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Abstract: A speech production experiment with electroglottography investigated how voicing is 24 

affected by consonants of differing degrees of constriction. Measures of glottal contact (Closed 25 

Quotient: CQ) and strength of voicing (Strength of Excitation: SoE) were used in Conditional 26 

Inference Tree analyses. Broadly, the results show that as the degree of constriction increases, both 27 

CQ and SoE values decrease, indicating breathier and weaker voicing. Similar changes in voicing 28 

quality are observed throughout the course of the production of a given segment. Implications of 29 

these results for a greater understanding of source-tract interactions and for the phonological notion 30 

of sonority are discussed. 31 

 32 
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1. Introduction 35 

It is well-known that the ease of initiating and sustaining voicing is affected by the size of the 36 

supraglottal constriction. This dependency between filter and source is due to the fact that in order 37 

to initiate and maintain voicing there must be a decrease in pressure across the larynx (e.g., van 38 

den Berg 1958, Stevens 1998). Voicing during stops and fricatives is notably challenging to 39 

maintain due to these aerodynamic requirements (e.g., Keating 1984, Solé 2010, 2018, Stevens 40 

1971, 1977).  Thus, in the extreme, when there is full closure, as in a stop, voicing will eventually 41 

cease as oral pressure equalizes to subglottal pressure (Rothenberg 1968, Westbury & Keating 42 

1986). Previous studies have thus sought to examine the ways in which speakers overcome these 43 

constraints, and have reported articulatory mechanisms (e.g. active enlargement of the oral cavity, 44 

or nasal venting) that aim to reduce or slow down the build-up of oral pressure and therefore 45 

facilitate phonation (e.g. Lisker 1977, Westbury 1983, Solé 2018).  46 

The difference in aerodynamic conditions due to different supraglottal constrictions has 47 

also been hypothesized to affect the way in which the vocal folds vibrate, with Halle & Stevens 48 

(1967) leaving open the possibility that these laryngeal adjustments are under a speaker’s active 49 

control. Previous work has made use of physical modelling of the vocal tract to examine the rate 50 

and volume of glottal flow as a function of supraglottal resistance (e.g. Bickley & Stevens 1987). 51 

Fant (1997), for example, found, for a set of Swedish sounds, that voicing in voiced consonants 52 

was breathier and quieter than the voicing in vowels. Amongst voiced consonants, voiced fricatives 53 

have been argued to require spreading of the vocal folds (e.g. higher Open Quotient) in order to 54 

maintain the necessary airflow requirement of turbulent noise generation (e.g., Stevens 1971; 55 

Pirello et al. 1997, Solé 2010), suggesting breathier voicing. Trills have been shown to involve 56 

similar aerodynamic requirements as fricatives (Solé 2002), with some work in the singing and 57 
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clinical literature showing that trills involve a lower mean vocal fold contact quotient (CQ), 58 

suggestive of breathier voicing (e.g. Andrade et al. 2014, Hamdan et al. 2012), as well as a larger 59 

CQ range, suggestive of CQ oscillations during the trill.  60 

 These previous studies have primarily examined specific segmental classes. An exception 61 

is Mittal, Yegnanrayana & Bhaskararao (2014), who examined the effect of different degrees of 62 

oral constrictions on glottal vibration. They compared strength of excitation (SoE) of six different 63 

consonants spanning five degrees of constriction [z, ɣ, r, l, n, ŋ] (here [r] is a trill) relative to an [a] 64 

vowel. SoE is a measure of the relative amplitude of the impulse-like excitation at the instant of 65 

significant excitation during voicing and thus of the relative amplitude of voicing, independent of 66 

noise in the signal and largely unaffected by differences in the absorption of energy by the vocal 67 

tract itself across time (Murty & Yegnanarayana, 2008, 2009). Mittal et al. (2014) found that 68 

compared to a vowel, [r] and [z] resulted in a decrease in SoE (i.e. weaker voicing). They found 69 

smaller differences among the other consonants. With [r], specifically, they also found oscillations 70 

in SoE values patterning with the open and close phases of the trill. Their study, however, is limited 71 

in that it examined only two speakers and a limited range of segment classes, such that a statistical 72 

analysis was not possible. Therefore, it is unclear which differences in SoE are statistically robust. 73 

