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ARTICLE OPEN

Logical design of oral glucose ingestion pattern minimizing
blood glucose in humans
Masashi Fujii1,2,11, Yohei Murakami3, Yasuaki Karasawa4,5, Yohei Sumitomo2, Suguru Fujita2, Masanori Koyama6, Shinsuke Uda7,
Hiroyuki Kubota7, Hiroshi Inoue8, Katsumi Konishi9, Shigeyuki Oba3, Shin Ishii3,10 and Shinya Kuroda1,2,10

Excessive increase in blood glucose level after eating increases the risk of macroangiopathy, and a method for not increasing the
postprandial blood glucose level is desired. However, a logical design method of the dietary ingestion pattern controlling the
postprandial blood glucose level has not yet been established. We constructed a mathematical model of blood glucose control by
oral glucose ingestion in three healthy human subjects, and predicted that intermittent ingestion 30min apart was the optimal
glucose ingestion patterns that minimized the peak value of blood glucose level. We confirmed with subjects that this intermittent
pattern consistently decreased the peak value of blood glucose level. We also predicted insulin minimization pattern, and found
that the intermittent ingestion 30min apart was optimal, which is similar to that of glucose minimization pattern. Taken together,
these results suggest that the glucose minimization is achieved by suppressing the peak value of insulin concentration, rather than
by enhancing insulin concentration. This approach could be applied to design optimal dietary ingestion patterns.

npj Systems Biology and Applications            (2019) 5:31 ; https://doi.org/10.1038/s41540-019-0108-1

INTRODUCTION
In healthy people, blood glucose levels are stably maintained and
show only a slight postprandial increase.1 However, massive
postprandial increases in blood glucose levels emerge in patients
with the type 2 diabetic mellitus (T2DM) and impaired glucose
tolerance.2 This postprandial hyperglycemia requires prevention
and treatment, because it is associated with increased risk of
cardiac and cerebrovascular complications.3 Postprandial blood
glucose originates from dietary carbohydrates.4 Some approaches
to prevent postprandial hyperglycemia have thus far been
reduction of dietary carbohydrate content, a change in the type
of dietary carbohydrates, and ingestion of dietary fiber with
meals.5 However, the ideal type of pattern for carbohydrate
ingestion that minimize postprandial hyperglycemia is unknown.
Insulin, secreted from the pancreatic β cells, performs a pivotal

role in homeostatic regulation of blood glucose levels. Insulin acts
on the target organs such as muscle and liver, to promote uptake
of glucose from the blood and suppress hepatic glucose
production. Consequently, insulin decreases blood glucose levels
and promotes the rapid recovery of increase in postprandial blood
glucose. As blood glucose levels decrease, insulin secretion also
decreases. Thus, the blood glucose level is maintained within a
narrow normal range by the feedback relationship between blood
glucose and insulin.6

Although insulin secretion is regulated mainly by blood glucose,
it is also regulated by a family of circulating hormones called
incretins.7 Incretins are hormones secreted from the gastrointest-
inal tract upon food ingestion, these hormones act on pancreatic
β cells to promote insulin secretion. Gastric inhibitory polypeptide
(GIP) and glucagon-like peptide-1 (GLP-1) are incretins.7–10 GIP is
secreted from K cells of the upper small intestine;11,12 GLP-1 is
secreted from L cells of the lower small intestine.13,14 Orally
ingested glucose promotes incretin secretion into the small
intestine, where it is absorbed and enters the blood. Blood
glucose and incretin act cooperatively on pancreatic β cells to
promote insulin secretion and increase circulating insulin levels.15

Postprandial hyperglycemia is identified with an oral glucose
tolerance test (OGTT), in which a subject’s ability to tolerate a
glucose load (glucose tolerance) is evaluated by measuring blood
glucose level after an overnight fast and again 2 h after a 75-g oral
glucose load.16 Using time course data of glucose and insulin in
the blood during the OGTT, many mathematical models have
quantitatively evaluated the relationship between the blood
glucose and insulin in humans.17–26 These models consist of
blood glucose and insulin, but not incretins.17,18,27–29 Other
mathematical models incorporate the incretins.24,26,30–32 In some
models, blood glucose and incretin act independently on insulin
secretion during the OGTT;30–32 in others, blood glucose and
incretin act cooperatively.24,26 The effective action of incretins on
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the insulin secretion in mathematical models remains to be
determined.
One application of mathematical models is the ability to make

prediction. Published mathematical models of blood glucose and
insulin have been used to predict blood glucose levels after
glucose administration. We require a solution of a pair of forward
and inverse problems to obtain an optimal design of input
pattern. Firstly, we need a dynamics model to predict the
temporal pattern as a consequence of a given input pattern. This
mode of prediction is a forward problem: The prediction is an
“output pattern” related to the input pattern. Secondly, optimal
input pattern should be determined so as to minimize the
outcome that is defined as an arbitrarily given objective function
of the predicted output pattern. This mode of prediction is an
inverse problem: The prediction is an “input pattern” that
produces an optimal output pattern. There are many established
methods that use complex ordinary differential equations to solve
the forward problem of predicting output patterns, but few
methods exist to solve the inverse problem of predicting input
patterns. Recently, we proposed a mathematical framework to
estimate an input pattern that produces a defined output
pattern.33

Here, we constructed mathematical models with either glucose-
independent and/or glucose-cooperative roles of incretins on
insulin secretion. We used the models to predict an optimal
glucose ingestion pattern that controls blood glucose level.
Because blood glucose level is the output pattern, this represents
using the model to solve an inverse problem. We measured blood
glucose, insulin, GIP, and GLP-1 before and after oral glucose
ingestion with different doses and ingestion durations for three
subjects. As a forward problem, we constructed a mathematical
model of blood glucose (output) in response to orally ingested
glucose (input) for each subject. As an inverse problem, we
optimally designed glucose ingestion pattern that minimizes the
peak value of blood glucose level for each subject. Note that the
terms forward and inverse problems have limited meaning in
some research fields, but we use the terms forward and inverse
problems in a more general sense. In other words, assuming that
the problem commonly utilized in the field of systems biology, i.e.,
estimating model parameters that fit the data, is a forward
problem, predicting an input pattern that realizes a time series
satisfying a certain objective function from model and parameters
can be regarded as an inverse problem. Each subject had an
optimized pattern of ingestion that was intermittent. We validated
blood glucose level by the predicted intermittent ingestion
pattern for each subject and found that the intermittent ingestion
pattern decreased the peak value of blood glucose level
compared with the blood glucose levels that occurred with bolus
or 1-h-continuous ingestion patterns. Thus, we provide the logical
design of oral glucose ingestion pattern that minimizes the peak
value of blood glucose level in humans, using an approach of
combination of a forward and an inverse problems, which can be
widely applied to design optimal dietary ingestion patterns for
human health.

