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Abstract Second-generation antipsychotics are widely used to medicate patients with

schizophrenia, but may cause metabolic side effects such as diabetes, which has been considered

to result from obesity-associated insulin resistance. Olanzapine is particularly well known for this

effect. However, clinical studies have suggested that olanzapine-induced hyperglycemia in certain

patients cannot be explained by such a generalized mechanism. Here, we focused on the effects of

olanzapine on insulin biosynthesis and secretion by mouse insulinoma MIN6 cells. Olanzapine

reduced maturation of proinsulin, and thereby inhibited secretion of insulin; and specifically shifted

the primary localization of proinsulin from insulin granules to the endoplasmic reticulum. This was

due to olanzapine’s impairment of proper disulfide bond formation in proinsulin, although direct

targets of olanzapine remain undetermined. Olanzapine-induced proinsulin misfolding and

subsequent decrease also occurred at the mouse level. This mechanism of olanzapine-induced b-cell

dysfunction should be considered, together with weight gain, when patients are administered

olanzapine.

Introduction
Patients with schizophrenia are typically prescribed first- or second-generation antipsychotics (FGAs

or SGAs, respectively). FGAs block dopamine signaling in the brain by inhibiting the function of its

receptors, resulting in recovery from conditions such as acute mania and agitation (Divac et al.,

2014). However, because of excessive inhibition of the dopamine pathway, FGAs can cause extrapy-

ramidal symptoms, including dystonia, akathisia, and Parkinsonism, and are now widely replaced by

SGAs due to their reduced risk of causing adverse extrapyramidal effects (Høiberg and Nielsen,
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2006) and greater effectiveness in alleviating symptoms (Lee et al., 2002; Sirota et al., 2006).

These effects of SGAs are caused by their inhibition of signaling through the dopamine D2 receptor

and 5-HT2A serotonin receptor (Divac et al., 2014; Kasper et al., 1999). Of note, SGAs have higher

risks of causing metabolically adverse side effects such as obesity (Gothelf et al., 2002), dyslipide-

mia (Gothelf et al., 2002) and diabetes mellitus (Citrome and Volavka, 2005; Koller and Doraisw-

amy, 2002).

The SGA olanzapine affects neurotransmitter receptors (called multi-acting receptor-targeted

antipsychotics) and thereby exhibits significantly greater effectiveness in alleviating various symp-

toms than other SGAs (Sirota et al., 2006; van Bruggen et al., 2003). However, it carries a higher

risk of diabetes than other SGAs such as risperidone, and its frequent use therefore represents a clin-

ical problem (Deng, 2013; Newcomer, 2005; Rummel-Kluge et al., 2010). Generally, olanzapine-

induced diabetes is attributed to weight gain caused by increased appetite through the effect on

the feeding center via blocking of 5-HT2C receptor, leading to insulin resistance-mediated develop-

ment of diabetes.

Nonetheless, olanzapine-induced diabetes includes atypical cases, as follows. First, while it usually

takes years to develop diabetes via insulin resistance, olanzapine-induced diabetes occurs within 6

months after commencing treatment (Kinoshita et al., 2014; Nakamura et al., 2014;

Nakamura and Nagamine, 2010). Second, discontinuing olanzapine treatment cures diabetes even

after the level of HbA1c (a marker for blood glucose level) reaches >10%, a ratio which normally rep-

resenting an irreversible level in patients with type I or type II diabetes (Nakamura et al., 2014;

Nakamura and Nagamine, 2010; Nathan et al., 2009; Young et al., 2012). Moreover, diabetic

ketoacidosis, which is caused by insulin hyposecretion, often occurs in patients with type I diabetes,

but also rapidly (within 6 months after treatment with olanzapine) affects patients with no diabetic

symptoms before medication (Kinoshita et al., 2014; Tsuchiyama et al., 2004). Indeed, epidemio-

logical data show that patients receiving olanzapine incur an approximately 10-times higher risk of

diabetic ketoacidosis than the general population (Polcwiartek et al., 2016), suggesting the possi-

bility that olanzapine directly impairs the function of pancreatic b cells, the exclusive source of insu-

lin, in a speculated few percent of medicated patients (Nagamine, 2014; Nagamine, 2018).

We are interested in the mechanism of the development of olanzapine-induced atypical diabetes

from the viewpoint of the protein quality control system operating in the endoplasmic reticulum

(ER). Secretory and membrane proteins gain their tertiary and quaternary structures in the ER, which

is assisted by ER-localized molecular chaperones, glycosyltransferases and oxidoreductases (collec-

tively referred to here as ER chaperones). Only correctly folded molecules are transported from the

ER to the Golgi apparatus and then to their destination. However, proteins that fail to fold correctly,

even with the assistance of ER chaperones, are retrotranslocated into the cytosol and degraded by

the ubiquitin-proteasome system (Qi et al., 2017). This disposal system is called ER-associated deg-

radation (ERAD).

Although eukaryotic cells perform quality control of proteins through ER chaperone-assisted pro-

ductive folding and ERAD, the requirements for protein synthesis may exceed the protein folding

capacity of the ER under physiological and pathological conditions. To counteract such ER stress,

namely the accumulation of unfolded or misfolded proteins in the ER, the unfolded protein response

(UPR) is triggered, leading to the activation of three ER transmembrane sensor proteins PERK, ATF6,

and IRE1. Interestingly, their activation effects come out sequentially. First, phosphorylation of the a

subunit of eukaryotic translation initiation factor 2 (eIF2a) by activated PERK transiently suppresses

translation (see Figure 1A) so that the burden of the ER is mitigated because of reduced transloca-

tion of newly synthesized proteins into the ER. Next, activated ATF6 upregulates the transcription of

ER chaperone genes to increase the folding capacity of the ER. Subsequently, activated IRE1

together with activated ATF6 upregulates the transcription of ERAD component genes, which

increases degradation capacity. If ER stress is prolonged, apoptotic signaling is activated

(Mori, 2000; Tabas and Ron, 2011; Yamamoto et al., 2007; Yoshida et al., 2003).

