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Abstract—Recently, research endeavors have shown the poten-
tiality of Cycle-Consistent Adversarial Networks (CycleGAN) in
style transfer. In Cycle-Consistent Adversarial Networks, the con-
sistency loss is introduced to measure the difference between the
original images and the reconstructed in both directions, forward
and backward. In this work, the combination of Cycle-Consistent
Adversarial Networks with Fast and Adaptive Bidimensional Em-
pirical Mode Decomposition (FABEMD) is proposed to perform
style transfer on images. In the proposed approach the cycle-
consistency loss is modified to include the differences between the
extracted Intrinsic Mode Functions (BIMFs) images. Instead of
an estimation of pixel-to-pixel difference between the produced
and input images, the FABEMD is applied and the extracted
BIMFs are involved in the computation of the total cycle loss. This
method enriches the computation of the total loss in a content-to-
content and style-to-style comparison by connecting the spatial
information to the frequency components. The experimental
results reveal that the proposed method is efficient and produces
qualitative results comparable to state-of-the-art methods.

I. INTRODUCTION

Neural Style transfer is a deep learning technique that
renders a content image in different styles. It is based on
Convolutional Neural Networks (CNNs) and creates a stylised
image by separating and recombining image content and style.
Style transfer is popular for the creation of artificial artwork
from photos with extensive usage in mobile application de-
velopment and the game industry. Fig. 1 illustrates a style
transfer example. The content image (left image) is an image
of Gendarmenmarkt square in Berlin and the style image
(middle image) is the famous painting “Cafe Terrace at night”
of Van Gogh. The third image is the new stylised image created
by the style transfer method [1] , which fuses the content
image of Gendarmenmarkt square with the style image of Van
Gogh.

Before the Deep Learning era, the style transfer problem
was mainly based on parametric and non-parametric methods
for texture synthesis and transfer. The parametric approach
of [2] presents a method for synthesis of a novel image
from an input texture by generating and sampling randomly.

Fig. 1. Style transfer from a content image (Gendarmenmarkt square in
Berlin) and a style image (painting of Vincent Van Gogh “Cafe Terrace at
night”) for the generation of a new stylised image [1]

Wei and Levoy [3] presented a different method based on
Markov Random Field texture models. It generates textures
through a deterministic searching process. Bertalmio et al. [4]
decompose an image into the sum of two functions, one that
can be efficiently reconstructed via inpainting and one that
can be efficiently reconstructed via texture synthesis. Efros
and Freeman [5] synthesise a new texture by taking patches
of an existing texture and append them together in a consistent
way. However, the recent advances in Neural Style Transfer
have shown significant improvement of these parametric and
non-parametric methods.

The method proposed by Gatys et al [1] has been a seminal
work in style transfer. This technique uses Deep Neural
Networks (DNN) to encode not only the content but also the
style information of an image, using the Gram matrices of the
input style image to capture the linear dependencies among
several feature vectors. A similar approach with DNNs [6]
trains a DNN which is able to learn different characteristics
that specify each style, such as colors, shapes and edges.
Huang et al. [6] adjust channel-wise statistics of the content
features by adaptive instance normalisation (AdaIN) and train
a feature decoder by utilizing combinational scale-adapted
content and style losses. In [7] the authors introduce an in-
stance normalisation module to replace batch normalisation in
order to improve the performance of the deep neural generators
in style transfer from painting images. Recently, Sheng et
al. [8] proposed feature decoration that generalises AdaIN



and whitening and coloring transformation (WCT). They use
Zero-phase Component Analysis (ZCA) in the proposed style
transfer method. In [9] the authors propose an adversarial feed-
forward network for arbitrary style transfer. They introduce
techniques to tackle the problem of adversarial training from
multi-domain data and train a discriminator to rank and find
the representative generated images in each style category.

The style transfer becomes more challenging when the
proposed style is not based on a single image but from a set of
paintings. The style transfer from a collection of paintings of a
creator or a style is a more complex challenge since it involves
the representation of images with proper features which could
describe the style of a school of art (impressionism, cubism,
etc.) or of a creator. In this direction several works have been
proposed to tackle style transfer from a collection of images
such as CycleGAN [10], Gated-GAN [11], Artsy-GAN [12]
and the work of Sanakoyeu et al. [13].

