example 2 (Hierarchical homogeneous normalized random measures). Hierarchical
homogeneous Normalized Random Measures (HNRMI) introduced in Camerlenghi et al.
(2019) are defined by

pi|p0 iid∼ NRMI(θ1, η1, p0), i = 1, . . . , I,

p0|H0∼NRMI(θ0, η0, H0),

where NRMI(θ, η,H) denotes a normalized homogeneous random measure with param-
eters (θ, η,H), where θ > 0, η is Lévy a measure on R+ (absolutely continuous with
respect to the Lebesgue measure) and H a measure on X. A NRMI is a SSrp and hence
HNRMI are HSSM.

Our class of HSSM includes new hierarchical processes such as hierarchical mixtures
of finite mixture processes and combinations of finite mixture processes and PY P .

Example 3 (Hierarchical mixture of finite mixture processes). Let ρ = (ρm)m≥1 be a
probability measure on {1, 2, . . . }, σ > 0 and H a probability measure on X. A mixture
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of finite mixture process of parameters (σ, ρ,H), MFMP (σ, ρ,H) from now on, is a
random probability measure

p =

K∑
k=1

qkδZk
, (3.2)

where K ∼ ρ, (Zk)k≥1
iid∼ H, and (q1, . . . , qK) | K∼ DirichletK(σ, . . . , σ) see Miller and

Harrison (2018). These random probability measures turn out to be SSrp(q, H) for a
suitable Gibbs Type EPPF q.

A Hierarchical MFMP with parameters σi, ρ
(i) = (ρ

(i)
k )k≥1, i = 0, 1 and base measure

H0, is

pi|p0 iid∼ MFMP (σ1, ρ
(1), p0), i = 1, . . . , I,

p0|H0∼MFMP (σ0, ρ
(0), H0).

(3.3)

As a special case when |σi| = 1 and for a suitable ρ(i) (i = 0, 1, . . . ), one ob-
tains the Hierarchical Gnedin Process with parameters (γ0, ζ0, γ1, ζ1, H0), denoted with
HGP (γ0, ζ0, γ1, ζ1, H0), which is a hierarchical extension of the Gnedin Process. For
further details see Examples S.2 and S.3 in the supplementary material (Bassetti et al.,
2019a).

Example 4 (Mixed Cases). A hierarchical Gnedin-Pitman-Yor process, denoted with
HGPY P (γ0, ζ0, σ1, θ1, H0), is defined as

pi|p0 iid∼ PY P (σ1, θ1, p0), i = 1, . . . , I,

p0|H0∼GP (γ0, ζ0, H0)
(3.4)

where GP (γ0, ζ0, H0) is a Gnedin Process. The hierarchical Gnedin-Dirichlet process is
then obtained as special case for σ1 = 0 and denoted with HGDP (γ0, ζ0, θ1, H0). Ex-
changing the role of PY P and GP in the above construction, one gets the HPY GP (σ0,
θ0, γ1, ζ1, H0).

3.2 HSSM and Chinese Restaurant Franchising Representation

The next proposition gives the marginal law of an array sampled from a HSSM. When
πn = [π1,n, . . . , πk,n] is a partition of [n] and q an EPPF, we will write q(πn) in place
of q(|π1,n|, . . . , |πk,n|).
Proposition 2. Let [ξi,j ]i=1,...,I,j≥1 be sampled from HSSM(q, q0, H0), then for every
vector of integer numbers (n1, . . . , nI) and every collection of Borel sets {Ai,j : i =
1, . . . , I, j = 1, . . . , ni} it holds

P{ξi,j ∈ Ai,j i = 1, . . . , I, j = 1, . . . , ni}

=
∑

π
(1)
n1

∈Pn1 ,...,π
(I)
nI

∈PnI

I∏
i=1

q

(
π(i)
ni

)
E

⎡
⎢⎣ I∏
i=1

|π(i)
ni

|∏
c=1

p̃
(
∩
j∈π

(i)
c,ni

Ai,j

)⎤⎥⎦ ,
(3.5)

with p̃ ∼ SSrp(q0, H0).
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Starting from Proposition 2 we show that an array sampled from a HSSM has a
Chinese Restaurant Franchise representation. Such representation is very useful because
it leads to a generative interpretation of the nonparametric-priors in the HSSM class,
and naturally allows for posterior simulation procedures (see Section 5).

In the Chinese Restaurant Franchise metaphor, observations are attributed to “cus-
tomers”, identified by the indices (i, j), and groups are described as “restaurants”
(i = 1, . . . , I). In each “restaurant”, “customers” are clustered according to “tables”,
which are then clustered at the second hierarchy level by means of “dishes”. Observa-
tions are clustered across restaurants at the second level of the clustering process, when
dishes are associated to tables. One can think that the first customer sitting at each
table chooses a dish from a common menu and this dish is shared by all other customers
who join the same table afterwards.

The first level of the clustering process, acting within each group, is driven by inde-
pendent random partitions Π(1), . . . ,Π(I) with EPPF q. The second level, acting between
groups, is driven by a random partition Π(0) with EPPF q0.

Given n1, . . . , nI integer numbers, we introduce the following set of observations:

O := {ξi,j : j = 1, . . . , ni; i = 1, . . . I},

and denote with Cj(Π) the random index of the block of the random partition Π that
contains j, that is

Cj(Π) = c if j ∈ Πc,j . (3.6)

Theorem 1. If [ξi,j ]i=1,...,I,j≥1 is a sample from a HSSM(q, q0, H0), then O and
{φd∗

i,j
: j = 1, . . . , ni; i = 1, . . . I} have the same laws, where

d∗i,j := CD(i,ci,j)

(
Π(0)

)
, D(i, c) :=

i−1∑
i′=1

|Π(i′)
ni′

|+ c, ci,j := Cj

(
Π(i)

)
,

(φn)n is a sequence of i.i.d. random variables with distribution H0, Π
(1), . . . ,Π(I) are

i.i.d. exchangeable partitions with EPPF q and Π(0) is an exchangeable partition with
EPPF q0. All the previous random variables are independent.