Pancreatic b cells synthesize preproinsulin, fold proinsulin in the ER, and store large quantities of

insulin in insulin granules (see Figure 1A). In these roles, they are frequently subject to ER stress,

and the UPR accordingly plays a critical role in maintaining homeostasis. Immediate translational

control mediated by the PERK pathway, rather than time-consuming transcriptional control of ER

chaperones etc. (Yoshida et al., 2003), is particularly important for the folding of proinsulin, a very

small molecule compared with ER chaperones; when translation is generally attenuated by the
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Figure 1. Effect of olanzapine on secretion of insulin from MIN6 cells. (A) Schematic representation of protein quality control in the ER, PERK-mediated

translational attenuation, and storage and secretion of insulin (see Introduction). GSK2656157 inhibits protein kinase activity of PERK. (B) Scheme for

measuring the level of insulin secreted into medium in response to glucose stimulation. After culture in a medium containing 25 mM glucose, MIN6

cells were starved for 1 hr in medium containing 3 mM glucose (Stav), and then cultured in medium containing 25 mM glucose (Stim or 3 mM glucose

Figure 1 continued on next page
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activation of PERK, stochastically unfolded or misfolded proinsulin can be efficiently refolded by the

action of preexisting ER chaperones. If PERK is not active, synthesis of misfolded proinsulin contin-

ues, leading to proteotoxicity-mediated apoptosis of b cells. Accordingly, PERK knockout mice

develop diabetes after birth (Harding et al., 2001). Further, PERK mutation causes human Wolcott-

Rallison syndrome, which induces diabetes in infancy (Delépine et al., 2000). We previously found

that olanzapine induces mild ER stress in hamster pancreatic b-cell line HIT-T15, which secretes insu-

lin. However, phosphorylation of eIF2a is not elevated despite mild activation of PERK in olanza-

pine-treated HIT-T15 cells, leading to sustained protein synthesis followed by induction of

apoptosis, although we used olanzapine at the concentration of 100 mM (Ozasa et al., 2013).

We also previously found that olanzapine markedly inhibits insulin secretion by HIT-T15 cells

(Ozasa et al., 2013). In the present study, we confirmed that 10–50 mM olanzapine inhibits insulin

secretion by the mouse pancreatic b-cell line MIN6, which is frequently used to study b cells. We

then investigated the stage of protein quality control at which insulin secretion is blocked in olanza-

pine-treated MIN6 cells, and then whether the identified stage is indeed compromised in islets of

mice after daily oral administration of olanzapine.

Results

Inhibition of insulin secretion in olanzapine-treated MIN6 cells
MIN6 cells exhibit an approximately 7-fold increase in insulin secretion in 2 hr when the extracellular

glucose concentration is increased from 5 to 25 mM (Ishihara et al., 1993). Here, we detected an

approximately 4-fold increase in insulin secretion in 1 hr when the extracellular glucose concentration

was increased from 3 to 25 mM (stimulation after starvation for 1 hr, Figure 1B) compared with con-

tinuous incubation in 3 mM glucose (Figure 1C, compare bar 2 with bar 1). Glucose-stimulated insu-

lin secretion was inhibited in a concentration-dependent manner when MIN6 cells were first treated

with 25 mM glucose in the presence of 10, 20, or 50 mM olanzapine for 4 hr (Figure 1C, bars 3–5)

and was markedly inhibited by pretreatment for 14 hr with these same concentrations of olanzapine

(Figure 1C, bars 6–8), but not by pretreatment for 14 hr with 50 mM risperidone (Figure 1D, com-

pare bar 4 with bar 2). Pretreatment was essential for this effect, because the addition of 50 mM

olanzapine from the beginning of the 1 hr starvation did not detectably inhibit glucose-stimulated

insulin secretion (data not shown), suggesting that it takes time for olanzapine to exert its inhibitory

effect on insulin secretion.

Glycolysis causes ATP-mediated closure of the potassium (K+) channels, leading to opened cal-

cium (Ca2+) channel-mediated influx of extracellular Ca2+. The increase in cytosolic Ca2+ concentra-

tions culminates in fusion of insulin granules with the plasma membrane and subsequent secretion of

insulin (Figure 1E; Rorsman and Braun, 2013). Therefore, insulin secretion can be induced by mas-

toparan, which increases intracellular Ca2+ concentrations by activating phospholipase C to produce

inositol 1, 4, 5-triphosphate (Perianin and Snyderman, 1989). Indeed, treatment of MIN6 cells with

mastoparan for 1 hr after glucose starvation rapidly stimulated insulin secretion (Figure 1F, compare

bar 2 with bar 1). Pretreatment of MIN6 cells with 50 mM olanzapine for 14 hr partially inhibited mas-

toparan-induced insulin secretion (Figure 1F, compare bar 5 with bar 2). These results suggest that

olanzapine may not block Ca2+-induced fusion of insulin granules with plasma membrane, but may

decrease the amount of insulin stored in insulin granules.

Figure 1 continued

as control). The amount of insulin secreted into the medium during the 1 hr incubation was determined using an ELISA. The data are normalized to the

amounts of total cellular proteins and presented as the mean ± SD (n = 2). (C) MIN6 cells were pretreated with the indicated concentrations of

olanzapine (OLA) for 4 hr or 14 hr in medium containing 25 mM glucose before glucose starvation as shown in (B). (D) MIN6 cells were pretreated with

50 mM olanzapine or risperidone (RIS) for 14 hr before glucose starvation as shown in (B). (E) Schematic representation of the signaling cascade for

insulin secretion in response to glucose stimulation. Cells intake glucose (�). Glucose metabolism (�) triggers an increase in cellular ATP/ADP ratio (�),

which inhibits K+ channels and induces depolarization (�). This leads to opening of Ca2+ channels (�) and increased influx of Ca2+ (�), inducing the

fusion of insulin granules to the plasma membrane for secretion (�). Mastoparan (Mast) enhances insulin secretion by increasing the intracellular

concentration of Ca2+ independently of glucose intake. (F) MIN6 cells were pretreated with 50 mM olanzapine or risperidone for 14 hr before glucose

starvation as shown in (B). Mastoparan (Mast, 20 mM) was added at the time of glucose stimulation to aliquots of cells not pretreated or pretreated with

50 mM olanzapine for 14 hr.
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Retention of proinsulin in the ER in olanzapine-treated MIN6 cells
Proinsulin produced from preproinsulin by the action of signal peptidase becomes mature proinsulin

via formation of three intramolecular disulfide bonds in the ER, and is then processed to insulin

(Figure 2A). To analyze MIN6 cells which secrete both proinsulin and insulin (Lee et al., 2011;

Tsuchiya et al., 2018), as is seen when isolated mouse and human islets were analyzed by pulse-

chase experiments (Dufurrena et al., 2019), we employed two types of mouse monoclonal antibod-

ies with different characteristics, namely #8138 raised against a synthetic peptide corresponding to

the residues surrounding Val36 of human insulin, which are conserved in mouse insulin (yellow circle

denotes Val36 in Figure 2A), and I2018 raised against human insulin. Under reducing conditions,

#8138 detected mainly proinsulin in lysates of MIN6 cells, and both proinsulin and insulin B chain in

lysates of mouse islets, probably reflecting their relative contents (Figure 2B). It should be noted

that #8138 was 800-fold more reactive with purified recombinant human proinsulin than purified

recombinant human insulin (insulin B chain) under reducing conditions (Figure 2C), and that #8138

reacted with neither proinsulin nor insulin under non-reducing conditions (Figure 2B).