In this work, we extend the recent Cycle-Consistent Adver-
sarial Network architecture involving also a spectral decompo-
sition in the optimisation problem of loss minimisation, so as
to improve the quality of the stylised images. This modification
allows the analysis of images into its key texture elements
through the Bidimensional Intrinsic Mode Functions (BIMFs)
[14] and provides a more qualitative definition of the loss
function. A modification in the estimation of the cycle loss
function is proposed with the computation of the BIMFs on
the given content and style images. Instead of the original
BEMD [15], the FABEMD [16] is examined since it is faster
and provides an adaptive size of window for the detection of
extrema during the BIMF extraction process.

II. RELATED WORK

Gated-GANs have been proposed by Chen et al. [11], as a
novel adversarial network, in which it is possible to transfer
multiple styles in one single model. Gated-GANs have three
modules: an encoder, a gated transformer, and a decoder.
The gated transformer allows the user to select style by
switching gate. Once the gated transformer is skipped, then the
encoder and decoder modules are trained as an auto-encoder
to preserve semantic consistency between content images and
their stylised ones. Gated-GANs are trained for multiple styles
in order to generate new stylised images through weighted
connections between the branches of the gated transformer.
However, our proposed method includes a Cycle consistency
loss function which penalizes incorrect reconstruction of the
input image from the translated one (content-to-content and
style-to-style generation).

Zhu et al. [10] propose an unpaired image-to-image trans-
lation, where the style of a given collection of images can be
transferred to the content of a photo. The proposed architecture
uses Generators and Discriminators to extend the architecture
of a Generative Adversarial Network (GAN) [17] to their
Cycle-Consistent Adversarial Network architecture, known
also as CycleGAN, which also learn an inverse generator that
is able to create an image identically to the original content
image from the stylised one. An example is presented in Fig.

Fig. 2. Style transfer to a content photograph from a collection of Van Gogh’s
painting images [10]

2. However, our proposed approach extends the CycleGAN
architecture by integrating the FABEMD component. The
representation of content and style images through a set of
BIMFs is introduced and examined in the cycle-consistency
loss.

Sanakoyeu et al. [13] adopt an encoder-decoder network
architecture. They also introduce a fix point loss that ensures
stylisation has converged and reached a fix-point after one
feed-forward pass. This style-aware content loss forces the
stylisation to take place in the decoder. Contrary to this style-
aware content loss we keep the cycle consistent loss and
combine it with frequency elements so as to achieve high-
quality stylized images that also preserve the content patterns.

Liu et al. [18] propose a variation of CycleGAN, namely the
Artsy-GAN, by replacing the Cycle-Consistency loss with the
so-called perception loss [12]. The purpose of this variation is
to introduce a new objective function for diversity in image-
to-image translation. The generator of Artsy-GAN model
consists of three branches. Each branch receives the same input
and produces three different channels of the output images:
one luminance channel and two color channels. The output
image is reconstructed in its final RGB format. However,
the perception loss is calculated based mainly on color and
luminance values, and not on the content and style patterns
and details that we are tackling through the integration of
frequency components inserted by the decomposition process
via FABEMD.

In the present study a similar approach is examined having
as a goal to transfer the style of a collection of images to
the content of an image. One of the main challenges is to
pass the style of the collection to the content image, without
significant deformations on the objects included in content
image. Moreover, we examine the application of Empirical
Mode Decomposition in the loss function computation of the
CycleGANs model, and how the use of a subset of BIMFs
affects the quality of the stylised image. In general, the empir-
ical mode decomposition (EMD) method decomposes signals
into a set of spectral components, known as Intrinsic Mode
Functions (IMFs). The EMD is a nonlinear non-stationary
and an adaptive decomposition method and analyses a signal
into a finite and often small number of components. These
components form a complete and nearly orthogonal basis for
the original signal [19]. The higher index value of the IMF is,
the lower spatial frequency components of the original image
are involved. Fig. 3 and 4 present the bidimensional empirical



Fig. 3. The original landscape image and the extracted BIMFs.

Fig. 4. The image of the painting named “Customs House” by Monet Claude
and the extracted BIMFs.

mode decomposition of images into finite number of BIMFs.