RESULTS
Measurement of blood glucose and blood hormones before and
after oral glucose ingestion
To obtain the data for developing the model, we monitored the
effect of ingestion of different amounts of glucose in different
temporal patterns of ingestion on blood glucose and hormone
levels (Fig. 1). In six separate experiments, the three healthy
volunteers either rapidly consumed one of three doses of glucose
(25, 5, and 75 g) or consumed the glucose over 2 h (see Methods).
The rapid ingestion paradigm is referred to as bolus ingestion and
the slow ingestion paradigm as 2 h-continuous ingestion. Prior to

glucose ingestion and after glucose ingestion, we measured levels
of blood glucose, insulin, C-peptide, intact GIP (designated GIP
hereafter), and intact GLP-1 (designated GLP-1 hereafter) (see
Methods).
With any ingestion pattern, the temporal pattern of each

molecule exhibited a transient increase that returned to baseline
within 4 h (Fig. 2). For bolus ingestion, the blood glucose and
other blood hormones reached similar peak values for each dose
of ingested glucose (Fig. 2a, c, e, g, i). For the 2-h-continuous
ingestion, blood glucose and other blood hormones showed
increasing peak values with increasing doses of ingested glucose
(Fig. 2b, d, f, h, j). A consistent difference between bolus and
continuous ingestion was that in the bolus ingestion case, with
increasing doses of glucose, the time when blood glucose and
hormones began to decrease and time to return to baseline
become more delayed. In contrast, for 2-h-continuous ingestion,
the time when blood glucose and other hormones began to
decrease, and the time when all returned to the basal level were
similar regardless of dose of ingested glucose. Subjects #2 and
#3 showed similar responses to subject #1 by bolus and 2-h-
continuous ingestion, except for GLP-1 (Supplementary Fig. S1).
GLP-1 for only 75 g bolus ingestion for subject #1 showed a high
transient peak, but that for subjects #2 and #3 did not.

Mathematical model of blood glucose control
As a solution to the forward problem, we constructed a
mathematical model of blood glucose control that fits time
course data of blood glucose and hormones. We constructed a
mathematical model from ordinary differential equations (Fig. 3a,
Supplementary Table S1, see Methods). Because of possible
alternative mechanisms of actions of GIP and GLP-1 on insulin
secretion,24,26,30–32 we constructed multiple alternative models in
which the GIP or GLP-1 or both have independent actions or
cooperative actions with blood glucose to promote insulin
secretion (Fig. 3a, Supplementary Table S1, see Methods). We
estimated parameters of each model for each subject separately
to fit time course data of blood glucose and hormones. We
selected the best model of blood glucose control for each subject
by Akaike Information Criterion (AIC) (see Methods). Note that the
GIP concentration of subject # 1 is lower than that of the other
subjects in all experiments, and the GLP-1 concentration is also

Fig. 1 Study diagram. Three subjects orally ingested glucose with
three doses 75, 50, and 25 g in two durations of bolus and 2 h-
continuous ingestion. Time course data of blood glucose level,
insulin level, C-peptide level, GIP level, and GLP-1 levels were
obtained (Fig. 2). We constructed models of the dynamics of these
blood hormones and glucose for each subject as a forward problem
(Fig. 3). Using the models, we predicted the glucose minimization
pattern, the glucose ingestion pattern minimizing the peak value of
blood glucose level for the ingestion of 50 g glucose within 60min
as an inverse problem, and validated the pattern experimentally
(Fig. 4)
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higher. Nevertheless, every subject has the similar insulin peaks,
indicating that how incretin works on insulin secretion must be
different between individuals. In addition, in each subject, GIP and
GLP-1 showed a peak at about 5–10min in the bolus ingestion,
and then gradual decrease (Fig. 2). Therefore, the time courses of
GIP and GLP-1 show a high correlation, and overfitting caused by
multicollinear may occur. Therefore, the dominant effect of GIP
and GLP-1 on insulin secretion should be considered through the
model selection, which identifies the model reflecting the
effective dynamics of blood glucose levels without overfitting.
The selected models were the same for subjects #1 and #3, but

different from the model for subject #2 (Supplementary Table S2,
S3). In the models of subject #1 and #3, cooperative action by
blood glucose and GIP was selected, indicating that insulin
secretion did not depend on GLP-1. In the model of subject #2, the
independent action of GIP and Cooperative action by blood

glucose and GLP-1 were selected. In each subject model, time
course data of each blood glucose and hormones were
approximately reproduced (Fig. 3b, Supplementary Figs. S2 and
S3, and Supplementary Table S4).