A pulse (20 min)-chase (80 min) experiment showed that the immunoprecipitates obtained from

MIN6 cells using #8138 were detected as doublet bands which migrated slightly faster than the 8.5

kDa marker and were secreted into medium within the 80 min chase (Figure 3A and B). On compari-

son of the migration positions of in vitro translational products, the upper band was considered to

be proinsulin 2 (Figure 3B), consistent with the abundant expression of insulin 2 mRNA in MIN6 cells

(Roderigo-Milne et al., 2002). The lower band was considered to be processed proinsulin 2, such as

the B chain connected to the C peptide but not to the A chain as observed in isolated rat islets

(Harding et al., 2012), or somewhat cleaved proinsulin, because only proinsulin 2 was detected after

a shorter pulse (3 min) and processed proinsulin 2 appeared after the 30 min chase (Figure 3C).

Processed proinsulin 2 is likely to be produced after moving out from the ER, because its level was

markedly decreased by treatment with brefeldin A, an inhibitor of anterograde transport from the

ER to the Golgi apparatus (Figure 3D). #8138 immunoprecipitated proinsulin 2 and processed proin-

sulin 2 but not insulin 2 from MIN6 cells after pulse (20 min)-chase (reducing conditions, Figure 3E).

In contrast, I2018 detected insulin in lysates of MIN6 cells and mouse islets only under non-reduc-

ing conditions (Figure 2B). A pulse (20 min)-chase experiment showed that I2018 immunoprecipi-

tated both proinsulin 2 and insulin 2 from MIN6 cells (reducing conditions, Figure 3E). This also

demonstrated the precursor-product relationship for proinsulin 2 and insulin 2 in MIN6 cells. Impor-

tantly, I2018 immunoprecipitated mature proinsulin 2, which folded into a compact structure and

thereby migrated slightly faster than proinsulin 2 immunoprecipitated using #8138, in addition to

insulin 2 (non-reducing conditions, Figure 3E). Hereafter, #8138 and I2018 were appropriately used

in accordance with experimental purposes.

We examined the effect of olanzapine and risperidone on the synthesis and secretion of proinsu-

lin and insulin in MIN6 cells by pulse-chase experiments (Figure 4A). Analysis under reducing condi-

tions of immunoprecipitates obtained with #8138 showed that production of intracellular processed

proinsulin (P’) as well as secretion of both proinsulin (P) and processed proinsulin (P’) were markedly

decreased by treatment of MIN6 cells with 50 mM olanzapine (Figure 4B, lanes 8–14) but not with

50 mM risperidone (lanes 29–35) compared with control cells (lanes 1–7), and that proinsulin (P) was

instead accumulated intracellularly in olanzapine-treated MIN6 cells [see quantified Figure 4B (a)].

These phenomena were observed when MIN6 cells were similarly treated with 10 mM olanzapine but

not with 10 mM risperidone (Figure 5A and B). Analysis under non-reducing conditions of immuno-

precipitates obtained with I2018 showed that the levels of both intracellular mature proinsulin (mP)

and insulin (I) were markedly decreased and that secretion of both mature proinsulin (mP) and insulin

(I) was markedly inhibited by treatment of MIN6 cells with 50 mM olanzapine (Figure 4B, lanes 22–

28) but not with 50 mM risperidone (lanes 36–42) compared with control cells (lanes 15–21) [see

quantified Figure 4B (b)], consistent with the ELISA data (Figure 1). Thus, olanzapine blocked matu-

ration of proinsulin and accordingly inhibited secretion of insulin.

Phogrin, a transmembrane protein-tyrosine phosphatase-like protein, transits the secretory path-

way (Torii et al., 2005), and furin-like convertases convert proinsulin and phogrin to their mature

forms by cleaving them at a dibasic consensus site (Hermel et al., 1999; Nakayama, 1997). Pulse-

chase experiments showed that olanzapine did not detectably affect the processing of transfected

phogrin-GFP (Figure 6A) or secretion of transfected a1-proteinase inhibitor (A1PI) (Figure 6B). The
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Figure 2. Characterization of two anti-insulin monoclonal antibodies utilized. (A) Schematic representation of maturation of insulin 2. Each circle
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Preproinsulin 2 is converted to proinsulin 2 after cleavage of the signal sequence, and proinsulin 2 becomes mature proinsulin 2 via formation of three

intramolecular disulfide bonds. Mature proinsulin 2 is converted to insulin 2 after proteolysis at the residues indicated by the two arrows. The red circles
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indicated by the yellow circle, is recognized by the anti-insulin monoclonal antibody #8138, which immunoprecipitates (immature) proinsulin 2 and

detects proinsulin 2 and insulin 2 (B chain) after reducing SDS-PAGE. In contrast, the anti-insulin monoclonal antibody I2018 immunoprecipitates mature

proinsulin 2 and insulin 2, and detects insulin 2 after non-reducing SDS-PAGE. (B) Lysates of MIN6 cells and mouse islets were analyzed by

immunoblotting using #8138 and I2018 after reducing (DTT +) and non-reducing (DTT -) SDS-PAGE. (C) The indicated amounts of recombinant and

purified proinsulin and insulin were subjected to reducing SDS-PAGE followed by immunoblotting using #8138.
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Figure 3. Secretion of proinsulin 2, processed proinsulin 2 and insulin 2 from MIN6 cells. (A) Schemes of the experiments shown in (B) and (C). (B)

cDNAs encoding mouse preproinsulin 1, preproinsulin 2, proinsulin 1, and proinsulin 2 were subjected to in vitro transcription and translation in the

presence of 35S-Met and 35S-Cys, and then to immunoprecipitation using #8138. A pulse (20 min)-chase (80 min) experiment was performed in MIN6

cells, and cell lysates and media were collected and subjected to immunoprecipitation using #8138. The immunoprecipitates were analyzed by

Figure 3 continued on next page

Ninagawa et al. eLife 2020;9:e60970. DOI: https://doi.org/10.7554/eLife.60970 7 of 26

Research article Cell Biology

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://doi.org/10.7554/eLife.60970


anti-KDEL antibody stained the ER by recognizing the major ER chaperones BiP/GRP78 and GRP94,

and A1PI was widely distributed from the ER to the Golgi apparatus before and after olanzapine

treatment (Figure 6C and D). Olanzapine also did not significantly affect the maturation of hemag-

glutinin from high-mannose type to complex type (Figure 6E), which requires correct disulfide bond

formation for folding (Segal et al., 1992). These results confirmed the specificity of olanzapine’s

effect to proinsulin.

Immunofluorescence analysis using #8138 revealed that proinsulin mainly localized to perinuclear

compartments, which were distinct from the ER reacted with the anti-calnexin antibody (Figure 7A)

but overlapped with the localization of phogrin-GFP (Figure 7B), suggesting that they were included

in immature or mature secretory granules.