III. BACKGROUND

A. Empirical Mode Decomposition

EMD analyses signals based on the local characteristics
(extrema) and serves as a spectral representation of nonlinear
and non-stationary data. EMD differs from Fourier or Fourier
based wavelet analysis [19]. It is based on local characteristics
in the original signal and are determined by two successive
minima and the maximum which necessarily belongs between
the two minima. EMD anaylizes nonstationary and nonlinear
signals into a finite number of IMFs. An essential requirement
for non-stationary and nonlinear data analysis is to have
an adaptive basis. The condition of adaptivity means that
the decomposition of the original signal is not based on
predetermined functions and the definition of basis is data-
dependent. In EMD this is achieved through the detection of
extrema.

We map visual content (images) into [−1, 1] so as to use
bidimensional EMD (BEMD).

BEMD decomposes an image into its bidimensional IMFs
(BIMFs) and a Residue, using the local spatial information, i.e.
group of pixels. The BIMFs have the following properties:
A. at any pixel, the mean value of the upper and lower

envelopes, defined by the local maxima and minima,
approximates zero.

B. they are locally orthogonal to each other.
In our approach the computation of BIMFs is based on a

modified version of BEMD, known also as Fast and Adaptive
Bidimensional Empirical Mode Decomposition (FABEMD).
FABEMD differs from the original BEMD algorithm, basically
in the process of estimating the upper and lower envelopes
and in limiting the number of iterations per BIMF to one. The
neighboring window method of Nunes et al. [15] is employed
to find the local maxima and minima points, in the following

steps, where a data point is considered as a local maximum
(minimum), if its value is strictly higher (lower) than all of its
neighbors within a given window. The FABEMD is described
below:

1) Set i = 1 and Si = I
2) Set j = 1 and WTj = Si

3) Obtain the local maxima map of WTj
, denoted as Pj

and local minima map of WTj
, denoted as Qj

4) Generate the upper envelope (UE) UEj
and the lower

envelope (LE) LTj
of WTj

, by interpolating the maxima
points in Pj and the minima points in Qj , respectively.

5) Find the mean envelope (ME) as MEj = (UEj +LEj )/2
6) Calculate WTj+1 as WTj+1 =WTj

−MEj

7) Check whether WTj+1 follows the BIMF properties and
find the standard deviation (SD), between WTj+1 and
WTj defined below so as to compare it to a desired
(low) threshold (0.01).

SD =

∑M
x=1

∑N
y=1 |WTj+1(x, y)−WTj

(x, y)|2∑M
x=1

∑N
y=1 |WTj

(x, y)|2
(1)

where (x, y) is the pixel position, M is the total number
of rows (image height) and N is the total number of
columns (image width) of the image array.

8) If WTj+1 meets the criteria as per step 7, then take
Wi = WTj+1 set Si+1 = Si and i = i + 1, go to step
9. Otherwise, set j = j + 1, go to step 3 and continue
up to step 8.

9) Determine if Si has less than three extrema points, and
if so, the Residue, R = Si, and the decomposition is
complete. Otherwise, go to step 2 and iterate again up
to step 9.

In this work, we leverage the FABEMD to extract the
BIMFs of content and style images for the computation of
Cycle-Consistent loss function of CycleGANs.

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) train a generative
model by formulating the problem as a supervised learning
problem with two sub-models: the generator model, which is
trained to generate new images, and the discriminator model
that classifies images as either real (from the domain) or fake
(generated). GANs have been applied in several domains of
application. Zhang, et al. [20] demonstrate the use of GANs
to generate realistic looking photos from textual descriptions
of simple objects like birds and flowers. Zhou et al., [21] use
ground-truth synthetic-to-synthetic correspondences, to train
a convolutional neural network, aiming to predict synthetic-
to-real, real-to-real and real-to-synthetic correspondences that
are cycle-consistent with the ground-truth. Godard et al. [22]
presented an unsupervised deep neural network for single im-
age depth estimation. Based on the concept of GANs, a novel
Neural Network architecture has been recently introduced and
used in style transfer.