Optimization and validation of glucose ingestion pattern that
minimizes peak value of blood glucose level
Using mathematical, we tackled the inverse problem of predicting
an optimal input pattern that optimally controls the output
pattern. Here, input and output patterns are, specifically, time
courses of oral glucose ingestion and blood glucose level,
respectively. The optimality of the output pattern is defined as
an objective function that is a function of the output pattern,
typically the peak value of blood glucose level. First, we optimized
the glucose ingestion pattern for each subject that minimized the
typical objective function. Hereafter, we designate the optimized
patterns minimizing objective function as the glucose minimiza-
tion pattern. We searched the solution under the following
restrictions; total 50 g of glucose should be ingested within
60min, glucose is ingested every 5 min, at least 1 g is ingested at
0 min and the remaining 49 g of glucose is distributed between 0
and 60min Because the combination of glucose ingestion
patterns is enormous (62!=ð49!13!Þ), we obtained an optimal
ingestion pattern using an evolutionary programing-based
optimization algorithm (see Methods).34 The glucose minimization
patterns for the three subjects were designed with the above-
explained method and shown in Fig. 4a, red line.
The optimized glucose minimization pattern of the subject #1

appeared to be an intermittent pattern with 30-min intervals with
most glucose ingested at 0 min (17 g) and 60min (23 g), and
smaller amounts ingested at 30 min (8 g) and 35min (2 g) (Fig. 4a,
red line; Supplementary Table S5). This pattern was different from
bolus and 1-h-continuous ingestions. The predicted blood glucose
achieved with the glucose minimization pattern showed a
bimodal temporal pattern with peaks from ~25–50min and at
~80min (Fig. 4b, red line).
The optimized glucose minimization patterns of subjects #2 and

#3 appeared to be intermittent patterns similar to the pattern of
the subject #1 (Fig. 4a, red line; Supplementary Table S5).
Compared with subject #1, for subjects #2 and #3, the optimized
pattern of ingestion had some notable differences: Ingestion
amount of glucose at 0 min was less, the number of time points at
~30-min the intermittent period during which glucose was
ingested was larger, and the ingestion amount of glucose at
60min was larger. The predicted blood glucose level achieved
with the glucose minimization pattern for subjects #2 and
#3 showed a similar bimodal pattern to that for subject #1
(Fig. 4b, red line).
We also compared the simulated blood glucose levels produced

with the glucose minimization pattern with those simulated for
bolus or 1-h-continuous ingestion of 50 g of glucose. The
predicted glucose minimization pattern produced a lower peak
value of blood glucose level than either simulations of bolus or 1-
h-continuous ingestion using the subject-specific models (Fig. 4b).
We validated the predicted blood glucose levels produced with

the glucose minimization patterns for each subject. Each subject
ingested glucose according to their specific optimized glucose
minimization pattern (Supplementary Table S5), and blood
glucose levels were measured. (Fig. 4c, red line). The peak value
of blood glucose level produced by ingestion according to the
glucose minimization pattern in each subject was less than those
produced by bolus and 1-h-continuous ingestion (Fig. 4c,
Supplementary Table S6). All subjects exhibited bimodal temporal
patterns of blood glucose level. These experimental results are
consistent with the predictions except that first peak in blood
glucose level at ~30 min was lower than the second peak at
~80min for subjects #1 and #2 and the peak in blood glucose was
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Fig. 2 Time course data of blood glucose level and blood hormones
in subject #1 by glucose ingestion. Time course data of blood
glucose level and blood hormones in subject #1 by glucose
ingestion. a, b Blood glucose. c, d Insulin. e, f C-peptide. g, h Intact
GIP. i, j Intact GLP-1. a, c, e, g, i Bolus ingestion. b, d, f, h, j 2 h-
continuous ingestion. The doses are indicated in panel a
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delayed from the prediction for subject #3. The peak value of
insulin concentration by the glucose minimization pattern was
lower than that by the bolus and 1-h-continuous ingestion (see
Fig. 4d). This result indicates that the glucose minimization is not
achieved by enhancing insulin concentration.
Next, to verify the possibility that glucose minimization is

because of larger insulin secretion, we set the objective function
as the peak value of insulin and obtained the pattern that
minimizes the peak value of insulin for each subject (Fig. 4a, blue
line). Hereafter, we designate this pattern as the insulin
minimization pattern. The optimized insulin minimization pattern
of the subject #1 appeared to be an intermittent pattern with 30-
min intervals with most glucose ingested at 0 min (21 g) and
60min (19 g), and smaller amounts ingested at 15 min (1 g),
25 min (3 g), 30 min (2 g), and 35min (4 g) (Fig. 4a, blue line;
Supplementary Table S5). This pattern was different from bolus
and 1-h-continuous ingestions and similar intermittent pattern to
glucose minimization pattern (Fig. 4a). The both of predicted
blood glucose level and insulin concentration achieved with the
insulin minimization pattern showed bimodal temporal patterns
with peaks from ~15–50min and at ~80min, respectively (Fig. 4b
and d, blue line).
The optimized insulin minimization patterns of subjects #2 and

#3 appeared to be intermittent patterns similar to the pattern of
the subject #1 (Fig. 4a, blue line; Supplementary Table S5). The
both of predicted blood glucose level and insulin concentration
achieved with the insulin minimization pattern for subjects #2 and
#3 showed a similar bimodal pattern to that for subject #1 (Fig. 4b
and d, blue line). Compared with glucose minimization pattern,
the optimized insulin minimization pattern of ingestion was a
similar intermittent pattern for each subject, but had some
notable differences: Ingestion amount of glucose at 0 min was
larger, and the ingestion amount of glucose at 60min was less.
Although there is the quantitative difference of ingestion dose,

the intermittent glucose ingestion pattern decreases the peak
values of blood glucose level and insulin concentration for all
subject. These suggest that the glucose minimization is achieved
by suppressing the peak value of insulin concentration, rather
than by enhancing insulin concentration.