Since d∗i,j = di,ci,j for di,c := CD(i,c)

(
Π(0)

)
, then the construction in Theorem 1 can

be summarized by the following hierarchical structure

ξi,j = φdi,ci,j
,

di,c = CD(i,c)

(
Π(0)

)
, ci,j = Cj

(
Π(i)

)
,

φn
i.i.d.∼ H0,(

Π(0),Π(1), . . . ,Π(I)
)
∼q0 ⊗ q⊗ · · · ⊗ q,

(3.7)

where, following the Chinese Restaurant Franchise metaphor (see Figure 1), ci,j is the
table at which the j-th “customer” of the “restaurant” i sits, di,c is the index of the
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Figure 1: Illustration of the HSSM(q, q0, H0) clustering process given in Theorem 1.
We assume two groups (restaurants), I = 2, with n1 = 6 and n2 = 4 observations
(customers) each. Top-left: Samples (dishes) φn from the non-diffuse base measure.
Dishes have the same colour and line type if they take the same values. Mid-left: Indexes
D(i, c) (from 1 to 7 in lexicographical order) of the tables which share the same dish.
Boxes represent the blocks of the random partition at the top of the hierarchy. Bottom-
left: Observations (customers) allocated by ci,j to each table (circles) in the group-
specific random partitions. Top-right: Table lexicographical ordering and dishes assigned
to the tables by the top level partition. Bottom-right: observations clustering implied
by the joint tables and dishes allocation d∗i,j .

“dish” served at table c in the restaurant i and d∗i,j is the index of the “dish” served to
the j-th customer of the i-th restaurant.

A special case of Theorem 1 has been independently proved in Proposition 2 of
Argiento et al. (2019) for HNRMI. Theorem 1 can also be used to describe in a recursive
way the array O. Having in mind the Chinese Restaurant Franchise, we shall denote
with nicd the number of customers in restaurant i seated at table c and being served
dish d and with mid the number of tables in the restaurant i serving dish d. We denote
with dots the marginal counts. Thus, ni·d is the number of customers in restaurant i
being served dish d, mi· is the number of tables in restaurant i, ni·· is the number of
customers in restaurant i (i.e. the ni observations), and m·· is the number of tables.

Finally, let ωn,k and νn be the weights of the predictive distribution of the random
partitions Π(i) (i = 1, . . . , I) with EPPF q (see Section 2.1). Also, let ω̃n,k and ν̃n be
the weights of the predictive distribution of the random partitions Π(0) with EPPF q0

defined analogously by using q0 in place of q. We can sample {ξi,j ; j = 1, . . . , ni, i =
1, . . . I} starting with i = 1, m1· = 1, n11· = 1, D = 1, m·1 = 1 and ξ1,1 = ξ∗1,1 = φ1 ∼
H0 and then iterating, for i = 1, . . . , I, the following steps:

(S1) for t = 2, . . . , ni··, sample ξi,t given ξi,1, . . . , ξi,t−1 and k := mi· from G∗
it(·) +

νt(ni1·, . . . , nik·)Git(·) where

Git(·) = G̃it(·) + ν̃m··(m·1, . . . ,m·D)H0(·),
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G∗
it(·) =

k∑
c=1

ωt,c(ni1·, . . . , nik·)δξ∗i,c(·),

G̃it(·) =
D∑

d=1

ω̃m··d(m·1, . . . ,m·D)δφd
(·).

(S2) If ξi,t is sampled from G∗
it, then we set ξi,t = ξ∗i,c and let cit = c for the chosen

c, we leave mi· the same and set nic· := nic· + 1, while, if ξi,t is sampled from
Git, then we set mi· := mi· + 1, ξi,t = ξ∗i,mi· and cit = mi·. If ξi,t is sampled from

G̃it, we set ξ∗i,c = φd, let dic = d for chosen d and increment m·c by one. If ξi,t is
sampled from H0, then we increment D by one and set φD = ξit, ξ

∗
i,c = ξi,t and

dic = D. In both cases, we increment m·· by one.

(S3) Having sampled ξi,t with t = ni·· in the previous Step, set i := i + 1, mi· = 1,
ni1· = 1 take ξi,1 = ξ∗i,1 where ξ∗i,1 is sampled from Git. Update D, m·c, dic and
m·· as described in the previous Step.

Remark 1. The Chinese Restaurant Franchise representation and the Pólya Urn sam-
pler in (S1)–(S3) are deduced directly from the latent partition representation given in
Theorem 1, with no additional assumptions on H0 and without resorting to the expres-
sion of the distribution of the partition induced by the observations. This expression
can be derived for HSSM as a side result of our combinatorial framework and includes
Theorem 3 and 4 of Camerlenghi et al. (2019) as special cases when the HSSM is a
HNRMI. Since the derivation of this law is not a central result of the paper, it is given
in the supplementary material (Bassetti et al., 2019a).

4 Cluster Sizes Distributions

We study the distribution of the number of clusters in each group of observations (i.e.,
the number of distinct dishes served in the restaurant i), as well as the global number
of clusters (i.e. the total number of distinct dishes in the restaurant franchise).

Let us introduce a time index t to describe the customers arrival process. At time
t = 1, 2, . . . and for each group i, Oit is the observation set and ni(t) is the number of
elements in Oit, i.e. the number of observations in the group i at time t. The collection
of all the n(t) :=

∑I
i=1 ni(t) observations at time t is Ot := ∪I

i=1Oit. For example, if
ni(t) = ni(t − 1) + 1, with ni(1) = 1, each group has one new observation between
t− 1 and t and hence the total number of observations at time t is n(t) = It. Different
sampling rates can be assumed within our framework. For example ni(t) = tbi for
suitable integers bi describes an asymmetric sampling scheme in which groups have
different arrival rates, bi.