In this study, we extend Mittal et al.’s study by examining not only SoE, but also using 74 

electroglottography (EGG) to examine CQ, an articulatory measure.  We address the following 75 

research questions: (1) do the strength and quality of voicing differ in consonants with different 76 

oral constrictions, and if so, how; (2) does voicing change during a segmental constriction?  77 

Finally, we also consider what implications source-filter interactions might have for the 78 

phonological notion of sonority (see  Parker 2017 for review) which has been argued to play an 79 

explanatory role in a variety of phonological patterns. A traditional sonority scale with the 80 
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inclusion of “flaps” (= taps) and trills (Parker 2002) is as follows: vowels > glides > liquids > flaps 81 

> trills > nasals > obstruents. The phonetic correlates of sonority, however, are still not settled. 82 

Most commonly, sonority is equated with audibility or loudness (e.g. Fletcher 1972) or acoustic 83 

intensity (Parker 2002). These parameters depend on the vocal tract more than on the glottal source 84 

(e.g. high vowels have lower intensity than low vowels because the vocal tract shape dampens the 85 

signal: Lehiste & Petersen 1959).  Others have emphasized the importance of the oral constriction 86 

aperture size (e.g. Clements 2009), while conceding the potential influence the source, i.e. voicing, 87 

can have in enhancing resonance by providing, for example, “a strong and efficient excitation 88 

source” (Clements 2009: 167). They typically, however, make no explicit reference to inherent 89 

source-filter interactions. Even when effects of the source are considered, these are often divorced 90 

from the effects of aperture size (Miller 2012). Thus, our study has the potential to shed light on 91 

how source-filter interactions might relate to sonority. 92 

 93 

2. Methods 94 

2.1 Materials, Participants & Procedure 95 

To extend Mittal et al.’s (2014) investigation, we examined the production of 14 voiced consonants 96 

with different degrees of constriction from a traditional phonological sonority scale: (1) glides ([j, 97 

w], (2) liquids [l, ɹ]); (3) trill and tap ([r, ɾ]); (4) nasal ([n]); (5) fricatives ([ð, ɣ, ʁ, z]); and (6) 98 

affricates and stop ([d͡ʒ, g͡ɣ, d]). We also included 7 vowels ([i, y, e, ø, a, o, u], but for present 99 

purposes they have been pooled together for analysis. The consonants in groups (1-4) are sonorant 100 

consonants; vowels are also sonorant sounds. In contrast, the consonants in groups (5-6) are 101 

obstruents. Consonants were placed in a [aˈCa] context, following Mittal et al. (2014), whereas 102 
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vowels were placed in a [ˈwV] context. Five out of the 21 total segments ([z, ɣ, n, r, l]) were 103 

examined by Mittal et al. (2014); no stops or affricates were examined in their study. 104 

 Twelve participants (6M, 6F) were recorded producing three repetitions of each consonant 105 

and vowel. Since our segment set goes beyond the inventory of any one language, and we 106 

additionally wanted voicing to be maintained through the consonantal gesture, the participants 107 

were all trained phoneticians, all of whom were proficient in English (7 native American English 108 

speakers; 2 native Singapore English speakers; 1 each of Japanese, Mandarin Chinese, and 109 

Russian). Audio signal recordings were made using a high-quality B & K microphone, with 110 

simultaneous EGG signal recordings using a Glottal Enterprises EG2-PCX electroglottograph. 111 

Both signals were obtained at a sample frequency of 22kHz using PC-Quirer (Tehrani 2015) in a 112 

sound-attenuated recording booth. Two other participants were also recorded, but their data were 113 

excluded from the analysis due to weak EGG signals, and/or lack of voicing in stops. 114 