DISCUSSION
Prediction and validation of glucose ingestion patterns that
minimize the peak value of blood glucose level and insulin
concentration
In this study, as a forward problem, we constructed a mathema-
tical model of the change in blood glucose from time course data
of blood glucose and hormones in blood during and following
oral glucose ingestion with various doses and durations in human
subjects (Figs. 2, 3). The increase of postprandial blood glucose
may cause angiopathy, such as macroangiopathy, as described in
the Introduction. Then, using this model, as an inverse problem,
we optimized glucose ingestion patterns that minimize the peak
value of blood glucose level and validated these patterns with the
human subjects by experiments (Fig. 4). The glucose minimization
pattern was an intermittent pattern different from both the bolus
ingestion and the continuous ingestion. This intermittent inges-
tion pattern was intuitively not obvious. However, we discovered
the pattern using this approach of both constructing a
mathematical model as a forward problem and optimizing input
pattern from the model as an inverse problem. Although the best
fitting model for each subject had important differences in the
roles of the blood hormones, the intermittent pattern as an
optimal ingestion pattern to minimize peak value of blood glucose
level was common to all three subjects, suggesting that the
glucose minimization pattern is robust to these differences in the
model. Although we determined that the duration of the
intermittent period was a key parameter controlling the glucose

a b

Fig. 3 The blood glucose control model. a Model diagram. The letters in the circle indicate the variables of the model, the arrows indicate the
flow of molecules, the red lines indicate activation, and the blue line indicates inhibition (see Methods). The best fitting models for subjects #1
and #3 lack the GLP1 components. b Temporal patterns of hormones. The blue lines indicate the temporal patterns of simulations, and the red
circles indicate the time course data of experiments. The dose and ingestion pattern are indicated at the top
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minimization pattern output, we did not determine a molecular
mechanism for how the intermittent pattern minimizes the peak
value of blood glucose level. This question will be analyzed in the
future.
We also considered the possibility that glucose minimization is

because of larger insulin secretion. The peak value of insulin
concentration by the glucose minimization pattern was lower than
that by the bolus and 1-h-continuous ingestion. We also predicted
insulin minimization pattern, and found that the intermittent
pattern was optimal, which is similar to that of glucose

minimization pattern. Taken together, these result suggest that
the glucose minimization is achieved by suppressing the peak
value of insulin concentration, rather than by enhancing insulin
concentration.
Methodologically, construction of a mathematical model based

on the experimental data as a forward problem is well-known in
the field of the systems biology. However, the inverse problem of
optimizing an input pattern to achieve a specified output pattern
is challenging.33 Our success in identifying optimal input patterns
through analysis of both the forward problem and inverse
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Fig. 4 Optimal patterns minimizing the peak values of blood glucose level or insulin concentration. a Glucose minimization pattern (left) and
insulin minimization pattern (right) for glucose ingestion that minimizes the peak value of blood glucose level in subject #1, #2, and #3.
b Temporal patterns of blood glucose simulated from ingestion of glucose according to the glucose minimization pattern (red line), the
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problem suggests that this approach is valid for biological
systems. An obvious potential application is designing optimal
ingestion patterns for various nutrients or combinations of
nutrients such that the ingestion pattern that minimizes the peak
value of blood glucose level can be logically designed. Such
logical design of optimal food ingestion pattern will contribute the
human metabolic care and the prevention of the type 2 diabetes.
Here, the objective function for which we predict the input pattern
is the peak value of the blood glucose level. By changing the
objective function, this approach can evaluate other biological
outputs and predict the input pattern that optimizes molecular
concentrations or other measurable factors. Recently, a simple
continuous glucose monitoring system has been available.35 If
continuous glucose level together with HbA1c, which is a form of
hemoglobin that is measured primarily to identify the three-
month average blood glucose level,36 can be measured, we can
develop the predictive model of HbA1c from continuous glucose
blood level as a forward problem, and logically design the blood
glucose patterns minimizing HbA1c as an inverse problem even
though the time scale is different from the current study.
Blood glucose level by the glucose minimization pattern was

not so different from that by the bolus ingestion for subject #3 in
the validation experiment. Daily diet includes not only glucose,
but also other nutrients such as amino acids and lipids. Therefore,
the intermittent glucose ingestion pattern is not realistically useful
for controlling blood glucose level. We will develop the model
using the time course of blood nutrients and hormones by oral
ingestion of various diet including glucose and other nutrients as
a forward problem, and logically design the optimal ingestion
pattern of diet that minimizes blood glucose as an inverse
problem, which is practically useful, in the future.
In mathematical modeling studies in the biochemical or

physiological fields, in general, the average value among subjects
is often used as the experimental data fitted with the model
(subject-averaged data). Even when the method of this study was
applied to the subject-averaged data, the glucose minimization
pattern and insulin minimization pattern were the qualitatively
same intermittent pattern to the results for each subject but
quantitatively different from any subject (Supplementary Fig. S4,
Supplementary Tables S2–S5).

Identification of individualized models of the control of blood
glucose level
Our ordinary differential equation models include the roles of
incretins in insulin secretion. By determining the best fitting model
for each subject, we observed differences between subjects in the
roles of incretins in regulating blood glucose level. None of the
subjects had models that included an independent effect of GLP-1
on insulin secretion. Two of the three subjects had no role for GLP-
1 (independent or cooperative with glucose) in their optimal
models. In previous mathematical models using Caucasians data,
only GLP-1, but not GIP, were incorporated.24,26 It has been
reported that secretion of intact GLP-1 in Japanese is very small,
although that of the total GLP-1 in Japanese is almost the same as
that in Caucasians.7 All subjects in this study are Japanese, and,
the intact GIP level was higher than the intact GLP-1 level for all of
them (Fig. 2). Intact GLP-1 and intact GIP have a similar EC50 for
their receptors: The EC50 of intact GIP is 8 nM,37 and the EC50 of
intact GLP-1 is 2.6 nM.38 Considering the higher level of intact GIP
than intact GLP-1 in the blood and their similar sensitivities, it is
reasonable that intact GIP rather than intact GLP-1 was the
incretin with the most effect on insulin secretion in the best fitting
model. The number of subjects in this study is insufficient to
conclude the presence or absence of physiological effects of
incretins, and data from more subjects are needed to statistically
conclude the roles of blood GLP-1 and GIP in the secretion of
insulin. In addition, it is important to extend the study to pre-

diabetic subjects and diabetic subjects. Although it has been
reported that insulin sensitivity and insulin secretion decrease
with the progression of type 2 diabetes,39 the application of this
model will lead to a more precise mechanism of how changes of
parameters in the model can explain the progression of insulin
intolerance. Furthermore, the role of GIP and GLP-1 in the
progression of insulin intolerance can be also examined. Also, it is
very interesting how optimal input patterns change as
progression.
Many mathematical models use average values of blood