We find the exact finite sample distribution of the number of clusters for given n(t)
and ni(t) when t < ∞. Some properties, such as the prior mean and variance, are
discussed in order to provide some guidelines to setting HSSM parameters in the appli-
cations. We present some new asymptotic results when the number of observations goes
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to infinity, such that n(t) diverges to +∞ as t goes to +∞. The results extend existing
asymptotic approximations for species sampling (Pitman (2006)) and for hierarchical
normalized random measures (Camerlenghi et al. (2019)) to the general class of HSSMs.
Finally, we provide a numerical study of the approximation accuracy.

4.1 Distribution of the Cluster Size Under the Prior

For every i = 1, . . . , I, we define

Ki,t := |Π(i)
ni(t)

|, Kt :=

I∑
i=1

|Π(i)
ni(t)

|, Di,t = |Π(0)
Ki,t

|, Dt = |Π(0)
Kt

|.

By Theorem 1, for every fixed t, the laws of Ki,t and Kt are the same as the ones of the
number of “active tables” in “restaurant” i and of the total number of “active tables” in
the whole franchise, respectively. Analogously, the laws of Dt and Di,t are the same as
the laws of the number of dishes served in the restaurant i and in the whole franchise,
respectively. If H0 is diffuse, then Dt and the number of distinct clusters in Ot have the
same law and also Di,t and the number of clusters in the group i follow the same law.

The distributions of Dt and Di,t are derived in the following

Proposition 3. For every n ≥ 1 and k = 1, . . . , n, we define qn(k) := P

{
|Π(i)

n | = k
}

and q
(0)
n (k) := P

{
|Π(0)

n | = k
}
. Then, for every i = 1, . . . , I,

P{Di,t = k} =

ni(t)∑
m=k

qni(t)(m)q(0)m (k), k = 1, . . . , ni(t),

and

P{Dt = k} =

n(t)∑
m=max(I,k)

⎛
⎜⎜⎝ ∑

m1+···+mI=m,
1≤mi≤ni(t)

I∏
i=1

qni(t)(mi)

⎞
⎟⎟⎠ q(0)m (k), k = 1, . . . , n(t).

Moreover, for every r > 0

E
[
Dr

i,t

]
=

ni(t)∑
m=1

E

[
|Π(0)

m |r
]
qni(t)(m)

and

E [Dr
t ] =

∑
m1,...,mI :

1≤mi≤ni(t)

E

[∣∣∣Π(0)∑ I
i=1 mi

∣∣∣r] I∏
i=1

qni(t)(mi).

In particular, for every i = 1, . . . , I, n ≥ 1 and k = 1, . . . , n,

qn(k) =
∑

(λ1,...,λn)∈Λn,k

n!∏n
j=1(λj !)(j!)λj

q [[λ1, . . . , λn]] ,
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where Λn,k is the set of integers (λ1, . . . , λn) such that
∑

j λj = k and
∑

j jλj = n,
q[[λ1, . . . , λn]] is the common value of the symmetric function q for all n1, . . . , nk with
|{i : ni = j}| = λj for j = 1, . . . , n and n!/(

∏n
j=1(λj !)(j!)

λj ) is the number of partitions
of [n] with λj blocks of cardinality j = 1, . . . , n (see Equation (11) in Pitman (1995)).

Similar expressions can be obtained for q
(0)
n (k).

The results in Proposition 3 generalize to HSSM those in Theorem 5 of Camerlenghi
et al. (2019) for HNRMI. Our proof relies on the hierarchical Species Sampling Sequence
construction of HSSM processes (see Theorem 1) and does not require any knowledge
of the partial exchangeable partition, whereas the proof in Camerlenghi et al. (2019)
builds on the partial exchangeable partition function.

One of the advantages of our framework is that the gSSS properties allow us to
easily derive the distribution of the number of clusters when H0 is not diffuse. Indeed,
it can be deduced by considering possible coalescences of latent clusters (due to ties in
the i.i.d. sequence (φn)n of Theorem 1) forming a true cluster. Let us denote with D̃t

and D̃i,t the number of distinct clusters in Ot and Oit, respectively.

Proposition 4. Let H̃0(d|k) (for 1 ≤ d ≤ k) be the probability of observing exactly d
distinct values in the vector (φ1, . . . , φk) where the φns are i.i.d. H0. Then,

P{D̃i,t = d} =

ni(t)∑
k=d

H̃0(d|k)P{Di,t = k}

for d = 1, . . . , ni(t). The probability of D̃t has the same expression as above with Dt in
place of Di,t and n(t) in place of ni(t). If H0 is diffuse, then P{D̃i,t = d} = P{Di,t = d}
and P{D̃t = d} = P{Dt = d}, for every d ≥ 1.

The assumption of atomic base measures behind HDP and HPYP has been used in
many studies, and some of its theoretical and computational implications have been in-
vestigated (e.g., see Nguyen (2016) and Sohn and Xing (2009)), whereas the implications
of the use of mixed base measures are not yet well studied, especially in hierarchical
constructions. In the following we state some new results for the case of a spike-and-slab
base measure.