We were surprised to find that proinsulin colocalized with calnexin in MIN6 cells treated with 50

mM olanzapine (Figure 7C) and that this shift in localization was detected in MIN6 cells treated with

10 mM olanzapine (Figure 7D) but not in MIN6 cells treated with 50 mM or 10 mM risperidone

(Figure 7E and F). In contrast, the localization of phogrin-GFP (Figure 7G and H) or insulin

(Figure 8A and B) was not altered by treatment with 50 mM olanzapine. These results suggest that

olanzapine specifically affects the quality of proinsulin during its localization in the ER.

Induction of proinsulin misfolding in olanzapine-treated MIN6 cells
Treatment of MIN6 cells with the proteasome inhibitor MG132 alone increased the levels of intracel-

lular and extracellular proinsulin (Figure 5C and D, left panels), indicating that a part of newly syn-

thesized proinsulin is constitutively subjected to ERAD in MIN6 cells. Importantly, simultaneous

treatment of MIN6 cells with olanzapine and MG132 markedly increased the level of intracellular

proinsulin (Figure 5D, right top panel), indicating that proinsulin forced to be remain in the ER of

olanzapine-treated cells was subjected to ERAD. Nonetheless, ERAD of retained proinsulin alone

cannot explain olanzapine-induced blockage of proinsulin secretion, because proinsulin secretion

was still blocked in MIN6 cells treated with both olanzapine and MG132 (Figure 5D, right bottom

panel), in contrary to the case with control cells (Figure 5D, left bottom panel).

As ERAD deals with misfolded proteins, we examined the effect of olanzapine on the solubility of

proinsulin by lysing MIN6 cells with 1% NP40 followed by centrifugation, and found that a small

amount of proinsulin became insoluble in MIN6 cells after treatment with 10 mM and 50 mM olanza-

pine but not with 50 mM risperidone (Figure 8C). We next checked whether olanzapine affects the

disulfide-bonded status of proinsulin using #8138, which unlike I2018 does not recognize mature

proinsulin (see Figure 3E). By analyzing under non-reducing conditions of immunoprecipitates

obtained with #8138 after pulse chase (Figure 4A), we found that an approximately 27 kDa form of

proinsulin, designated as a high molecular weight form of proinsulin (HMP-1), and an approximately

15 kDa form of proinsulin, designated as HMP-2, were produced in cells treated with olanzapine

(Figure 4B, lanes 8–14) but not with risperidone (lanes 29–35) compared with control cells (lanes 1–

7) [see quantified Figure 4B (c)]. HMP-1 and HMP-2 detected with #8138 but not with I2018 were

not secreted at all, suggesting that they were severely misfolded.

To identify the components of HMP-1 and HMP-2, we conducted mass spectrometric analysis. To

this end, olanzapine-untreated or -treated cells were lysed in buffer containing 10 mM N-ethylmalei-

mide (NEM) to maintain existing disulfide bonds. Subsequent non-reducing SDS-PAGE and immuno-

blotting revealed that proinsulin and HMP-2 somehow became undetected with #8138 (Figure 8D).

Therefore, we were able to purify only HMP-1 by immunoprecipitation (Figure 8E). Mass

Figure 3 continued

reducing SDS-PAGE and autoradiography. (C) A pulse (3 or 20 min)-chase (30 min) experiment was performed in MIN6 cells, and cell lysates and media

(M) were analyzed as in (B). (D) MIN6 cells untreated or treated with brefeldin A (BFA, 10 mg/ml) were subjected to pulse-chase experiment to

determine changes in the levels of intracellular and extracellular proinsulin as well as processed proinsulin, as shown in the schema (top). (E) cDNAs

encoding mouse proinsulin 2, B chain of mouse insulin 1, and B chain of mouse insulin 2 were treated as in (B). A pulse (20 min)-chase (40 min and 80

min) experiment was performed in MIN6 cells, and cell lysates and media were collected and subjected to immunoprecipitation using #8138 or I2018.

The immunoprecipitates were analyzed by reducing and non-reducing SDS-PAGE followed by autoradiography.
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spectrometric analysis of HMP-1 revealed that only insulin 2-derived fragments were enriched upon

olanzapine treatment (Figure 8F and G, and Supplementary file 1), suggesting that HMP-2 and

HMP-1 represent a proinsulin dimer and trimer, respectively, with aberrant intermolecular disulfide

bonds.

To clarify how olanzapine induces the formation of aberrant proinsulin oligomers, we considered

the possibility that olanzapine acts on certain oxidoreductases in the ER to inhibit their activities

(Jang et al., 2019; Okumura et al., 2014), and therefore tested whether olanzapine directly binds

to the purified enzymes using isothermal titration calorimetry (ITC), which sensitively detects heat

generation or absorption upon ligand-substrate binding. However, results were negative for PDI,

ERp46, ERp57, ERp72, and P5 (Figure 8—figure supplement 1A). We were also unable to precisely

analyze direct interactions between olanzapine and proinsulin by ITC, because reduced proinsulin

(Figure 8—figure supplement 1B) was rapidly and severely aggregated, producing significant heat

exchange. Thus, direct targets of olanzapine remain to be determined.
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Figure 4. Effect of olanzapine and risperidone on maturation and secretion of proinsulin and insulin in MIN6 cells. (A) Schemes of the experiments

shown in (B). (B) MIN6 cells untreated or treated with olanzapine (50 mM) or risperidone (50 mM) from the start of starvation were subjected to pulse-

chase experiment to determine changes in the levels of proinsulin (P), processed proinsulin (P’), mature prinsulin (mP), insulin (I), HMP-1 (1) and HMP-2

(2) in cells and medium. Cell lysates and media were collected and immunoprecipitated with #8138 or I2018. The immunoprecipitates were analyzed by

reducing and non-reducing SDS-PAGE followed by autoradiography. The intensity of each band was determined, and the intensity of intracellular

proinsulin or mature proinsulin at time 0 in control cells was defined as 100% (n = 3) [categorized in a, b and c].
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Figure 5. Effect of the proteasome inhibitor MG132 on the level of proinsulin accumulated intracellularly in olanzapine-treated MIN6 cells. (A) Schemes

of the experiments shown in (B). (B) MIN6 cells untreated or treated with olanzapine (10 mM) or risperidone (10 mM) for 4 hr were analyzed as in

Figure 4B to determine changes in the levels of proinsulin (P) and processed proinsulin (P’) in cells and medium using #8138 and reducing SDS-PAGE.