1) Cycle-Consistent Adversarial Networks: Cycle-
Consistent Adversarial Networks learn mapping functions
between two domains X and Y given training samples
{xi}Ni=1 ∈ X and {yj}Nj=1 ∈ Y . The Cycle-GAN model
includes two mappings G : X → Y and F : Y → X . In
addition, the model introduces two adversarial discriminators
DX and DY , where DX distinguishes between images
{x} and stylised images {F (y)}. Similarly, DY aims to
discriminate between {y} and {G(x)}.

The total (full) objective contains two kinds of sub-
objectives to minimize:

1) adversarial losses [17] for matching the distribution of
generated images to the data distribution in the target
domain (style)

2) a cycle consistency loss to prevent the learned mappings
G and F from contradicting each other [10].

Adversarial Loss: Adversarial losses are applied [17] to
both mapping functions. For the mapping function G : X → Y
and its discriminator DY , the objective is expressed as:

LGAN (G,DY , X, Y ) = Ey∼Pdata(y)[logDY (y)]+ (2)
+ Ex∼Pdata(x)[log(1−DY (G(x))]

where, G tries to generate images G(x) that look similar
to images from domain Y , while DY aims to distinguish
between stylised samples G(x) and real samples y.

A similar adversarial loss is learned for the mapping func-
tion F : Y → X and its discriminator DX , denoted by
LGAN (F,DX , Y,X).

Cycle Consistency Loss: Cycle Consistency loss aims to
introduce a two-way direction between the generated image
and the original image. In other words, the learned mapping
from the original image to the generated one should be
“consistent” with its inverse mapping from the generated
image to the original one.

Forward and backward cycle consistency are defined as fol-
lows: For each image x from domain X , the image stylisation
cycle should be able to bring x back to the original image,
i.e. x→ G(x)→ F (G(x)) ≈ x, and this is known as forward
cycle consistency. In the same manner, for each image y from
domain Y , G and F should also satisfy backward cycle
consistency, defined as: y → F (y)→ G(F (y)) ≈ y.

The forward and backward cycle consistency determine the
following cycle consistency loss:

Lcyc(G,F ) = Ex∼Pdata(x)[‖F (G(x))− x‖1]+ (3)
+ Ey∼Pdata(y)[‖G(F (y))− y‖1]

Total Loss (Full Objective): The total loss of the
style transfer model with cycle-consistent adversarial net-
works is define as a combination of the adversarial losses
LGAN (G,DY , X, Y ) and LGAN (F,DX , Y,X) and the cycle-
consistency loss as follows:

L(G,F,DX , DY ) = LGAN (G,DY , X, Y )+ (4)
+ LGAN (F,DX , Y,X) + λLcyc(G,F )

where, λ controls the relative importance of the two objectives.
The total loss L is minimised by solving:

G∗, F ∗ = argminG,FmaxDX ,DY
L(G,F,DX , DY ) (5)

Fig. 5. The style transfer framework with Cycle-Consistent Adversarial
Networks

In our approach we combine the CycleGAN architecture
with the FABEMD decomposition. We extract BIMFs for both
content and style images in order to compute the total cycle
consistency loss function. In the following section a thorough
description of the proposed methodology is presented.

IV. METHODOLOGY

Based on the aforementioned Cycle-Consistent Adversarial
Networks and FABEMD, we present our proposed framework,
where the spectral decomposition of content and style images
is used to optimise the Generators G and F , and the Discrim-
inators DX and DY .

We denote by xbimf
i (k) the k-th BIMF corresponding to

the content image xi and by rbimf
i (k) the k-th BIMF of the

reconstructed image ri = F (G(xi)). Similarly, let ybimf
j (k)

be the k-th BIMF corresponding to the style image yj and by
sbimf
j (k) the k-th BIMF of the stylised image sj = G(F (yj)).

The total number K of extracted BIMFs is examined in the
experiments to find the optimal value of K. The forward and

Fig. 6. The proposed Cycle-Consistent Adversarial Networks with FABEMD
framework



Fig. 7. Comparison of our approach with the CycleGAN model and Sanakoyeu et al., [13] on the “monet2photo” dataset

backward cycle consistency determine the cycle consistency
loss as follows:

Lcyc(G,F ) =Ex∼Pdata(x)

K∑
k=1

[‖rbimf (k)− xbimf (k)‖1]+

(6)

+ Ey∼Pdata(y)

K∑
k=1

[‖sbimf (k)− ybimf (k)‖1]

while the total loss function remains the same.
In Fig. 6 we present our framework, in which the network

contains two generators F and G and two discriminators DX

and DY . The model architecture examined in this work is
similar to Isola et al. [23]. The first generator G takes an image
of a landscape and generates painting images of the given
style. The second generator F generates photos of landscapes,
given photos of paintings. There are two ways in which cycle-
consistency loss is calculated and used to update the generator
models in each training iteration.