glucose from many subjects of all subjects. Some models that
use data from individual subjects used data with only a single
dose of glucose.22,28,40,41 Here, we used data from individual
subjects using three different doses and two different durations of
glucose ingestion. We constructed a mathematical model using a
single dose of glucose (75 g, like that of the OGTT) in subject #1
and compared this OGTT model with the model that we
constructed from the data for the three different doses and two
different durations of glucose ingestion (Supplementary Fig. S5).
The model that used the multiple dose and ingestion durations
had a better fit to the blood glucose level achieved by ingestion of
glucose according to the glucose minimization pattern (lower RSS
value) than did the model using 75 g OGTT alone. Thus, the single
dose OGTT appears insufficient to reflect the dynamics of the
blood glucose level in sufficient detail for mathematical modeling,
and models should be constructed from data on multiple doses
and durations of glucose ingestion to be useful in predicting the
glucose minimization pattern.
This finding that more training data provides more accurate

predictive power is expected. However, the number of conditions
for training data sets is limited in humans, because these types of
studies take a long period of time and require several hours and
fasting by the participants for each experimental condition. Here,
we set an interval of 1–2 months for each experiment, thus
collecting the data required a minimum of 6 months, and, in
reality, more than a year. During such a long period, having many
subjects for blood sampling following oral glucose ingestion every
month over a year is difficult. Changes in the state of a subject can
change during the months of the experiment, which can affect the
model and reduce predictive power. Thus, in human subject tests,
there is a trade-off relationship between the number of training
data sets and the prediction accuracy.
A limitation of the study is that the model is limited. There are

mechanisms, such as glucagon, autonomic nerves, and free fatty
acids, that did not incorporate into the model. Glucagon is a
counter-acting hormone to insulin in regulation of blood glucose.
Glucagon increases blood glucose level by facilitating glycogen-
olysis.42,43 Autonomic nerves not only regulate secretion of insulin
and glucagon,44 but also affect hepatic glucose production and
uptake.45,46 Free fatty acids weakens the effect of insulin on
hepatic glucose production and peripheral glucose uptake.47,48

Although glucagon and free fatty acid are not explicitly
incorporated in our model, blood glucose levels and other
hormone concentrations are well reproduced, which may suggest
that the effects of other molecules such as glucagon and free fatty
acid, are implicitly incorporated by some parameters in the model.
Incorporating glucagon and free fatty acid explicitly into the
model is a future goal.
In conclusion, the key points of this study are three. The first

point is the experimental design. We performed six different
conditions of oral glucose ingestion (three doses and two
durations) for each subject and obtained detailed time course
data, which makes the model predictable. The second point is the
demonstration of ability to logically design blood glucose control.
We predicted and validated the oral glucose ingestion pattern that
minimized the peak value of blood glucose level. The third point is
the methodology. We solved a forward problem by constructing
the mathematical model of output with the given input patterns,
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and in turn, solved an inverse problem by logical designing the
input pattern to control the output pattern. We expect that this
approach with a forward problem and an inverse problem that are
solved using the mathematical model can be widely applied to
design optimal dietary ingestion pattern relevant to human
health.

METHODS
Subjects
The subjects’ profiles are as shown in Supplementary Table S7. All subjects
are healthy, and signed informed consent.

Blood sampling experiment
For oral glucose tolerance test, a glucose solution containing 25, 50, or 75 g
glucose was orally ingested after a 10-hour fasting, and blood samples
were obtained at the times indicated in the Fig. 2 from the cutaneous vein
of the forearm. Blood samples were obtained from the cutaneous vein of
the forearm. Blood collection on fasting was performed twice and then a
glucose solution containing 25, 50, or 75 g glucose was orally ingested. The
ingestion method was rapid within a minute (bolus ingestion), and
continuous over the course of 2 h (2-h-continuous ingestion). For
continuous ingestion, we connected the tube to noncontact microdis-
penser robot (Mr. MJ; MECT Corporation)49 and glucose solution was
ingested from tube. The subject holds the tube in the mouth and
continuously ingest the glucose solution during the ingestion period. To
equalize the volume of ingested glucose solution, glucose solution,
TRELAN-G75 (AJINOMOTO), was diluted with distilled water into a total
volume 225ml. Each amount of glucose and delivery paradigm was tested
with each subject in experiments separated by at least 1 month. Blood was
rapidly centrifuged, plasma glucose and hormone concentrations expect
for GIP were measured according to the methods with LSI Medience Co.,
Ltd. Plasma glucose was measured by enzymatic methods (IATRO LQ GLU).
Plasma insulin and Serum C-peptide was measured by Chemiluminescent
Immunoassay.50,51 Plasma intact GLP-1 and Plasma intact GIP were
measured by ELISA kits (#EGLP-35K, Merck, Billerica, MA or #27201,
Immuno-Biological Laboratories, Gunma, Japan, respectively).52,53 For
simplicity, we refer to plasma glucose, plasma insulin, serum C-peptide,
plasma intact GIP, and plasma intact GLP-1 as blood glucose, insulin, C-
peptide, GIP, and GLP-1, respectively.

Validation experiment
For the validation experiment of the glucose minimization pattern, we
employed the same method as described in A.2 for the subject #1, and a
Freestyle Libre flash glucose monitoring system (FGM; Abbott Diabetes
Care) for subjects #2 and #3. FGM reduces the invasive burden on the
subjects because the subjects wear a sensor rather than requiring an
indwelling needle for blood glucose monitoring. We performed the
experiment after the subject had worn the sensors for at least two days.
Each subject wore three sensors, and bolus ingestion, continuous ingestion
for 1 h, ingestion of glucose minimization pattern were carried out using
the same sensors within 2 weeks. The results of the three sensors were
averaged for each paradigm. Because FGM measures glucose level of the
interstitial fluid rather than glucose level in the blood, the measured value
reflects a delay of about 5–20min (Supplementary Fig. S3) compared with
the values obtained by blood collection.