The intensity of intracellular proinsulin at time 0 was defined as 100% (n = 3). (C) Schemes of the experiments shown in (D). (D) MIN6 cells untreated or

treated with olanzapine (50 mM), MG132 (30 mM) or olanzapine (50 mM) and MG132 (30 mM) were analyzed as in Figure 4B to determine changes in the

level of proinsulin (P) in cells and medium using #8138 and reducing SDS-PAGE. The intensity of intracellular proinsulin at time 0 was defined as 100%

(n = 3).
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Figure 6. Effect of olanzapine on processing of phogrin-GFP, secretion of A1PI, and maturation of hemagglutinin in MIN6 cells. (A) MIN6 cells

transfected with a phogrin-GFP expression vector were untreated or treated with olanzapine (50 mM) or risperidone (50 mM) for 4 hr and then subjected

to pulse-chase experiment in the presence of olanzapine (50 mM) or risperidone (50 mM) to determine the rate of processing of phogrin-GFP. The

amounts of full-length and cleaved phogrin-GFP were determined and are shown below with the amount of full-length phogrin-GFP at time 0 defined

Figure 6 continued on next page
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ERAD of misfolded proinsulin in olanzapine-treated MIN6 cells and
mouse islets
To determine whether olanzapine treatment indeed induces the production of aberrant high molecu-

lar weight forms of proinsulin and how quickly it does so, MIN6 cells pulse-labeled for 20 min were

chased with the addition of olanzapine (Figure 9A). Analysis under non-reducing conditions of

immunoprecipitates obtained with #8138 showed that most radioactivity was recovered as proinsulin

in untreated cells (0 min), and secretion of proinsulin was inhibited in cells treated with olanzapine,

as expected (Figure 9B). Importantly, the levels of HMP-1 and HMP-2 rapidly and markedly

increased after treatment with olanzapine (Figure 9B).

To correlate the production of HMP-1 and HMP-2 with the ERAD of proinsulin, we added olanza-

pine together with or without MG132 at the start of starvation and then conducted pulse-chase

experiments (Figure 9C), because we found that treatment with olanzapine produced maximal

amounts of HMP-1 and HMP-2 within 40 min (Figure 9B). Analysis under reducing conditions of

immunoprecipitates obtained with #8138 showed that the results obtained in Figure 9D (upper

part) were consistent with those shown in Figure 5D for the level of intracellular and extracellular

proinsulin. Critically, analysis under non-reducing conditions of immunoprecipitates obtained with

#8138 revealed that MG132 stabilized proinsulin monomer, HMP-1, and HMP-2 in olanzapine-

treated MIN6 cells (Figure 9D, lower part). These results strongly suggest that proinsulin monomer,

HMP-1, and HMP-2 with aberrant disulfide bonds underwent ERAD (see Figure 10G).

We finally examined whether olanzapine induces misfolding of proinsulin at the mouse level.

Non-reducing SDS-PAGE analysis followed by immunoblotting showed that HMP-1 and even higher

molecular weight forms of proinsulin were produced when isolated mouse islets were incubated for

4 h with 50 mM olanzapine (Figure 10A), for 20 h with 5 mM and 10 mM olanzapine (Figure 10B) but

not with 10 mM risperidone (Figure 10C) without affecting the molecular mass of PDI, an abundant

ER-resident oxidoreductase (Figure 10B). Reducing SDS-PAGE analysis followed by immunoblotting

showed that the level of proinsulin was decreased 4 h after incubation with 50 mM olanzapine

(Figure 10A) and that this decrease was blocked by the addition of 30 mM MG132 from 1 h earlier

(total 5 h) (Figure 10D). Of note, the level of proinsulin was markedly decreased 20 h after incuba-

tion with 5 mM and 10 mM olanzapine (Figure 10B).

Furthermore, non-reducing SDS-PAGE analysis followed by immunoblotting showed that HMP-1

and even higher molecular weight forms of proinsulin started to be detected in mouse islets isolated

1 week after daily oral administration of 3 mg/kg/day and 10 mg/kg/day olanzapine (Figure 10E),

and were clearly detected in mouse islets isolated 2 weeks after daily oral administration of 10 mg/

kg/day olanzapine (Figure 10E), and 5 weeks (Figure 10F) and 6 weeks (data not shown) after daily

oral administration of 3 mg/kg/day olanzapine. Reducing SDS-PAGE analysis followed by immuno-

blotting showed that the level of proinsulin was decreased in mouse islets 5 weeks after daily oral

administration of 3 mg/kg/day olanzapine (Figure 10F), although there was no significant change in

the levels of blood glucose or plasma insulin at this stage (data not shown). These phenomena were

not due to obesity because we observed no significant difference in body weight between control

mice and mice after daily oral administration of 3 mg/kg/day olanzapine for 5 or 6 weeks (data not

shown), but rather due to olanzapine-induced misfolding of proinsulin in pancreatic b cells.

Figure 6 continued

as 100% (n = 1). (B) MIN6 cells transfected with an A1PI expression vector were untreated or treated with olanzapine (50 mM) or risperidone (50 mM) for

4 hr and then subjected to pulse-chase experiment in the presence of olanzapine (50 mM) or risperidone (50 mM) to determine the rate of secretion of

A1PI. The amounts of intracellular and extracellular A1PI were determined and are shown below with the amount of intracellular A1AP at time 0,

defined as 100% (n = 3). (C) (D) MIN6 cells transfected with an A1PI expression vector were untreated (C) or treated with olanzapine (50 mM) for 14 hr

(D). Fixed and permeabilized cells were analyzed by immunofluorescence using anti-A1PI and anti-KDEL antibodies. Bars: 5 mm. (E) MIN6 cells

transfected with a hemagglutinin expression vector were untreated or treated with olanzapine (50 mM) or risperidone (50 mM) for 4 hr and then

subjected to pulse-chase experiment to determine the rate of maturation of hemagglutinin. The immunoprecipitates were digested with

endoglycosidae H and then analyzed by reducing SDS-PAGE and autoradiography. The amounts of high-mannose type and complex type

hemagglutinin were determined and are shown below, with the amounts of high-mannose type hemagglutinin at time 0 defined as 100% (n = 1).
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Figure 7. Effect of olanzapine on localization of proinsulin and phogrin-GFP in MIN6 cells (Bars: 5 mm). (A) MIN6 cells were analyzed by

immunofluorescence using anti-insulin #8138 and anti-calnexin antibodies. (B) MIN6 cells transfected with a phogrin-GFP expression vector were

analyzed by immunofluorescence using anti-insulin #8138 and anti-GFP antibodies. (C) – (F) MIN6 cells treated with (C) olanzapine (50 mM), (D)

olanzapine (10 mM), (E) risperidone (50 mM), or (F) risperidone (10 mM) for 14 hr were analyzed by immunofluorescence using anti-insulin #8138 and anti-

calnexin antibodies. (G) (H) MIN6 cells transfected with a phogrin-GFP expression vector were (G) untreated or (H) treated with olanzapine (50 mM) for

14 hr, and then analyzed by immunofluorescence using anti-GFP and anti-calnexin antibodies.
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Figure 8. Effect of olanzapine on localization of insulin as well as solubility and oligomerization of proinsulin in MIN6 cells. MIN6 cells untreated (A) or

treated with olanzapine (50 mM) (B) for 14 hr were analyzed by immunofluorescence using anti-insulin I2018 antibody. Bars: 5 mm. (C) MIN6 cells treated

with DMSO (control), olanzapine (10 or 50 mM) or risperidone (50 mM) for 14 hr were lysed in 1% NP40. After centrifugation at 14,000 rpm for 10 min,

supernatant and precipitate were analyzed by immunoblotting using anti-insulin #8138 and anti-GAPDH antibodies. Eight times greater amounts were

Figure 8 continued on next page
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Figure 8 continued

used to analyze precipitate than total and supernatant. (D)-(G) MIN6 cells untreated or treated with olanzapine (50 mM) for 4 hr were lysed with 1%

NP40 buffer containing 10 mM NEM. (D) Cell lysates were analyzed by reducing and non-reducing SDS-PAGE followed by immunoblotting using #8138.