Proposition 5. Assume that H0(dx) = aδx0(dx)+ (1−a)HC(dx), where a ∈ (0, 1), x0

is a point of X and HC is a diffuse measure on X, then

P{D̃i,t = d} = (1− a)dP{Di,t = d}+
ni(t)∑
k=d

(
k

d− 1

)
ak+1−d(1− a)d−1P{Di,t = k},

for d = 1, . . . , ni(t). The probability of D̃t has the same expression as above with Dt in
place of Di,t and nt in place of ni,t. Moreover,

E[D̃i,t] = 1− E[(1− a)Di,t ] + (1− a)E[Di,t] ≤ E[Di,t]

and E[D̃t] has an analogous expression with Di,t replaced by Dt.
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For a Gibbs-type EPPF with σ > 0, using results in Gnedin and Pitman (2005), we
get

qn(k) = Vn,kSσ(n, k),

where Vn,k satisfies the partial difference equation in (2.4) and Sσ(n, k) is a generalized
Stirling number of the first kind, defined as

Sσ(n, k) =
1

σkk!

k∑
i=1

(−1)i
(
k

i

)
(−iσ)n,

for σ 
= 0 and S0(n, k) = |s(n, k)| for σ = 0, where |s(n, k)| is the unsigned Stirling
number of the first kind, see Pitman (2006). See De Blasi et al. (2015) for an up-to-date
review of Gibbs-type prior processes.

For the hierarchical PY process the distribution qn(k) has closed-form expression

qn(k) =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1
Sσ(n, k),

when 0 < σ < 1 and θ > −σ, whilst

qn(k) =
θkΓ(θ)

Γ(θ + n)
|s(n, k)|,

when σ = 0.

For the Gnedin model (Gnedin, 2010) the distribution qn(k) is

qn(k) =

(
n− 1

k − 1

)
n!

k!
νn,k, with νn,k =

(γ)n−k

∏k−1
i=1 (i

2 − γi+ ζ)∏n−1
m=1(m

2 + γm+ ζ)
. (4.1)

In the supplementary material (Bassetti et al., 2019b), we provide a graphical illus-
tration of the prior distributions presented here above and a sensitivity analysis with
respect to the prior parameters.

4.2 Asymptotic Distribution of the Cluster Size

An exchangeable random partition (Πn)n≥1 has asymptotic diversity S if

|Πn|/cn → S a.s. (4.2)

for a positive random variable S and a suitable normalizing sequence (cn)n≥1. Asymp-
totic diversity generalizes the notion of σ-diversity, see Definition 3.10 in Pitman (2006).
An exchangeable random partition (Πn)n≥1 has σ-diversity S if (4.2) holds with cn =
nσ. For any Gibbs-type partition (Πn)n≥1, (4.2) holds with cn = 1 if σ < 0, cn = log(n)
if σ = 0, and cn = nσ if σ > 0 (see Section 6.1 of Pitman (2003) and Lemma 3.1 in
Pitman (2006)).
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In the following propositions, we use the (marginal) limiting behaviour (4.2) of the

random partitions Π
(i)
n (i = 0, . . . , I), to obtain the asymptotic distribution of Di,t and

Dt assuming cn = nσL(n), with L slowly-varying.

The first general result deals with HSSM where Πn = Π
(i)
n satisfies (4.2) for every

i = 1, . . . , I and cn → +∞ and hence the cluster size |Π(i)
n | diverges to +∞.

Proposition 6. Assume that Π(0) and Π(i) (for i = 1, . . . , I) are independent ex-

changeable random partitions such that |Π(0)
n |/an (|Π(i)

n |/bn for i = 1, . . . , I, respectively)

converges almost surely to a strictly positive random variable D
(0)
∞ (D

(i)
∞ , respectively)

for suitable diverging sequences an and bn. Moreover assume that an = nσ0L0(n) and
bn = nσ1L1(n), with σi ≥ 0 and Li is a slowly varying function, i = 0, 1, and set
dn := abn = nσ0σ1L0(n

σ1L1(n)).

(i) If limt→+∞ ni(t) = +∞ for some i, then for t → +∞

Di,t

dni(t)
→ D(0)

∞

(
D(i)

∞

)σ0

a.s.

(ii) If limt→+∞ ni(t) = +∞ and ni(t)/n(t) → wi > 0 for every i = 1, . . . , I then for
t → +∞

Dt

dn(t)
→ D(0)

∞

(
I∑

i=1

wσ1

i D(i)
∞

)σ0

a.s.

Remark 2. Part (ii) extends to HSSM with different group sizes, ni(t), the results in
Theorem 7 of Camerlenghi et al. (2019) for HNRMI with groups of equal size. Both part
(i) and (ii) provide deterministic scaling of diversities, in the spirit of Pitman (2006),
and differently from Camerlenghi et al. (2019) where a random scaling is obtained.

Remark 3. Combining Propositions 4 and 6 one can obtain similar asymptotic results
also for D̃i,t and D̃t. For instance, one can prove that, under the same assumptions of

Proposition 4, if H0(dx) = a
∑M

i=1 βiδxi(dx)+(1−a)HC(dx) with 0 < a < 1,
∑

i βi = 1
and HC diffuse (as in the spike-and-slab case), for t → +∞ one has

D̃i,t

dni(t)
→ (1− a)D(0)

∞

(
D(i)

∞

)σ0

a.s.

and

D̃t

dn(t)
→ (1− a)D(0)

∞

(
I∑

i=1

wσ1
i D(i)

∞

)σ0

a.s.

The second general result describes the asymptotic behaviour of Di,t and Dt in
presence of random partitions for which cn = 1 for every n.

Proposition 7. Assume that Π(0) and Π(i), i = 1, . . . , I are independent exchangeable
random partitions and that limt→∞ ni(t) = +∞ for every i = 1, . . . , I.
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(i) If |Π(i)
n | converges a.s. to a positive random variable Ki as n → +∞, then for

every k ≥ 1

lim
t→+∞

P {Di,t = k} =
∑
m≥k

P {Ki = m} q(0)m (k),

and

lim
t→+∞

P{Dt = k} =
∑

m≥max(I,k)

∑
m1+···+mI=m,

1≤mi

q(0)m (k)

I∏
i=1

P{Ki = mi}.

(ii) If |Π(i)
n |/bn converges a.s. to a strictly positive random variable D

(i)
∞ for a suitable

diverging sequences bn and |Π(0)
n | converges a.s. to a positive random variable K0

as n → +∞, then, for every k ≥ 1,

lim
t→+∞

P{Dt = k} = lim
t→+∞

P{Di,t = k} = P{K0 = k}.