Firstly, the cycle-consistency loss computes the difference
between the BIMFs of the input of G and the BIMFs of
the output of F , i.e. ‖rbimf (k)− xbimf (k)‖1. The generated
models are updated accordingly to reduce the differences in
the images. Secondly, the cycle-consistency loss computes the
difference between the BIMFs of the real image in domain Y

and the BIMFs of the stylised image (fake image in domain
Y), i.e. ‖sbimf (k)−ybimf (k)‖1. The comparison is performed
and the differences are summed for the K selected image
decomposition layers.

We adopt the use of instance normalisation instead of batch
normalisation. The selected encoder-decoder of the generator
has a “U-Net” [24] architecture with skip connections between
mirrored layers. The generator loss function is a cross-entropy
loss.

V. EXPERIMENTS

In this section we present the datasets that we use for our
experimental comparison, the settings of our implementation
and the results of the qualitative evaluation. The baseline
methods of the presented comparison are the CycleGAN
approach [10] and the approach of Sanakoyeu et al. [13]. These
methods have shown better performance than other Neural
Style Transfer methods in painting image collections.

A. Datasets

In the present experiments two datasets from the Ten-
sorFlow catalogue1 are exploited. The fist dataset is the
“monet2photo” dataset. It comprises 1074 painting images of

1https://www.tensorflow.org/datasets/catalog/cycle gan



Fig. 8. Comparison of our approach with the CycleGAN model and Sanakoyeu et al., [13] on both ”vangogh2photo” and “monet2photo” datasets

Fig. 9. Saliency detection results corresponding to the images of Fig. 8

Monet and 6853 photos. These images are downloaded from
Flickr using the tags “Landscape” and “Landscapephotogra-
phy”. The second dataset is the “vangogh2photo”. It contains
401 painting images of Vincent Van Gogh and the same

landscape photos as in the first dataset (monet2photo).

B. Settings

For both datasets, the parameter λ is equal to 10. The im-
plementation of the CycleGAN is found online2. The number
of epochs is set to 40 for all methods and experiments. In
the Ahmed and Mandic [25], it is observed that the image
edge information is contained in high frequency scales. In the
proposed method the number of BIMFs is set to 3. A number
higher to 3 does not provide significant improvement and
increases the time for training. An example with two different
settings K ∈ 1, 3 concerning the “monet2photo” dataset is
presented. Regarding the ”vangogh2photo” experiments the
number of BIMFs is set to 3. Two different models are
examined. The first named CycleGAN-BIMF3-C applies the
FABEMD only in the content-to-content loss. The second
named CycleGAN-BIMF3-CS includes the application of the
FABEMD in the content-to-content and style-to-style loss to
perform diverse experiments. The latter is a pre-trained model
from the CycleGAN-BIMF3-C model, and it was trained for
additional 40 epochs analysing both content and style images
via FABEMD.

2https://www.tensorflow.org/tutorials/generative/cyclegan



Fig. 10. The progress of the stylisation process using CycleGAN-BIMF3-CS
method for Van Gogh style

C. Results

As shown in Fig. 7, CycleGAN-BIMF3-C outperforms the
original CycleGAN method and the Sanakoyeu et al. [13]
method, and the corresponding method where only the first
BIMF of each content image is used. From this figure, in the
first row, it can be seen that CycleGAN-BIMF3-C does not
generate noise patterns in the sky region, an effect that we
can observe in the outputs of the rest three models.

Regarding the “monet2photo” experiment it can be seen that
the the CycleGAN model produces noise especially on the sky
areas. In comparison to the Sanakoyeu et al. and CycleGAN-
BIMF1-C model the CycleGAN-BIMF3-C generates images
of better quality.