(E) Cell lysates were subjected to immunoprecipitation using #8138, and then to negative staining after non-reducing SDS-PAGE. (F) Gels at the

position of HMP-1 were excised and analyzed by mass spectrometry. The results are shown by the scatter plot of log2 of the median peak area from

three independent experiments between untreated cells (X axis) and olanzapine-treated cells (Y axis). A 5.7-fold increase by olanzapine treatment was

observed for Ins2 as shown in the red circle. (G) Intensities of Ins2-derived fragments in untreated and olanzapine-treated cells in each experiment are

shown along with the fold-induction.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Interaction of olanzapine with various oxidoreductases.
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Figure 9. Effect of the proteasome inhibitor MG132 on the levels of proinsulin, HMP-1, and HMP-2 in olanzapine-treated MIN6 cells. (A) Schemes of the

experiments shown in (B). (B) MIN6 cells pulse-labeled for 20 min were chased for the indicated periods with or without 50 mM olanzapine to determine

changes in the levels of proinsulin (P), HMP-1 (1), and HMP-2 (2) in cells and medium as in Figure 4B using #8138 and non-reducing SDS-PAGE. The

intensity of intracellular proinsulin at time 0 was defined as 100% (n = 3). (C) Schemes of the experiments shown in (D). (D) MIN6 cells untreated, treated

with olanzapine (50 mM), or olanzapine (50 mM) and MG132 (30 mM) were analyzed as in Figure 4B to determine changes in the levels of proinsulin (P),

HMP-1 (1), and HMP-2 (2) in cells and medium using #8138 and reducing and non-reducing SDS-PAGE. The intensity of intracellular proinsulin at time 0

was defined as 100% (n = 3).
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Figure 10. Effect of olanzapine on proinsulin oligomerization in mouse islets. (A)-(C) Isolated mouse islets were untreated or treated with the indicated

concentration of olanzapine, GSK2656157 (GSK, 2 mM) or risperidone (10 mM) for the indicated period and analyzed by immunoblotting using anti-

insulin #8138, anti-PDI and anti-GAPDH antibodies after reducing and non-reducing SDS-PAGE. $ denotes aggregated proinsulin. (D) Isolated mouse

islets were treated or untreated with MG132 (30 mM) for 1 hr, then treated with olanzapine (50 mM) for the indicated period, and analyzed by

Figure 10 continued on next page
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Discussion
Here we identified a novel mechanism that accounts for olanzapine-induced atypical development of

diabetes. For this purpose, we used the mouse pancreatic b�cell line MIN6 to show that olanzapine

produced aberrantly disulfide-bonded proinsulin (Figure 4) and caused retention of misfolded proin-

sulin in the ER (Figure 7) which then underwent ERAD (Figure 9). Inhibition of insulin secretion as

well as proinsulin secretion (Figures 1C and 5B) and retention of misfolded proinsulin in the ER

(Figure 7D) was observed in MIN6 cells treated with 10 mM olanzapine, which is comparable with

concentrations of olanzapine in patients sera (0.016–0.24 mM) and in postmortem serum (0.032–16

mM) (Robertson and McMullin, 2000), as well as with the observation that olanzapine concentra-

tions in tissues are 4- to 46-fold higher than those in the plasma of rats (Aravagiri et al., 1999). It

should be noted that olanzapine-induced apoptosis was not previously observed in MIN6 cells or in

the hamster pancreatic b�cell line HIT-T15 treated with 10 mM olanzapine (Ozasa et al., 2013), indi-

cating that olanzapine-induced misfolding of proinsulin is an early event which evokes ER stress in

pancreatic b cells.

Importantly, olanzapine-induced misfolding of proinsulin, which is targeted to ERAD, also

occurred when mouse islets were treated with olanzapine (Figure 10A–D). Furthermore, misfolding

of proinsulin was induced in mouse islets after daily oral administration of 3 mg/kg/day olanzapine

(Figure 10E and F). Patients usually take 10–20 mg olanzapine a day (0.17–0.33 mg/kg assuming 60

kg as body weight), which may correspond to 2.0–4.0 mg/kg in mice, if the difference in body sur-

face areas is considered (multiply by 12.3) (Nair and Jacob, 2016). This mechanism can explain why

certain patients rapidly develop diabetes as well as diabetic ketoacidosis after receiving olanzapine,

without gaining weight, and why such patients recover when olanzapine is discontinued.

In this connection, Peter Arvan and colleagues recently showed that aberrantly disulfide-bonded

proinsulin dimers and higher ladder complexes (trimer, tetramer, pentamer, —) exist in rat pancre-

atic b-cell-derived INS1E cells as well as in mouse and human islets, and that the levels of these mis-

folded forms of proinsulin were markedly increased and instead the level of insulin was markedly

decreased in islets of leptin receptor mutant LepRdb/db mice, a mouse model of diabetes, compared

with islets of wild-type mice, before the onset of diabetes. They therefore proposed that proinsulin

misfolding is an early event in the progression to type 2 diabetes (Arunagiri et al., 2019). The levels

of these misfolded forms of proinsulin were dramatically increased after treatment of INS1E cells

and islets of mouse and human with 2 mM GSK2656157, a potent PERK inhibitor (Atkins et al.,

2013), for 20 hr and overnight, respectively, but not for 5 hr (Arunagiri et al., 2019), supporting the

importance of the PERK branch of the UPR for maintenance of homeostasis of b cells, as described

in the Introduction.

We confirmed the much more profound misfolding of proinsulin after treatment of mouse islets

for 20 hr with 2 mM GSK2656157 than with 10 mM olanzapine, which was observed even under

reducing conditions (Figure 10B; depicted by $, and data not shown). Interestingly, however, pro-

duction of HMPs was observed after treatment of mouse islets for 20 hr with 10 mM olanzapine but

not with 2 mM GSK2656157 (Figure 10B), and a ladder of HMPs bigger than HMP-1 was observed

more clearly in mouse islets (Figure 10) than in MIN6 cells (Figure 9). This rapidity and broad exten-

siveness of olanzapine’s action on the folding status of proinsulin in mouse islets suggests that b-cell

dysfunction may infrequently dominate and diabetes might develop without weight gain or insulin

resistance in the minority of patients with potentially lower catabolism of olanzapine or by other

unidentified factors. For example, it is known that olanzapine is catabolized by the action of cyto-

chrome p450 (CPY) 1A2 and polymorphic CPY2D6 in the liver and that the induction of CPY1A2 by

smoking significantly diminishes the concentration of olanzapine in plasma (Carrillo et al., 2003); as

hospitalized patients cannot smoke, the concentration of olanzapine may be elevated in plasma and

possibly in b cells of ex-smokers. The clearance of olanzapine also appears to vary by race, sex and

age (Meibohm et al., 2002).

