
  

  

Abstract—Environmental sounds classification (ESC) has 

been increasingly studied in recent years. The main reason for 

this is that these ESC missions are being used widely in our 

lives. Especially, ESC is used in areas such as managing smart 

cities, determining location from environmental sounds, 

surveillance systems, machine hearing, environment 

monitoring. Classification of these sounds is more difficult than 

other sounds because there are too many parameters that 

generate noise in the ESC. In the proposed study, it has been 

tried to find the most suitable convolutional neural networks 

(CNN) model for ESC task. For this purpose, 150 different 

CNN-based models were designed by changing   number of 

layers and values of their tuning parameters used in the layers. 

In order to test accuracy of the models, the Urbansound8k 

environmental sound database was used. The sounds in this 

data set were first converted to an image format of 32x32x3. 

The proposed CNN-driven model has yielded an accuracy of as 

much as 82% being higher than its classical counterpart. As 

there was not that much fine-tuning, the obtained predictive 

accuracy has been found to be better and satisfactory compared 

to other studies on the Urbansound8k when both accuracy and 

computational complexity are considered. The results also 

suggest further improvement possible in its accuracy due to low 

complexity of the proposed CNN architecture and its 

applicability in real-world settings. 

 
Index Terms— Environmental Sound Classification (ESC), 

Deep Learning, Convolutional Neural Networks (CNN), 

Urbansound8k.  

 

I. INTRODUCTION 

Sound data contains more semantic information than 

visual data [1]. In particular, sound data becomes more 

important to obtain information about an environment. In 

order to realize some applications in daily life, it is necessary 

to use environmental sounds, unlike speech and music 

sounds. For this reason, studies on the classification of urban 

sounds have intensified in recent years. Environmental 

sounds Classification (ESC), is known as one of the most 

important issues of the non-speech voice classification task 

[2]. ESC is of critical importance in many problems such as; 

noise pollution analysis [3, 4], surveillance systems [5-7], 

context-aware applications [1, 8-13], machine hearing 

[14-17], environment monitoring [18], crime alert systems 

[19], soundscape assessment [20, 21], and smart city [22, 23]. 

Different data sets have been created for ESC task. ESC-10, 

ESC-50[24] and Urbansound8k (US8K) [25] datasets are 

used extensively. Different statistical and machine learning 
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methods have been used for ESC task in the literature [1, 

26-33].  

The success rates of these methods are relatively low 

compared to deep learning-based studies in recent years. 

Deep learning [34] achieved a high success rate in the 

ImageNet [35] competition in 2012. Due to this success, deep 

learning models for ESC have been used frequently in recent 

years, as they have been used in different fields [36-49]. In 

general, it has been observed that the success rates obtained 

with deep learning models have better results than other 

artificial intelligence methods. The main reason for this can 

be summarized as automatic feature discovery in deep 

learning models.  Recently, it is seen that CNN models [2, 

36-38, 41-46, 48-50] are used for ESC task.  There are a lot of 

parameters that need to be adjusted in the design of CNNs. 

Therefore, the best CNN model can be found in different 

layer depths and different parameters. In this study, try to find 

the suitable CNN model for ESC task. The suitable layer 

number and layer parameters were obtained for CNN. The 

designed CNN model has been found to perform well in the 

ESC task compared to most previous work. 

This paper is organized as follows. In section 2, 

information about the features of the Urbansound8k ESC 

data set is given. In section 3, information about the proposed 

CNN model is given. Experimental studies have been 

conducted in section 4. Finally, the conclusion is explained in 

section 5. 

II. DATA SET 

 In this study, Urbansound8k [25] data set is used for ESC 

task. Urbansound8k data set was obtained from real 

environment according to 4 seconds recording time. 

Environmental noise is present in the records obtained. The 

data set consists of 10 classes. These classes are respectively; 

air conditioner, car horn, children playing, dog bark, drilling, 

engine idling, gun shot, jackhammer, siren, and street music. 

These sounds are transformed into images with the method of 

scalogram. The scalogram is the absolute value of the 

continuous wavelet transform (CWT) of a signal plotted as a 

function of time and frequency. Wavelet Toolbox of Matlab 

R2020b software was used for the conversion process. The 

transformed form of each class in the data set into sound 

signals and images is given in Figure 1. There are a total of 

8732 records in the data set. The image resolution for training 

the CNN model is set to 32x32x3. 80% of the dataset was 

used for training, 10% for validation and the remaining 10% 

for testing. The total number of images of each class for 

training, validation and testing are given in Table 1. For more 

information on the data set, look at the reference [51]. 
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Figure 1. Sound(up) and translated image according to scalogram (down) of 

classes in Urbansound8k data set. 

  
TABLE 1. NUMBER OF RECORDS USED FOR TRAINING, VERIFICATION AND 

TESTING IN THE URBANSOUND8K DATA SET 

Class Number of images Train Validation  Test  

Air Conditioner 1000 600 200 200 

Car Horn    429 257 86 86 

Children Playing 1000 600 200 200 

Dog Bark 1000 600 200 200 

Drilling   1000 600 200 200 

Engine Idling 1000 600 200 200 

Gun Shot   374 224 75 75 

Jackhammer 1000 600 200 200 

Siren    929 557 186 186 

Street Music 1000 600 200 200 

 

III. PROPOSED METHOD 

In this study, the most suitable CNN model for the ESC 

task is tried to be obtained by grid search. 1 CNN models 

were designed and trained according to the layer depth and 

the parameter values used in the layers. The layer structure of 

the model that gives the best result among these models and 

the parameter values used in the layers are given in Figure 2. 