Starting from Propositions 6 and 7, analytic expressions for the asymptotic distri-
butions of Di,t and Dt can be deduced for some special HSSMs.

As an example, consider the HGP and the HPYGP in Examples 3 and 4. If (Πn)n
is a Gnedin’s partition, then |Πn| converges almost surely to a random variable K (see
Gnedin (2010) and Example S.3 in the supplementary material (Bassetti et al., 2019a))
and the asymptotic behaviour of the number of clusters can be derived from Proposition
7 as stated here below.

Proposition 8. In a HGP (γ0, ζ0, γ1, ζ1, H0), one has

lim
t→+∞

P {Di,t = k} =
cγ1,ζ1

k!

(
k−1∏
i=1

(i2 − γ0i+ ζ0)

)

×
∑
m≥k

(γ0)m−k

(k − 1)!(m− k)!

m−1∏
j=1

(j2 − γ1j + ζ1)

(j2 + γ0j + ζ0)

with

cγ1,ζ1 =
Γ(1 + (γ1 +

√
γ2
1 − 4ζ1)/2)Γ(1 + (γ1 −

√
γ2
1 − 4ζ1)/2)

Γ(γ1)
.

In contrast, in a HPY GP (σ0, θ0, γ1, ζ1, H0),

lim
t→+∞

P{Dt = m} = lim
t→+∞

P{Di,t = m} = cγ1,ζ1

∏m−1
l=1 (l2 − γl + ζ)

m!(m− 1)!
.

For HPYPs one can derive explicit asymptotic distributions using the previous gen-
eral results. From now on, (Πn)n ∼ PY (σ, θ) denotes a random partition with Pitman-
Yor EPPF of parameter (σ, θ). If (Πn)n ∼ PY (σ, θ) with 0 < σ < 1 and θ > −σ,
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then |Πn|/nσ converges almost surely and in Lp (for every p > 0) to a strictly positive
random variable Sσ,θ with density

gσ,θ(s) :=
Γ(θ + 1)

Γ( θσ + 1)
sθ/σgσ(s), s > 0, (4.3)

where gσ is the type-2 Mittag-Leffler density, i.e. the unique density such that∫ +∞

0

xpgσ(x)dx =
Γ(p+ 1)

Γ(pσ + 1)
. (4.4)

See Theorem 3.8 in Pitman (2006). Moreover, if σ = 0, we have that |Πn|/ log(n)
converges almost surely and in Lp for every p > 0 to θ > 0.

On the basis of these results, Proposition 6 can be specialized for the case of HPYPs
and convergence in Lp obtained.

Proposition 9. Assume that Π(0) ∼ PY (σ0, θ0) and Π(i) ∼ PY (σ1, θ1) (for i =
1, . . . , I) with σ0, σ1 ≥ 0. Then (i) and (ii) of Proposition 6 hold a.s. and in Lp, p > 0,
with the following specifications:

(i) for HPY P (σ0, θ0;σ1, θ1, H0) with σ0, σ1 > 0, dn = nσ0σ1 and

Di,∞
L
= Sσ0,θ0

(
S
(i)
σ1,θ1

)σ0

, D∞
L
= Sσ0,θ0

(
I∑

i=1

wσ1
i S

(i)
σ1,θ1

)σ0

,

with Sσ0,θ0 , S
(1)
σ1,θ1

, . . . , S
(I)
σ1,θ1

independent random variables with densities gσ0,θ0

and gσ1,θ1 , respectively;

(ii) for HPY DP (σ0, θ0; θ1, H0) with σ0 > 0, dn = log(n)σ0 and

Di,∞
L
= D∞

L
= Sσ0,θ0θ

σ0
1 ,

with Sσ0,θ0 random variable with density gσ0,θ0 ;

(iii) for HDPY P (θ0;σ1, θ1, H0) with σ1 > 0, dn = σ1 log(n) and Di,∞ = D∞ = θ0;

(iv) for HDP (θ0; θ1, H0), dn = log(log(n)) and Di,∞ = D∞ = θ0.

Proposition 9 can be used for approximating the moments (e.g., expectation and
variance) of the number of clusters as stated in the following

Corollary 2. Let xn � yn if and only if limn→+∞ xn/yn = 1, then under the same
assumptions of Proposition 9, for every r > 0:

(i) for HPY P (σ0, θ0, σ1, θ1) with σ0, σ1 > 0:

E
[
Dr

i,t

]
� ni(t)

rσ0σ1
Γ(θ0 + 1)

Γ
(

θ0
σ0

+ 1
) Γ

(
r + θ0

σ0
+ 1

)
Γ(θ0 + rσ0 + 1)

Γ(θ1 + 1)

Γ
(

θ1
σ1

+ 1
) Γ

(
rσ0 +

θ1
σ1

+ 1
)

Γ(θ1 + rσ0σ1 + 1)
;
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(ii) for HPY DP (θ0, σ0; θ1) with σ0 > 0:

E
[
Dr

i,t

]
� (log(ni(t)))

rσ0θrσ0
1

Γ(θ0 + 1)

Γ
(

θ0
σ0

+ 1
) Γ

(
r + θ0

σ0
+ 1

)
Γ(θ0 + rσ0 + 1)

;

(iii) for HDPY P (θ0, σ1, θ1) with σ1 > 0: E
[
Dr

i,t

]
� log(ni(t))

r(σ1θ0)
r;

(iv) for HDP (θ0, θ1): E
[
Dr

i,t

]
� θr0 log(log(ni(t)))

r.