 115 

2.2 Data Analysis 116 

The audio recordings were segmented manually in Praat (Boersma & Weenink, 2015), by 117 

identifying target consonant intervals where voicing was maintained through the constriction for 118 

at least three glottal pulses. Tokens without at least three glottal pulses (n = 112 out of 897) were 119 

excluded, leaving 785 tokens in the analysis. Affricates were segmented as stop closure (‘cl’) and 120 

fricative release (‘rel’) separately. These were included with the stops and fricatives respectively 121 

in the analysis below. In the data below, the closures of stop [d] and affricate [d͡ʒ] are both coded 122 

as d-closures. For vowels, a sustained portion around the midpoint was identified which excluded 123 

transitions from the preceding glide [w]. For the trill [r], the second full closure was chosen. For 124 

taps, the entire contact interval was used. 125 
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 EGG and acoustic measurements were extracted automatically from the EGG and audio 126 

signals using EGGWorks (Tehrani 2015) and VoiceSauce (Shue et al. 2011). Means were taken 127 

over the entire segmented interval, and measures were scaled and centered by speaker using the 128 

scale function in R (R Core Team 2015). Below, we report on two measures to examine the 129 

strength and quality of voicing. Contact Quotient (CQ) is a measure, derived from the EGG signal, 130 

of the proportion of the glottal vibratory cycle where the vocal fold contact is greater than a 131 

specified threshold. Here we use the Hybrid Method (Howard et al. 1990): the contacting phase 132 

begins at the positive peak in the dEGG signal, and the decontacting phase ends when the EGG 133 

signal crosses the 25% threshold (Orlikoff 1991). Herbst (2004) showed that this version of CQ 134 

performed as well as, or better than, other methods, and it has since been shown to best reflect 135 

differences in phonation in the modal-to-breathy range (Kuang 2011). Additionally, we report on 136 

the Strength of Excitation (SoE) measure developed by Murty & Yengnanarayana (2008, 2009). 137 

SoE is related to RMS energy but does not reflect energy absorption by the vocal tract, or energy 138 

contributed by noise. It is also related to the closing peak in dEGG, but according to Mittal et al. 139 

(2014:1935), it “may reflect changes in both the source and vocal tract system characteristics”. 140 

SoE is thus a measure of the strength of voicing. There is no equivalent EGG measure.1 141 

We use conditional inference trees (CIT; Hothorn, Hornik & Zeileis 2006) to examine 142 

whether segment classes of differing constriction degrees show differences in the quality and 143 

strength of voicing. CITs use an unsupervised algorithm that recursively partitions the observations 144 

into different subsets on the basis of significant differences on predictor variables. This approach 145 

does not require any a priori description of the number of groupings to be found. We submitted 146 

both SoE and CQ to CIT analyses, with manner class as the predictor, using the ctree() function 147 

 
1 In our data, SoE is not strongly related to our EGG measure Peak Increase in Contact, which is the amplitude of 
the closing peak in the dEGG signal, thereby giving the moment when SoE is measured. 



 8 

from the party package in R (Hothorn, Hornik, Strobl & Zeilis 2019). Duration, which could be a 148 

factor in determining voice quality, was also included as a predictor in initial analyses. This, 149 

however, was not significant for the major manner classes of interest, therefore all analyses below 150 

have duration omitted.  151 

 152 

 Figure 1. Conditional inference trees for SoE (upper) and CQH (lower) by manner. 153 

 154 

 155 
 156 
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3. Results 157 

3.1. Global segmental distinctions 158 

 CITs for SoE and CQ are shown in Figure 1  (see Supplementary Materials online for 159 

results including other measures H1-H2 and Energy)2. SoE divides the segments into six groups: 160 

vowels, nasal, liquids, glides/trill, fricatives/tap, stops.  In general, sonorants have higher values 161 

than obstruents. In more detail, SoE tracks vocal tract constriction to some extent, with vowels 162 

having the highest values, and voiced stop closures the lowest. SoE makes distinctions among 4 163 

groups of sonorants. In contrast, CQ distinguishes only four groups, vowels, glides/liquids/nasal, 164 

stops/tap, fricative/trill. CQ is not highly related to vocal tract constriction degree, since the trill 165 

and voiced fricatives have the lowest values, indicating less vocal fold contact. This breathier 166 

voicing accords with previous work (e.g. Keyser & Stevens 2006, Stevens 1971) that suggests the 167 

vocal folds need to be somewhat spread for voiced fricatives, and that trills are aerodynamically 168 

like voiced fricatives (Solé 2002).  169 

 The differences among sounds on the two measures can be seen in Figure 2L, which plots 170 