Fig. 8 illustrates some output results of CycleGAN,
CycleGAN-BIMF3-C and CycleGAN-BIMF3-CS methods us-
ing also the “vangogh2photo” dataset. Two different styles
(Van Gogh-Monet) are presented for the same content images
and the CycleGAN-BIMF3-CS model produces more qualita-
tive results.

The saliency maps of Fig. 8 are presented in Fig. 9. Saliency
detection relies on image features and statistics to localize
the most interesting regions of an image. From the saliency
maps we observe that our approach preserves the structures of
content images. For the implementation of the saliency detec-
tion we use the OpenCV library and the class Static saliency
based on [26]. In addition to the qualitative comparison of
Fig. 8, a quantitative evaluation is also presented in Table I.
Each row of Table I corresponds to a stylised image of Fig. 8.
For a direct comparison between the saliency map of original
landscape image (SMor) and of the corresponding stylised
image (SMst) , the Trace (or nuclear) norm [27] of the matrix
difference is used:

Tr(
√
(SMor − SMst)∗(SMor − SMst)) =

∑
i

σi (7)

where, σi is the i-th singular value of the matrix SMor −
SMst. The computation of the trace norm is based on SciPy3.
In this Table it is shown that for the stylised images of our
method the trace distance is minimised for the majority of
cases.

Fig. 10 presents the progress of the stylisation process for a
number of epochs for a given content image using CycleGAN-
BIMF3-CS method and Van Gogh style. It can be seen that
in the first epochs the style is not sufficiently transfered and

3https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.
html

there is noise in the stylised images. However after 40 epochs
the artifacts are reduced and the quality of the stylised image
is better.

TABLE I
TRACE NORM OF THE SALIENCY MAP DIFFERENCES OF FIG. 9

Zhou
et al.
[10]

Sanakoyeu
et al. [13]

CycleGAN-
BIMF3-
CS

Zhou
et al.
[10]

Sanakoyeu
et al. [13]

CycleGAN-
BIMF3-C

90171 91674 80024 88090 95426 80963
76903 81565 76531 74492 85466 73918
80210 74566 74264 97914 81509 77637
95222 87048 79269 88359 79749 97649
82599 87572 76088 71731 86364 82098

Van Gogh Monet

TABLE II
AVERAGE INFERENCE TIME FOR DIFFERENT METHODS WITH BATCH SIZE 1

AND SAME IMAGE SIZE OF 768 768 PIX. AND DECEPTION RATE

Method Time Deception rate
CycleGAN [10] 0.7sec 0.49
Sanakoyeu [13] 0.7sec 0.77
(Ours) 0.7sec 0.51

Fig. 11. Examples of stylised images which deform the content, generated
by method of [13]

Besides the qualitative results, quantitative results are also
presented in Table II. Table II shows the execution time
required for the stylisation of a single image. The execution
times are for images of size 768x768 pixels and are measured
on the same NVIDIA GeForce RTX 2080TI. It is observed
that all methods have approximately identical execution time.
In the case of original CycleGAN and the proposed method
the only difference is on the training of the model and since
we have the same architecture it is obvious that the time will
be the same. Style transfer deception rate [13] is calculated
as the fraction of generated images which were classified
by the VGG16 network pre-trained to Places dataset, as the
artworks of an artist for which the stylisation was produced.
For every method we generated 1502 stylisations (2 styles,
751 per style). Although in Table II the Sanakoyeu et al. [13]
approach significantly outperforms both CycleGAN and our
proposed methodology, in terms of deception rate, it is evident



that this method in its attempt to transfer style, deforms the
content, as it is clearly illustrated in Fig. 11

VI. CONCLUSION AND FUTURE WORK

In the present study, a method for style transfer based on
CycleGANs and FABEMD is proposed. A new formulation
of the cycle consistency loss is introduced by estimating the
loss through the BIMFs from the decomposition of content-
to-content and style-to-style images. The experiments reveal
that the proposed method produces better qualitative and
quantitative results than the original CycleGAN method and
the method of Sanakoyeu et al. [13]. Saliency maps and
Deception rates are included in order to prove the effectiveness
of the proposed method.

Although our method can achieve competitive results in
style transfer, it is important to note that the introduction of
frequency components (BIMFs) in the training process of a
CycleGAN, in the estimation of the cycle consistency loss is
a more qualitative expression that could be further examined,
in other applications, beyond style transfer.
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