In Figure 2, we compare exact and asymptotic values (see Proposition 3 and Corol-
lary 2, respectively) of the expected marginal number of clusters for the HSSMs in the
PY family: HDP (θ0; θ1), HDPY P (θ0;σ1, θ1), HPY P (σ0, θ0;σ1, θ1) and HPY DP (θ0,
σ0; θ1) (different rows of Figure 2). For each HSSM we consider ni(t) increasing from 1
to 500 and different parameter settings (different columns and lines). For the HDP the
exact value (dashed lines) is well approximated by the asymptotic one (solid line) for
all sample sizes ni(t), and different values of θi (gray and blacks lines in the left and
right plots of panel (i)). For the HPYP, the results in panel (ii) show that there are
larger differences when θi, i = 0, 1 are large and σ0 and σ1 are close to zero (left plot).
The approximation is good for small θi (right plot) and improves slowly with increasing
ni(t) for smaller σi (gray lines in the right plot). In the panels (iii) and (iv) for HDPYP
and HPYDP, there exist parameter settings where the asymptotic approximation is not
satisfactory and is not improving when ni(t) increases.

Our numerical results point out that the asymptotic approximation for both PY and
HPY lacks of accuracy for some parameters settings. Thus, the exact formula for the
number of clusters should be used in the applications when calibrating the parameters
of the process.

5 Chinese Restaurant Franchise Sampler

Random measures and hierarchical random measures are widely used in Bayesian non-
parametric inference (see Hjort et al. (2010) for an introduction) as prior distributions
for the parameters of a given density function. In this context a further stage is added
to the hierarchical structure of Equation (3.7) involving an observation model

Yi,j |ξi,j ind∼ f(·|ξi,j),

where f is a suitable kernel density.

The resulting model is an infinite mixture, which is the object of the Bayesian
inference. In this framework, the posterior distribution is usually not tractable and
Gibbs sampling is used to approximate the posterior quantities of interest. There are
two main classes of samplers for posterior approximation in Bayesian nonparametrics:
marginal (see Escobar (1994) and Escobar and West (1995)) and conditional (Walker
(2007), Papaspiliopoulos and Roberts (2008), Kalli et al. (2011)) samplers. See also
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Figure 2: Exact (dashed lines) and asymptotic (solid lines) expected marginal number
of clusters E(Di,t) when ni(t) = 1, . . . , 500 for different HSSMs.
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Favaro and Teh (2013) for an up-to-date review. In this section, we extend the marginal
sampler for HDP mixture (see Teh et al. (2006), Teh (2006) and Teh and Jordan (2010)),
to our general class of HSSMs. We present the sampler for the case kernel and base
measure are conjugate. When this assumption is not satisfied our sampling method can
be easily modified following the auxiliary variable sampler of Neal (2000) and Favaro
and Teh (2013).

Following the notation in Section 3.2, we consider the data structure

Yi,j , ci,j : i ∈ J , and j = 1, . . . , ni··,

di,c : i ∈ J , and c = 1, . . . ,mi·,

φd : d ∈ D,

where Yi,j is the j-th observation in the i-th group, ni·· = ni is the total number of
observations in the i-th group, and J = {1, . . . , I} is the set of group indexes. The
latent variable ci,j denotes the table at which the j-th “customer” of “restaurant” i sits
and di,c the index of the “dish” served at table c in restaurant i. The random variables
φd are the “dishes” and D = {d : d = di,c for some i ∈ J and c ∈ {1, . . . ,mi·}} is the
set of indexes of the served dishes.

Let us assume that the distribution H of the atoms φds has density h and the
observations Yi,j have a kernel density f(·|·), then our hierarchical infinite mixture
model is

Yi,j |φ, c,d ind∼ f
(
·|φdi,ci,j

)
, φ|c,d i.i.d.∼ h(·), [c,d] ∼ HSSM,

where

c = [ci : i ∈ J ], with ci = [ci,j : j = 1, . . . , ni··],

d = [di,c : i ∈ J , c = 1, . . . ,mi·], φ = [φd : d ∈ D],

and, with a slight abuse of notation, we write [c,d] ∼ HSSM in order to denote the
distribution of the labels [c,d] obtained from a HSSM as in (3.7). If we define

d∗i,j = di,ci,j and d∗ = [d∗i,j : i ∈ J , j = 1, . . . , ni··],

then [c,d] and [c,d∗] contain the same amount of information, indeed d∗ is a function
of d and c, while d is a function of d∗ and c. From now on, we denote with Y = [Yi,j :
i ∈ J , j = 1, . . . , ni··] the set of observations.

If f and H are conjugate, the Chinese Restaurant Franchise Sampler of Teh et al.
(2006) can be generalized and a new sampler can be obtained for our class of models.

Denote with the superscript ¬ij the counts and sets in which the customer j in the
restaurant i is removed and, analogously, with �ic the counts and sets in which all the
customers in the table c of the restaurant i are removed. We denote with p(X) the
density of the random variable X.

The proposed Gibbs sampler simulates iteratively the elements of c and d from
their full conditional distributions, where the latent variables φd are integrated out
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analytically. In sampling the latent variable c, we need to sample jointly [c,d∗] and,
since d is a function of [c,d∗], this also gives a sample for d. In order to improve the
mixing we re-sample d given c in a second step. In summary, the sampler iterates for
i = 1, . . . , I according to the following steps:

(i) sample [ci,j , d
∗
i,j ] from p(ci,j , d

∗
i,j |Y , c�ij ,d∗�ij) (see Equation (S.32) in the sup-

plementary material (Bassetti et al., 2019a)), for j = 1, . . . , ni··;

(ii) (re)-sample di,c from p(di,c|Y , c,d�ic) (see Equation (S.34) in the supplementary
material (Bassetti et al., 2019a)), for c = 1, . . . ,mi·.

A detailed description of the Gibbs sampler is given in the supplementary material
(Bassetti et al., 2019a).