SoE by CQ by segment type. In general, collapsing over all tokens (Fig. 2L inset), SoE and CQ 171 

are moderately positively correlated (r(738)=0.41, p<0.001): more vocal fold contact results in 172 

stronger excitation. Since more vocal fold contact generally means more harmonic energy, this is 173 

expected.  However, plotting by individual segments shows that the relation between the two 174 

measures is more nuanced: within the obstruents, these two measures are negatively correlated: 175 

voiced fricatives and trill have low CQ but medium SoE, while voiced stop closures have low SoE 176 

but medium CQ. This is presumably because, as noted above, voiced fricatives and trill show the 177 

 
2 In the supplementary materials, we also provide the results of an analysis using only the native English speakers 
(n= 9) in our corpus, and on English-only coronal segments to control for segments not in English and for any 
possible place of articulation effects. The results are qualitatively similar as what we have presented here with all 
our speakers and segments.  
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greatest glottal adjustment, allowing both voicing and sufficient airflow for generating frication or 178 

trilling the tongue tip. In fact, along the CQ dimension (x-axis) the sonorants (consonants and 179 

vowels) are all very similar, at the far right of the plot, while the obstruents occupy most of the 180 

dimension. That is, CQ makes distinctions among the obstruents more than among the sonorants. 181 

Conversely, along the SoE dimension (y-axis), we can see that the sonorants are more spread out 182 

than the obstruents. That is, SoE makes distinctions among the sonorants more than among the 183 

obstruents.  184 

 185 

Figure 2. (L): Two-dimensional space of Scaled SoE by Scaled CQH by segment (inset: 186 

collapsed across segments). Size of segment label indicates standard deviations. (R): 187 

Timecourse of scaled CQH and SoE for nasal, stops, and trill (3 representative speakers). 188 

(Color online)  189 

  190 

 191 
 192 

3.2 Timecourse of voicing measures: SoE and CQ 193 

We next turn to the timecourse of both voicing measures to examine how the quality of voicing 194 

changes during a consonantal constriction, focusing on the quality of voicing in stops and trills, as 195 
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compared to nasals (as a representative sonorant). We focus on a qualitative discussion of the 196 

general patterns observed in the changes in the strength of voicing as indexed by SoE (following 197 

Mittal et al. 2014), and the amount of vocal fold contact as indexed by CQ, as seen in Figure 2R 198 

with 3 representative speakers. Note that the timecourse of these voicing measures does not show 199 

individual voicing pulses. Our speakers show consistently stable (and strong) voicing throughout 200 

the nasal articulation. With stops, however, speakers show two types of patterns. Some speakers 201 

show stable values of the two measures throughout the closure. But many show a drop in both 202 

measures throughout the duration of voicing as voicing becomes more difficult and weaker, 203 

sometimes dying out completely. This is in line with previous findings and is presumably due to 204 

increase in supraglottal pressure (see Solé 2018, and other references above).  Most interestingly, 205 

trills, which involve both open and closed oral articulations, show different degrees of voicing 206 

strength during each phase.  For most speakers, both SoE and CQ oscillate during the trills, with 207 

open phases showing stronger voicing than closed phases. For SoE, speakers were uniform in this 208 

behavior, showing only variability in the amplitude of each oscillation. Thus, differences in 209 

voicing measures observed across segmental categories, especially in SoE, are also seen during 210 

the articulation of a single segment, as conditions for voicing change. 211 

 212 

4. Discussion & Conclusion 213 

In this study we examined voicing in consonants with different degrees of oral constriction, 214 

extending a previous study by Mittal et al. (2014) by examining a wider range of consonants. The 215 