Ethics committee certification
We complied with Japan’s Ethical Guidelines for Epidemiological Research,
and the study as approved by the ethics committees of the Life-Science
Committee of the University of Tokyo (16–265). Subjects were recruited by
the related law.

Model structure and parameter structure
We extended the model of Brubaker et al.30 The basic structure is the
same, however, the previous models have some limitations. First, in the
previous models, only single dose of bolus ingestion was used. Therefore,
the previous models can not be directly applied to our study where the
carious doses and temporal pattern of oral glucose ingestion were used.
Second, the action of incretin is different between the previous models,
and the effective action of incretin on insulin secretion has yet to be

determined. Therefore by adding new differential equations for variables
AGutG and IntestG (RaGutG and DuodG in Brubaker’s model, respectively), we
constructed multiple models of various actions of incretins on insulin
secretion and selected their effective action by model selection (see
below).
For each subject, we estimated parameters that reproduce the time

course data of blood glucose, insulin, C-peptide, intact GIP, and intact GLP-
1 of six glucose ingestion patterns, combinations of three doses (25, 50,
and 75 g) and given by bolus and 2-h-continuous ingestion, using the
following model (Equations 1–21).
dIntestG

dt ¼ v1 � v6; (1)

dGIP
dt ¼ v2 þ v3; (2)

dGLP1
dt ¼ v4 þ v5; (3)

dAGutG
dt ¼ v6 � v7; (4)

dG
dt ¼ v7

V þ v8 � v9; (5)

dI
dt ¼ v10 � v11; (6)

dCP
dt ¼ v10 � v12; (7)

dX
dt ¼ v11

k11
� v13: (8)

Equations 1–8 indicate differential equations reproducing time devel-
opments of glucose amount in the intestine IntestG [g], GIP levelGIP [pM],
GLP-1 levelGLP1 [pM], Absorbed amount of ingested glucose from gut
AGUtG [g], blood glucose levelG [mg dL-1], insulin level I [pM], C-peptide CP
[pM], and the insulin level acting on the regulation of glucose X (denoted
as effective insulin concentration at target organs hereafter). Each variable
is controlled by fluxes vi i ¼ 1; � � � ; 13f g. However, in Equation 5, v7 was
divided by the constant V to convert the ingested glucose amount into the
blood glucose level. Also in Equation 8, v11 was divided by k11 to render X
dimensionless. Rendering X dimensionless enables the elimination of
redundant parameters, and improves the accuracy of parameter estima-
tion. The fluxes vi are given by

v1 ¼ Glucose; (9)

v2 ¼ k2 IntestG
L2þIntestG ; (10)

v3 ¼ k3 GIPB � GIPð Þ; (11)

v4 ¼ k4 IntestG
L4þIntestG ; (12)

v5 ¼ k5 GLP1B � GLP1ð Þ; (13)

v6 ¼ k6 IntestG
L6þIntestG ; (14)

v7 ¼ k7 AGutG; (15)

v8 ¼ k8
L8þX ; (16)

v9 ¼ k9 GX; (17)

v10 ¼ k10 Gþ a GIP þ b G GIP þ c GLP1þ d G GLP1ð Þ; (18)

v11 ¼ k11 I
L11þI ; (19)

v12 ¼ k12 CP; (20)

v13 ¼ k13 X; (21)

(Figure 3). v1 indicates the influx of ingested glucose into the intestine,
given by dose of glucose ingestion divided by the time duration of
ingestion Δt, otherwise 0 (Equation 22). For rapid ingestion, such as bolus
ingestion, or for the ingestion of glucose minimization pattern, Δt is
assumed as 0.5 [min]. For example, in the case of 50 g bolus,

Glucose ¼ dose=Δt ¼ 50=0:5 ¼ 100; 0 � t < 0:5

0; otherwise

�
: (22)

M. Fujii et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2019)    31 

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



v2 indicates the secretion of GIP depending on the glucose amount in
the intestine (IntestG). v3 indicates absorption of GIP by the intestine and
entry into the blood, which is proportional to GIP subtracted by its basal
GIPB. At steady state without glucose ingestion, GIP converges to GIPB. v4
indicates the secretion of GLP-1 depending on the glucose amount in the
intestine. v5 indicates the absorption of GLP-1 proportional to
GLP1 subtracted by its basal GLP1B. At the steady state without glucose
ingestion, GLP1 converges to GLP1B. v6 indicates the flow of glucose
adsorption (AGutG). With bolus ingestion, this flow can be regarded as
constant because of the large amount of glucose in the intestine.30

Therefore, we assumed that this flux is given by the Michaelis-Menten
equation, which saturates when the glucose amount is large. v7 indicates
the flow of glucose from the rate of appearance into the blood, which is
proportional to the rate of appearance of ingested glucose amount. v8
indicates the flow of glucose production from the liver into the blood,
given by an inhibitory Michaelis-Menten equation, which decreases as the
amount of effective insulin X increases. v9 indicates the glucose uptake
from the blood to the periphery and is given by the product between
blood glucose level G and effective insulin X. v10 indicates the secretion of
insulin. In this study, the actions of GIP and GLP-1 on insulin secretion were
represented as independent actions of each incretin and as cooperative
actions with blood glucose. By incorporating the parameters (a,b,c, and d
in Equation 18), we could relate insulin secretion to cooperative or
independent actions using AIC (Akaike Information Criteria) to select the
model that best fit the data (Supplementary Tables S1, S2). v11 indicates
the flow of insulin I into target organs, such as liver and muscle, leading to
effective insulin X. v12 indicates inactivation of C-peptide CP and decreases
in proportion to CP itself. v13 indicates the binding of X to the cells in the
target organs in proportion to X itself.
For the model, parameters were estimated for each subject. Here, the

estimated parameters are the 18 parameters of k2; k3; k4; k5; k6;
k7; k8; k10; L2; L4; L6; L8; L11; V; a; b; c and d; and six initial levels of
GIP 0ð Þ;GLP1 0ð Þ;G 0ð Þ; I 0ð Þ;CPð0Þ and X 0ð Þ. Using the variables, and
assuming IntestG;AGutG;GIP;GLP1;G; I; X; and CP are at steady state before
ingestion, other initial conditions and parameters were determined by
estimated parameters and initial values, given by