6 Illustrations

6.1 Simulation Experiments

We compare some of the HSSMs described in Section 3 on synthetic data generated
under different assumptions on the true model. In the first experimental setting, we
consider three groups of observations sampled from three-component normal mixtures
with common mixture components, but different mixture probabilities:

Y1j
iid∼ 0.3N (−5, 1) + 0.3N (0, 1) + 0.4N (5, 1), j = 1, . . . , 100,

Y2j
iid∼ 0.3N (−5, 1) + 0.7N (0, 1), j = 1, . . . , 50,

Y3j
iid∼ 0.8N (−5, 1) + 0.1N (0, 1) + 0.1N (5, 1), j = 1, . . . , 50.

The parameters of the different prior processes are chosen such that the marginal ex-
pected number of clusters is E(Di,t) = 5 and its variance is between 1.97 and 3.53
assuming ni(t) = ni = 50 with t = 1 for i = 1, . . . , 3.

In the second and third experimental settings, we consider ten groups of observa-
tions from two- and three-component normal mixtures respectively with one common
component across groups. In the second experiment, we assume

Yij
iid∼ 0.7N (−5, 1) + 0.3N (−4 + i, 1), j = 1, . . . , ni(t)

with ni(t) increasing from 5 to 100 with t = 1 and for i = 1, . . . , 10. In the third setting,
we assume a smaller weight for the common component and larger number of group
specific components:

Yij
iid∼ 0.2N (−5, 1) + 0.4N (−6− i, 1) + 0.4N (−4 + i, 1), j = 1, . . . , 20.

The parameters of the prior processes are chosen such that the marginal expected value
is E(Di,t) = 10 and the variance is between 4.37 and 6.53 assuming ni(t) = 20 with
t = 1 for i = 1, . . . , 10.
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For each setting we generate 50 independent datasets and run the marginal sampler
described in Section 5 with 6, 000 iterations to approximate the posterior predictive
distribution and the posterior distribution of the clustering variables c and d. We discard
the first 1, 000 iterations of each run. All inferences are averaged over the 50 independent
runs.

We compare the models by evaluating their co-clustering errors and predictive abil-

ities (see Favaro and Teh (2013) and Dahl (2006)). We denote with d̃(m) = (d
(m)
1,c11

, . . . ,

d
(m)
1,c1n1

, . . . , d
(m)
I,cI1

, . . . , d
(m)
I,cInI

), the vector of allocation variables for all the observations,

sampled at the Gibbs iteration m = 1, . . . ,M , where M is the number of Gibbs itera-
tions. The co-clustering matrix of posterior pairwise probabilities of joint classification
is estimated by:

Plk =
1

M

M∑
m=1

δ{
d̃
(m)
l

} (d̃(m)
k

)
l, k = 1, . . . , n....

Let d̃0 be the true value of the allocation vector d̃. The co-clustering error can be
measured as the average L1 distance between the true pairwise co-clustering matrix,
δ{d0l} (d0k) and the estimated co-clustering probability matrix, Plk, i.e.:

CN =
1

n2
...

n...∑
l=1

n...∑
k=1

|δ{d0l} (d0k)− Plk|. (6.1)

The following alternative measure can be defined by using the Hamming norm and
the estimated co-clustering matrix, I(Plk > 0.5):

CN∗ =
1

n2
...

n...∑
l=1

n...∑
k=1

|δ{d0l} (d0k)− I(Plk > 0.5)|. (6.2)

Both accuracy measures CN and CN∗ attain 0 in absence of co-clustering error and 1
when co-clustering is mispredicted.

The L1 distance between the true group-specific densities, f(Yi,ni+1) and the corre-
sponding posterior predictive densities, p(Yi,ni+1|Y), can be used to define the predictive
score:

SC =
1

I

I∑
i=1

∫
|f(Yi,ni+1)− p(Yi,ni+1|Y)| dYi,ni+1.

Finally, we consider the posterior median ( ̂q0.5(D)) and variance (V̂ (D)) of the total
number of clusters D.

The results in Table 1 point out similar co-clustering accuracy across HSSMs and
experiments. In the first and second experimental settings, HPYP and HDPYP have
significantly small co-clustering errors, CN and CN∗. As regard the predictive score SC,
the seven HSSMs behave similarly in the three restaurants experiment (panel a), whereas
in the two-components experiment the HDPYP performs slightly better with respect to
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HDP HPYP HGP HDPYP HPYDP HGDP HGPYP
(a) Three Restaurants – 3-component normal mixtures

CN 0.0975 0.0829 0.1220 0.0668 0.0888 0.1018 0.0982
CN∗ 0.0073 0.0056 0.0311 0.0053 0.0057 0.0079 0.0070
SC 0.5732 0.5556 0.6121 0.5368 0.5651 0.5872 0.5917
̂q0.5(D) 7 7 6.7 5 6.96 6.04 6

V̂ (D) 3.3365 4.5520 2.5166 2.1800 4.2211 2.3580 2.3509
(b) Ten Restaurants – 2-component normal mixtures

CN 0.3120 0.2570 0.4115 0.2674 0.2825 0.4003 0.3967
CN∗ 0.1870 0.1598 0.5558 0.1568 0.1617 0.5508 0.5462
SC 2.2666 2.2217 2.2657 2.1186 2.1612 2.2855 2.3054
̂q0.5(D) 19.14 19 14.98 15.34 22 14.14 14.04

V̂ (D) 9.3477 11.8293 6.4858 6.5009 13.2239 6.0336 5.8835
(c) Ten Restaurants – 3-component normal mixtures

CN 0.3111 0.3124 0.3125 0.3048 0.3175 0.2977 0.2977
CN∗ 0.3141 0.3152 0.3261 0.3009 0.3280 0.2921 0.2918
SC 5.2192 4.9978 5.3573 4.8874 4.6848 4.5712 4.6250
̂q0.5(D) 24 26 22.12 20.24 29 15 15