Figure 10 continued

immunoblotting using anti-insulin #8138 and anti-GAPDH antibodies after reducing SDS-PAGE. (E) (F) Islets were isolated from mice the indicated week

after daily oral administration of the indicated dose of olanzapine, and analyzed by immunoblotting using anti-insulin #8138 and anti-GAPDH

antibodies after reducing and non-reducing SDS-PAGE. (G) Model for olanzapine-induced b-cell dysfunction (see text).
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Correct formation of three intramolecular disulfide bonds is essential for insulin folding and activ-

ity (Haataja et al., 2016; Chang et al., 2003), which may be difficult even in unstressed cells. A part

of newly synthesized proinsulin is therefore constitutively degraded by the proteasome (Figure 5D).

We show that treatment with olanzapine markedly inhibited maturation and secretion of proinsulin,

and instead induced aberrant disulfide bond-formation during the folding of proinsulin, leading to

the formation of HMP-1 and HMP-2 (Figure 4), although we could not detect direct interaction

between olanzapine and oxidoreductases in the ER by ITC (Figure 8—figure supplement 1).

Proinsulin in Akita mice with the Ins2 C96Y mutation fails to form the correct disulfide bonds, and

is degraded by ERAD (He et al., 2015; Ron, 2002). To avoid unnecessary degradation of correctly

folded proinsulin, the ER nucleotide exchange factor Grp170 distinguishes misfolded proinsulin from

correctly structured proinsulin for disposal (Cunningham et al., 2017). Similarly, olanzapine-induced

HMP-1 and HMP-2 may be recognized by Grp170 for targeting to ERAD as well. Proinsulin is not a

glycoprotein and is degraded via the non-glycoprotein ERAD pathway, which can process severely

misfolded glycoproteins as well (Ninagawa et al., 2015).

In conclusion, the mechanism identified here that mediates olanzapine-induced b-cell dysfunction

should be considered, along with weight gain, in mitigating adverse side effects when patients with

schizophrenia are prescribed olanzapine.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Mus musculus)

Insulinoma Miyazaki et al., 1990 MIN6 The cell line
has been
authenticated
and tested
negative for
mycoplasma.

Recombinant
DNA reagent

p3xFlag-CMV-14 Sigma-Aldrich

Recombinant
DNA reagent

pcDNA3.1(+) ThermoFisher

Recombinant
DNA reagent

Phogrin-GFP Saito et al., 2011

Recombinant
DNA reagent

A1PI Ninagawa
et al., 2015

Recombinant DNA reagent HA Gething and
Sambrook, 1982

Antibody Anti-insulin
(Mouse
monoclonal)

Cell signaling Cat#: #8138 WB (1:1000), IP
(1:400), IF (1:100)

Antibody Anti-insulin
(Mouse
monoclonal)

Sigma-Aldrich Cat#: I2018 WB (1:1000), IP
(1:400)

Antibody Anti-GFP
(Mouse
monoclonal)

Roche Cat#: 11814460001 IP (1:400),
IF (1:100)

Antibody Anti-calnexin
(Rabbit
polyclonal)

Enzo Life
Sciences

Cat#: ADI-
SPA-865

WB (1:1000),
IF (1:100)

Antibody Anti-PDI
(Rabbit
polyclonal)

Enzo Life
Sciences

Cat#: ADI-
SPA-890

WB (1:1000)

Antibody Anti-A1AT
(Rabbit
polyclonal)

Dako Cat#: A0012 IP (1:400),
IF (1:100)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-GAPDH
(Rabbit
polyclonal)

Trevigen Cat#: 2275-
PC-100

WB (1:1000)

Antibody Anti-HA
(Rabbit
polyclonal)

Recenttec Cat#: R4-
TP1411100

IP (1:400)

Antibody Anti-KDEL
(Mouse
monoclonal)

MBL Cat#: M181-3 IF (1:1000)

Statistics
Statistical analysis was conducted using Student’s t-test, with probability expressed as *p<0.05 and

**p<0.01 for all figures.

Cell culture and transfection
MIN6 cells (Miyazaki et al., 1990) were cultured in Dulbecco’s modified Eagle’s medium (DMEM

containing 4.5 g/liter glucose) supplemented with 2 mM L-glutamine, 10% fetal bovine serum, and

antibiotics (50 U/ml penicillin and 50 mg/ml streptomycin) at 37˚C in a humidified atmosphere con-

taining 5% CO2/95% air. Transfection was performed as described previously (Ninagawa et al.,

2015) using Polyethyleneimine max (Polysciences) to replace Lipofectamine 2000 (Invitrogen). MIN6

cells were transfected 1 day after seeding, and 2 days later, pulse-chase experiments or immunofluo-

rescence analysis were conducted.

Reagents and antibodies
MG132 from the Peptide Institute; mastoparan from Wako; Z-VAD-fmk from Promega; and DMEM

with or without 4.5 g/l (25 mM) glucose and protease inhibitor cocktail from Nacalai Tesque. Olanza-

pine and risperidone were purchased from Toronto Research Chemicals. Various antibodies were

obtained as described in Key Resource Table.

Construction of plasmids
Recombinant DNA techniques were performed according to standard procedures (Sambrook et al.,

1989) and the integrity of all constructed plasmids was confirmed by extensive sequencing analyses.

Mouse insulin cDNA was amplified from total RNA isolated from MIN6 cells using the primer pairs

described in Supplementary file 2. These amplified fragments were inserted between the EcoRV

and XhoI sites of pcDNA3.1 (Invitrogen). The plasmid to express mPhogrin-GFP (Saito et al., 2011),

A1AT (Ninagawa et al., 2015) or hemagglutinin (Gething and Sambrook, 1982) was previously

described.