CIT analyses show that major classes of segments differ significantly in the strength and quality 216 

of voicing. Voiced obstruents show the weakest and breathiest voicing, whereas vowels show the 217 

strongest and least breathy voicing. Thus, when it is harder to sustain voicing, we observe lower 218 
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SoE (less strength in voicing) and lower CQ (breathier voicing) across broad manner classes of 219 

segments. One notable result is that fricatives and trills show the breathiest voicing (lowest CQ 220 

value), while showing differences in SoE. This has implications for segmental typology and sound 221 

change, most notably, providing further evidence of the link between trills and breathy voicing. 222 

For example, Kirby (2014) showed that in some languages, such as Khmer, trills have developed 223 

diachronically into breathy voicing. Furthermore, it helps explain why breathy-modal contrasts are 224 

extremely rare in fricatives3 and trills4. 225 

Our results provide some support for the idea that the effect of oral constrictions on glottal 226 

configurations is passive and not speaker-controlled. While Mittal et al. (2014) assume that these 227 

are involuntary, Halle & Stevens (1967) suggest that vocal fold positioning and vibratory patterns 228 

are parameters that a speaker may adjust overtly to maintain voicing with supraglottal constriction. 229 

In this connection, Dhananjaya et al. (2012) and Mittal et al. (2014) call attention to SoE 230 

oscillations during trills along with openings and closings of the oral constriction, such that voicing 231 

is weaker during the closure phases. Our SoE data is in line with this, but alone do not differentiate 232 

if voicing changes are active or passive; conceivably the variation could reflect changes in the 233 

supraglottal contribution to the SoE measure. In contrast, CQ reflects only the glottal state, and in 234 

our data oscillates in trills similarly to SoE (though less clearly). Thus, the glottal state varies with 235 

changes in oral constriction during trills. We take the fast, cyclic oscillations (20-30Hz) in CQ to 236 

be suggestive of passive (vs. active) responses to rapid changes in the oral cavity, as assumed by 237 

Mittal et al. (2014). Halle & Stevens (1967) did not consider such evidence from trills. Future work 238 

 
3 UPSID-451 (Maddieson & Precoda 1989, Reetz 1999) contains only two languages with such contrasts. 
4 It has been reported that the contrast between the two trills of Czech is one of voice quality (modal /r/ vs. breathy 
/r̤/; Howson et al. 2014); but given that fricatives are inherently breathy, as we have shown here, their results are also 
consistent with /r̤/ being a fricative trill. In order to distinguish between these possibilities, it would be necessary to 
compare the trill directly to the Czech voiced fricatives. 
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would further examine simultaneously the formation of the oral constrictions along with glottal 239 

state. 240 

Finally, our examination of source-filter interactions has possible implications for 241 

phonological sonority. Unlike previous work, our study examines measures (CQ and SoE) that are 242 

more focused on the glottal source than on the vocal tract. CQ does not distinguish enough segment 243 

classes to account for the degrees of sonority. SoE distinguishes more classes, but does not 244 

reproduce the ranking of the sonority hierarchy, in part because our glides were less vowel-like 245 

than expected, and in part because our trills have more energy than our taps. Nonetheless, the new 246 

measures examined here might help explain some of the sonority reversals observed cross-247 

linguistically. For example, sonority reversals often involve obstruents (stops > fricatives, Jany et 248 

al. 2007), which accords with the low CQ of fricatives.  249 

In sum, our current study has examined the extent to which the strength and quality of 250 

voicing is affected by consonantal constrictions of different degrees. We have shown that, broadly 251 

speaking, voicing becomes weaker and breathier as the degree of consonantal constriction 252 

increases. We have also shown that the strength and quality of voicing changes over the course of 253 

a consonantal articulation, presumably due to changes in aerodynamic factors. Future work would 254 

seek to examine a wider range of speakers from different language backgrounds as well as a fuller 255 

set of segmental contrasts.  256 
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