V̂ (D) 9.2830 13.5746 12.2650 6.9006 14.2011 5.2881 4.9160

Table 1: Model accuracy for seven HSSMs in three experimental settings (panel (a),
(b) and (c)) using different measures: co-clustering norm (CN), threshold co-clustering

norm (CN∗), predictive score (SC), posterior median ( ̂q0.5(D)) and variance (V̂ (D)) of
the number of clusters. The accuracy has been estimated with 50 independent Markov
Chain Monte Carlo (MCMC) experiments. Each experiment consists in 6000 MCMC
iterations.

the other HSSMs. In presence of large heterogeneity across restaurants (third setting),
the HGPYP is performing best following the co-clustering norm and the predictive score
measures. A comparison between HPYP and HGPYP shows that these results do not
depend on the number of observations and can be explained by a better fitting of tails
and dispersion of the group-specific densities provided by the HGPYP. For illustrative
purposes, we provide in Figure 3 a comparison of the log-predictive scores of the two
models for an increasing number of observations.

In the first setting, the posterior number of clusters, ̂q0.5(D), for all the HSSMs
(panel (a) in Table 1) is significantly close to the true value, that corresponds to 3
mixture components. Increasing the number of restaurants (second and third settings),
the HPYP tends to have extra clusters causing larger posterior median and variance of

the number of clusters ( ̂q0.5(D) and V̂ (D) in Table 1). Conversely, the HGPYP have a
smaller dispersion of the number of clusters with respect to the HPYP.

The results for the third experiment suggest that HGPYP performs better when
groups of observations are heterogeneous. Also increasing the number of observations,
HGPYP provides a consistent estimate of the true number of components (Figure 3).
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Figure 3: Top-left: Log-posterior predictive score for the right tail (above the 97.5%
quantile of the true distribution). Top-right: posterior mean when the number of cus-
tomers increases for HGPYP (solid) and HPYP (dashed). Bottom: posterior number
of clusters for the HPYP (left) and HGPYP (right). In this setting the true number of
clusters is 11.

In conclusion, our experiments indicate that using the Pitman-Yor process at some
stage of the hierarchy may lead to a better accuracy. The HDPYP did reasonably well in
all our experiments in line with previous findings on hierarchical Dirichlet and Pitman-
Yor processes for topic models (see Du et al. (2010)). Also, using Gnedin process at the
top of the hierarchy might lead to a better accuracy when groups of observations are
heterogeneous. Moreover, when the researcher is interested in a consistent estimate of
the number of components, HGPYP should be preferred. Further details and results are
in the supplementary material (Bassetti et al., 2019b).

6.2 Real Data Application

Bayesian nonparametrics is used in economic time series modelling to capture obser-
vation clustering effects (e.g., see Hirano, 2002; Griffin and Steel, 2011; Bassetti et al.,
2014; Kalli and Griffin, 2018; Billio et al., 2019). In this paper, we consider the industrial
production index, an important indicator of macroeconomic activity used in business
cycle analysis (see Stock and Watson (2002)). One of the most relevant issues in this
field concerns the classification of observations by allowing for different parameter values
in periods (called regimes) of recession and expansion.

The data has been previously analysed by Bassetti et al. (2014) and contains the
seasonally and working day adjusted industrial production indexes (IPI) at a monthly
frequency from April 1971 to January 2011 for both United States (US) and Euro-
pean Union (EU). We generate autoregressive-filtered IPI quarterly growth rates by
calculating the residuals of a vector autoregressive model of order 4.

We follow a Bayesian nonparametric approach based on HSSM prior for the estima-
tion of the number of regimes or structural breaks. Based on the simulation results, we



F. Bassetti, R. Casarin, and L. Rossini 833

Figure 4: (a) Co-clustering matrix for the US (bottom left block) and EU (top right
block) business cycles and cross-co-clustering (main diagonal blocks) between US and
EU for the HPYP. (b) Posterior number of clusters. Total (b.1), marginal for US (b.2)
and EU (b.3) and common (b.4) for the HPYP (solid line) and for the HGPYP (dashed
line).

focus on the HPYP, with hyperparameters (θ0, σ0) = (1.2, 0.2) and (θ1, σ1) = (2, 0.2),
and on the HGPYP, with hyperparameters (γ0, ζ0) = (14.7, 130) and (θ1, σ1) = (2, 0.23),
such that the prior mean of the number of clusters is 5. The main results of the nonpara-
metric inference can be summarized through the implied data clustering (panel (a) of
Figure 4) and the marginal, total and common posterior number of clusters (panel (b)).

One of the most striking feature of the co-clustering is that in the first and second
block of the minor diagonal there are vertical and horizontal black lines. They correspond
to observations of a country, which belong to the same cluster that is the same phase
of the business cycle.

Another feature that motivates the use of HSSMs is given by the black horizontal
and vertical lines in the two main diagonal blocks. They correspond to observations of
the two countries allocated to common clusters. The appearance of the posterior total
number of clusters (see panel b.1) suggests that at least three clusters should be used in
a joint modelling of the US and EU business cycle. The larger dispersion of the marginal
number of cluster for EU (b.3) with respect to US (b.2) confirms the evidence in Bassetti
et al. (2014) of a larger heterogeneity in the EU cycle. Finally, we found evidence (panel
b.4) of common clusters of observations between EU and US business cycles.

Supplementary Material

Supplementary material A to Hierarchical Species Sampling Models
(DOI: 10.1214/19-BA1168SUPPA; .pdf). This document contains the derivations of the
results of the paper and a detailed analysis of the generalized species sampling (with a
general base measure). It also describes the Chinese Restaurant Franchise Sampler for
Hierarchical Species Sampling Mixtures.

https://doi.org/10.1214/19-BA1168SUPPA
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Supplementary material B to Hierarchical Species Sampling Models
(DOI: 10.1214/19-BA1168SUPPB; .pdf). This document provides further numerical il-
lustrations and robustness checks.
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