IngestG 0ð Þ ¼ 0; (23)

AGutG 0ð Þ ¼ 0; (24)

k9 ¼ k8
G 0ð Þ�X 0ð Þ� X 0ð ÞþL8ð Þ ; (25)

k11 ¼ k10
L11þI 0ð Þ

I 0ð Þ G 0ð Þ þ a GIP 0ð Þ þ b G 0ð ÞGIP 0ð Þ þ c GLP1 0ð Þ þ d G 0ð ÞGLP1 0ð Þð Þ;
(26)

k12 ¼ k10
CP 0ð Þ G 0ð Þ þ aGIP 0ð Þ þ bG 0ð ÞGIP 0ð Þ þ c GLP1 0ð Þ þ d G 0ð ÞGLP1 0ð Þð Þ;

(27)

k13 ¼ I 0ð Þ
I 0ð ÞþL11ð ÞX 0ð Þ ; (28)

GIPB ¼ GIP 0ð Þ; (29)

GLP1B ¼ GLP1 0ð Þ: (30)

These parameters are different between subjects, but the same for each
subject for each experimental paradigm (dose and duration and ingestion).
This means that the state for each subject does not change during this
study. Note that the time courses by 75 g 2-h continuous ingestion for the
subject #2 were excluded for the parameter estimation because the
subject's condition and the surrounding environment have changed
significantly between this and the other experiments. For time develop-
ment, we used CVODE in Matlab's Systems biology toolbox (SBToolbox2).
We used the residual sum of squares (RSS) as the objective function so

that the residual between the experimental value and the simulation value
is reduced, given by

RSS ¼P
i

P
k

P
t

xsimi;k tð Þ�xexpi;k tð Þ
maxt x

exp
i;k tð Þ�mint x

exp
i;k tð Þ

� �2
: (31)

xsimi;k ðtÞ and xexpi;k ðtÞ indicate the simulation values and the experimental
values of molecular species k 2 G; I;CP;GLP1;GIPf g at time t in the
experiment i 2 f25B; 25C; 50B; 50C; 75B; 75Cg, for which each experiment
is denoted by the ingestion dose and the initial letters of the duration of
ingestion, 25-g-bolus ingestion, 25B and for 75-g-2-h-continuous, 75 C. To

avoid the influences of the differences in the absolute quantities of the
molecules, we normalized the difference between the simulation value
and the experimental value by the difference between the maximum value
and the minimum value of the experiment. We performed parameter
estimation for global optimal solution using Evolutionary programming34

for 40 trials with a parent number of 5000 and a generation number of
5000, then we obtained a local optimal solution using the simplex search
method (Matlab fminsearch). We implemented all programs using Matlab
2015a and performed parameter estimation using 2.6 GHz CPU (Xeon E5
2670) at the National Institute of Genetics (NIG), Supercomputer System of
Research Organization of Information and System (ROIS).

Model selection
Using parameters of a,b,b and d in Equation 18, which indicate
contributions to insulin secretion of incretins as independent actions of
each incretin and cooperative actions with glucose, we considered the
multiple models shown in Supplementary Table S1.
We performed the parameter estimation of each of the above models

using RSS of Equation 31 for each subject. Here, we assumed that each
residual of the simulation value and the experiment value in Equation 31
follows a normal distribution. Among the models to be compared, the sum
N of the numbers of data of each variable measured in the experiment is
the same. Therefore, AIC (Akaike Information Criteria), which is a criterion
of model selection can be calculated for each model, given by

AIC ¼ Nlog RSSð Þ þ 2K: (32)

We employed a model that minimizes AIC for each subject as a model
representing the dynamics of blood molecules in the subject. For the
models not including GLP-1 of subjects #1 and #3 as mentioned below, we
also calculated AIC for each model similar to those including GLP-1.
The selected models for each subject were distinct (Table 2,

Supplementary Tables S1, S2). For subject #1, the best model had no
influence of GLP-1 and both an independent action and cooperative action
with glucose for GIP (Supplementary Table S2, c= d= 0), indicating that
the insulin secretion of subject #1 is independent of GLP-1. For subject #2,
the best model had an independent action of GIP and a cooperative action
of GLP-1 with glucose (Supplementary Table S2, b= c= 0), indicating that
the insulin secretion of subject #2 depends on both GIP and GLP-1. For
subject #3, the best model had only the cooperative action of GIP with
glucose (Supplementary Table S2, a= c= d= 0), indicating that the insulin
secretion of subject #3 is independent of GLP-1. In each subject model,
time course data of each blood glucose and hormones were approximately
reproduced (Fig. 3b, Supplementary Figs. S2 and S3).
In the selected models of subjects #1 and #3, insulin secretion did not

depend on GLP-1, therefore, we performed parameter estimation and
model selection using models that did not include GLP-1 by removing
Equation 3. Insulin secretion using the best fitting of these models for both
subjects #1 and #3 included the term of independent action of blood
glucose and the cooperative term of blood glucose and GIP (Supplemen-
tary Table S3, a= 0). We used these models for subjects #1 and #3.