Looking at Figure 2, the proposed CNN model consists of 3 

convolution layers, 1 pooling layer and 2 fully connected 

layers. There are 79 filters in the first convolution layer of the 

proposed model. After the training, the feature maps created 

by these filters and the effect of the filters on the input image 

is given in Figure 3. 

 

IV. EXPERIMENTAL STUDIES 

Experimental studies have done on a computer with Intel® 

Core™ i9-7900X 3.30GHz×20 processor, 64 GB Ram and 2 

x GeForce RTX2080Ti graphic card. Matlab R2020a 64bit 

(win64) has used as the software platform. The parameters 

used for the training of CNN model are given in Table 2. 

 
Figure 2. Architecture of the proposed CNN model and parameter 
information used in each layer 

 

 
Figure 3. Layer architecture of the proposed CNN model (b), trained filters in 

the first convolution layer(a), the test image of the Gun shot class (c), the 
effect of each filter in the first convolution layer on the input image(d).  

 
TABLE 2. CNN TRAINING PARAMETERS 

Parameters Value 

Optimizer SGDM 

Epochs  50 

Learning rate drop factor 0.1 

Learning rate drop period 10 

Dropout rate 0.5 

Mini Batch Size 256 

Initial learning rate 0.001 

Validation Frequency 50 

 

In the studies, the accuracy of the most suitable CNN 

model was obtained as 82.26%. The confusion matrix 

obtained by this model is given in Figure 4. When confusion 

matrix is examined, it is seen that the most confused class 

with each other are Children Playing and Street Music. While 



  

the highest classification performance was achieved in the 

Car Horn class, the lowest classification success was 

achieved in the Engine Idling class. The graph of accuracy 

and validation values according to the epoch in the training 

phase of the CNN model is given in Figure 5 and accuracy 

and validation loss graph is given in Figure 6. When Figure 

5-6 are examined, it is seen that the model at the training 

stage reach the optimum performance approximately after the 

15th epoch. 

 

 
Figure 4. Confusion matrix of proposed CNN model 

 

 
Figure 5. Accuracy and validation of the proposed CNN model for training. 

 

 
Figure 6. Accuracy loss and validation loss graph of the proposed CNN 
model during training. 

A. Comparison with other studies 

Different studies based on deep learning have been 

conducted on the ESC data set. Accuracy values obtained by 

some previous studies are given in Table 3. Looking at Table 

3, it is seen that the proposed CNN method achieves a very 

good performance. The method only performed lower than 

GoogLenet and AlexNet. The reason for this is related to the 

image size obtained during the transformation of the data set. 

GoogLenet input image size is 224x224x3 and AlexNet input 

image size is 227x227x3. In the proposed CNN models, the 

input image size is 32x32x32. The large input image size 

causes the model to discover more features. Thus, it enables 

the model to be more successful. 

TABLE 3. COMPARISON OF THE ACCURACY VALUE OBTAINED BY THE 

PROPOSED METHOD WITH OTHER METHODS 

Method Accuracy(%) 

GooLeNet and AlexNet [40] 93 

Proposed method(CnnSound) 82.26 

D-CNN(Activation functions=LeakyReLU) [48] 81.9 

CNN [21] 81.5 

D-CNN(Activation functions= PReLU) [48] 81.4 

D-CNN(Activation functions= ReLU) [48] 81.2 

DNN [20] 79.23 

SoundNet [52] 79 

DCNN + augmentation SB-CNN (DA)   [37] 79 

D-CNN(Activation functions= ELU) [48] 78.9 

EnvNet-v2 + augmentation[39] 78.3 

Pyramid-Combined CNN[2] 78.1 

EnvNet-v2 ( Tokozume et al., 2017 )[39] 78 

Dilated CNN [45] 78 

DCNN [53] 77.36 

Unsupervised feature learning  SKM (DA)[30] 76 

Convolutional layers with max-pooling[36] 74 

SKM[30] 74 

Deep CNN[37] 74 

D-CNN(Activation functions= Softplus) [48] 73.7 

CNN (Baseline model) [36] 73.7 

Unsupervised feature learning SKM [30] 73.6 

M18 CNN ( Dai et al., 2017 )[54] 72 

VGG ( Pons & Serra, 2018 )[55] 70 

SVM [25] 71 

Very Deep CNN[54] 69.38 

Baseline system[25] 68 

SVM[56] 62.4 

ANN, KNN + features cascading + optimization[57] 56.4 

  

V. CONCLUSIONS 

In this study, the most suitable CNN model was obtained 

with grid search for the classification of environmental 

sounds. For this purpose, 150 CNN models have been 

designed and tested over Urbansound8k environmental 

sounds data set. Among these methods developed, the best 

performing CNN model (CnnSound) has achieved 82.26% 

predictive accuracy. When compared with similar studies in 

the literature, it has been observed that the CnnSound model 

has a satisfactory performance and there is room for 

improvement further research will be geared towards further 

improvement through pre-processing methods, sound 

representation, optimization methods and further fine-tuning 

of CNN models. This is further expected to be studied along 

with other sound libraries to further demonstrate robustness 

of the deep learning-based frameworks being developed and 

adapted into sound modelling and classification. 
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