Estimation of minimization patterns
We set the oral glucose u(t) as a function of time t [min] according to the
following constraint condition. First, glucose was orally ingested at
intervals of 5 min from 0min to 60min Here, we defined us [g] as the
dose of ingestion at the minute s [min] s ¼ 0; 5; :::; 60ð Þ and u0:60 as the
temporal pattern of oral glucose ingestion, given by

u0:60 ¼ u0; u5; ¼ ; u60½ �: (33)

Also, we set the total dose of glucose ingestion at 50 g, i.e.,
P
s
us ¼ 50 [g],

each dose at s is the integer value with unit of 1 g, i.e., us 2 Z; us � 0, and
at least 1 g is ingested at 0 min to start the ingestion, i.e., u0 � 1. We
assumed that ingestion at each time is taken over 0.5 min, and convert
u0:60 to Glucose instead of Equation 9, given by

Glucose tð Þ ¼ us=0:5 ti � t < ti þ 0:5; ti 2 0; 5; � � � ; 60f g
0 otherwise

�
: (34)

Next, we expressed a nonlinear ordinary differential equation model
(Equations 1–8) describing the dynamics of the glucose metabolism
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system, given by

dx
dt ¼ f u tð Þ; x tð Þ; θð Þ; (35)

x 0ð Þ ¼ xinit; (36)

where x indicates a state variable, xinit indicates an initial state, θ is a
parameter set, and f is a nonlinear function. These types and values of x,
xinit , θ, and f are different among subjects, because the selected models of
subjects and parameters are different among subjects (see above). Each
subject has one set of f, xinit, and θ. xð0 : TÞ, the temporal pattern of x from
t ¼ 0 to t ¼ T with the temporal pattern of oral glucose ingestion u0:60, can
be obtained by the deterministic numerical simulation of this mathema-
tical model Sim, given by

x 0 : Tð Þ ¼ Sim u0:60; xinit; θ; f; Tð Þ: (37)

To design a temporal pattern of oral glucose ingestion that minimizes the
peak value of blood glucose level or insulin concentration, we formulated
as an optimization problem. Defining the peak values of blood glucose
level and insulin concentration in the time course xð0 : TÞ as GMax x 0 : Tð Þð Þ
and IMax x 0 : Tð Þð Þ, respectively, and setting the objective function of the
optimization problem to be J x 0 : Tð Þð Þ, we set the objective functions for
designing the temporal patterns of oral glucose ingestion that minimizes
the peak value of blood glucose level or insulin concentration, given by

J x 0 : Tð Þð Þ ¼ GMax x 0 : Tð Þð Þfor glucoseminimization pattern

IMax x 0 : Tð Þð Þfor insulinminimizationpattern

�
: (38)

Under these settings, the optimization problem of designing the oral
glucose ingestion pattern can be expressed as follows for minimizing the
peak value of blood glucose level, given by

argmin

u0:60

J x 0 : Tð Þð Þ ¼

argmin

u0:60

GMax Sim u0:60; xinit; θ; f; Tð Þð Þ for glucose minimization pattern

argmin

u0:60

IMax Sim u0:60; xinit; θ; f; Tð Þð Þ for insulin minimization pattern

8>>>>>>>><
>>>>>>>>:

:

(39)

We numerically solved this optimization problem by following
evolutionary programming. Each individual has an oral glucose ingestion
pattern. After initialization of the oral glucose ingestion pattern of each
individual, the algorithm outputs the oral glucose ingestion pattern that
minimizes the objective function value by repeating (i) the mutation
steps through which a new oral glucose ingestion pattern for each
individual is proposed, and (ii) the selection steps through which
individual (and thus new pattern) are selected based on the value of the
objective function.
Denoting the total number of individuals as N, the nth individual of the

oral glucose ingestion pattern u0:60 as un , and simplifying the objective
function as JðunÞ, the algorithm is as follows:

(1) (Initialization) For each individual n ¼ 1; :::;N, un is initialized and
un that minimizes J unð Þ is stored as u� .

(2) Repeat the following procedure (a)–(c) K times

a. (Mutation) For each individual n ¼ 1; ¼ ;Nð Þ, copy and mutate
un to generate a new individual u0n . Update u� as u�  u0n if
J u�ð Þ>J u0n

� �
.

b. (Selection 1) For each of 2N individuals that consist of the
original individuals and the new individuals generated at (a),
obtain the evaluation value by the following procedure.
i. Select an individual sequentially as um.
ii. Select an M individuals randomly except for um (duplication

possible) as umi ði ¼ 1; ¼ ;MÞ.
iii. Obtain the evaluation value defined by the number of umi

with J umið Þ> J umð Þ.
c. (Selection 2) Sort the individuals in order of the evaluation

value, and the top N individuals are selected and used in the
next step.

(3) Output u� .
In terms of evolutionary programming, step 1 is initialization, step 2-a is

mutation, and steps 2-b and 2-c are selection. Because the intersection of
oral glucose ingestion patterns is complicated by the constraint of 50 g
total ingestion dose, this algorithm does not include intersection.

Details of initialization and mutation are as follows: In initialization, to
avoid bias of an initial value, N individuals consist of an individual with a
50 g bolus ingestion, an individual with 1 g ingestion at 0 min and the
remaining 49 g ingestion at 60min, and other random patterns. The
random pattern was generated by distributing 49 g glucose randomly with
equal probability at each time point and the remaining 1 g ingestion at
0 min For the mutation, a new oral glucose ingestion pattern was
suggested by repeating operations that transfer 1 g of glucose from one
time point to another randomly. Specific operations are as follows.

1. Subtract 1 g of glucose at time 0min
2. Repeat the following procedure (a) and (b) L times

a. Randomly select the source and destination time points of
glucose with equal probability.

b. If the ingestion glucose at the source time point contains more
than 1 g, transfer 1 g of glucose from the source time point to
the destination time point.

3. Add 1 g of glucose at time 0min

In the deterministic numerical simulation Sim, we employed the Euler
method with a time step width of 0.001 [min] to shorten the calculation
time. We also set T= 480 [min].
In the evolutionary programming, we set the number of individuals as

N= 500, the number of generation except initialization generation as K=
500, the number of transfers of glucose in one mutation L to decrease from
L= 20 by 1 every 25 generations, and the number of individuals for
calculation of evaluation value in selection as M= N/5= 100. According to
this algorithm and these settings, we calculated the optimal ingestion
pattern for five trials and obtained the pattern that produced the smallest
objective function. Note that we obtained the same minimization pattern
for each subject multiple times for multiple trials (all trials in subject #1 and
#2, 2 trials in subject #3).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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