ELISA
Approximately 3 � 105 of MIN6 cells were plated in 24-well plates and cultured in DMEM containing

25 mM glucose for 3 days before pretreatment for 14 hr with olanzapine or risperidone, or for 4

days before pretreatment for 4 hr with olanzapine or risperidone. Cells were washed twice with

Krebs-Ringer Bicarbonate (KRB) buffer (10 mM HEPES, approximately pH 7.0, containing 120 mM

NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM MgCl2, 1.2 mM KH2PO4, 25 mM NaHCO3, and 0.1% BSA)

with 3 mM glucose (Minami et al., 2000). Cells were starved for glucose for 1 hr in KRB buffer with

3 mM glucose containing olanzapine or risperidone, washed twice with KRB buffer with 3 mM glu-

cose, and stimulated for glucose for 1 hr in KRB buffer with 25 mM glucose containing olanzapine or

risperidone, with or without mastoparan. The buffer was collected, and the cells were lysed with

buffer A (50 mM Tris/HCl, pH 8.0, containing 1% NP-40, 150 mM NaCl, protease inhibitor cocktail,

20 mM MG132, and 2 mM Z-VAD-fmk). After brief centrifugation, the protein concentrations of the

lysates were determined using the BCA protein assay reagent kit (Pierce). Insulin content was

Ninagawa et al. eLife 2020;9:e60970. DOI: https://doi.org/10.7554/eLife.60970 19 of 26

Research article Cell Biology

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://doi.org/10.7554/eLife.60970


determined using an ELISA kit (Shibayagi) according to the manufacturer’s protocol. The amount of

secreted insulin was normalized to the cellular protein content.

Immunoblotting
Immunoblotting analysis was performed according to a standard procedure as previously described

(Ninagawa et al., 2011). Chemiluminescence was generated using Western Blotting Luminol

Reagent (Santa Cruz Biotechnology) and detected using an LAS-3000mini LuminoImage analyzer

(Fuji Film). For detection of proinsulin and insulin, the pore size of PVDF membrane was changed

from 0.45 to 0.2 mm (Amersham), and blocking and reaction with the anti-insulin monoclonal anti-

body was carried out in 5% BSA (Sigma-Aldrich) in PBS-0.1% Tween 20 buffer.

Pulse-chase experiment and in vitro translation
Pulse-chase experiments using 9.8 Mbq per dish of EASY-TAG EXPRESS Protein labeling mix [35S]

(PerkinElmer) and subsequent immunoprecipitation using the anti-insulin monoclonal antibody and

protein G-coupled Sepharose beads (GE Healthcare) were performed according to a published pro-

cedure (Ninagawa et al., 2014).

In vitro translation was performed using the TNT Quick Coupled Transcription/Translation Sys-

tems (Promega) and the EASY-TAG EXPRESS Protein labeling mix [35S] (PerkinElmer) according to

the manufacturer’s instructions. Translated proteins were subjected to immunoprecipitation using

the anti-insulin monoclonal antibody to separate them from 35S-methionine and 35S-cysteine. The

immunoprecipitates were analyzed using SDS-PAGE (15 or 16% gel). Radiolabeled proteins were

visualized using an FLA-3000G FluoroImage analyzer (Fuji Film).

Immunofluorescence assay
For immunofluorescence analysis, untransfected MIN6 cells or cells transfected using Polyethylenei-

mine max were washed with PBS and fixed with 4% paraformaldehyde phosphate buffer (Nacalai

Tesque) on ice for 4.5 min. Fixed cells were washed with PBS and permeabilized by incubation on

ice for 4.5 min in PBS containing 0.2% Triton X-100. After incubation in PBS containing 3% fetal

bovine serum and the primary antibody for 2 hr at room temperature, cells were incubated with sec-

ondary antibodies labeled with Alexa Fluors 488, 568, or 633 (Thermo Fisher Scientific) for 1 hr at

room temperature. Images were acquired at room temperature at 100 � magnification using a DM

IRE2 and confocal software (both from Leica).

Mass spectrometric analysis
Nano-scale reversed-phase liquid chromatography coupled with tandem mass spectrometry

(nanoLC/MS/MS) was performed with an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher

Scientific), connected to a Thermo Ultimate 3000 RSLCnano pump and an HTC-PAL autosampler

(CTC Analytics) equipped with a self-pulled analytical column (150 mm length �100 mm i.d.)

(Ishihama et al., 2002) packed with ReproSil-Pur C18-AQ materials (3 mm, Dr. Maisch GMBH). The

mobile phases consisted of (A) 0.5% acetic acid and (B) 0.5% acetic acid and 80% acetonitrile. Pepti-

des were eluted from the analytical column at a flow rate of 500 nl/min by altering the gradient: 5–

10% B in 5 min, 10–40% B in 15 min, 40–100% B in 1 min and 100% for 4 min. The Orbitrap Fusion

Lumos instrument was operated in the data-dependent mode with a full scan in the Orbitrap fol-

lowed by MS/MS scans for 1.5 s using higher-energy collision dissociation (HCD). The applied volt-

age for ionization was 2.4 kV. The full scans were performed with a resolution of 120,000, a target

value of 4 � 105 ions and a maximum injection time of 50 ms. The MS scan range was m/z 300–

1500. The MS/MS scans were performed with a 15,000 resolution, a 5 � 104 target value and a 200

ms maximum injection time. Isolation window was set to 1.6 and normalized HCD collision energy

was 30. Dynamic exclusion was applied for 20 s.

All raw datasets were analyzed and processed by MaxQuant (v1.6.2.3) (Cox and Mann, 2008).

Default settings were employed. Search parameters included two missed cleavage sites and variable

modifications such as methionine oxidation, protein N-terminal acetylation, cysteine carbamido-

methyl and cysteine N-ethylmaleimide. The peptide mass tolerance was six ppm and the MS/MS tol-

erance was 20 ppm. Database search was performed with Andromeda (Cox et al., 2011) against the

UniProt mouse database (downloaded on 2019–4) with common contaminants and enzyme
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sequences. False discovery rate (FDR) was set to 1% at peptide spectrum match (PSM) level and at

protein level. For protein quantification, total peak area of the peptides was used, and median peak

area was calculated for each protein from three independent experiments. To compare protein

abundance between the non-treated and the olanzapine-treated cells (see Figure 8D), we consid-

ered proteins that were quantified in all samples and replicates.

ITC experiments
ITC measurements for the interaction between olanzapine and each PDI family protein were per-

formed in buffer containing 50 mM HEPES-NaOH, pH 7.5, at 298 K and 750 r.p.m. For the prepara-

tion of olanzapine, 10 mg of olanzapine (32.0 mmol) was diluted in 500 ml of 50 mM HCl solution

and freeze-dried using evaporator. 2.0 ml of the olanzapine solution (1.0 mM) was titrated into PDI

family solutions (50 mM) at 180 s intervals after an initial 120 s delay. To minimize the effect of bub-

bles and imperfect solution filling of the syringe, the first titration was performed using 0.6 ml of solu-

tion in the syringe. The data were analyzed using MicroCal analysis (Malvern). The heats of dilution

were subtracted from the raw binding data before analysis.

Expression and purification of human proinsulin
Recombinant human proinsulin was expressed as inclusion bodies in Escherichia coli cells. Purifica-

tion of proinsulin was carried out as previously described (Okumura et al., 2011). Briefly, inclusion

bodies were treated with 100 mM Tris/HCl buffer, pH 8.0, containing 8 M urea and 10 mM DTT, and

the solution was stood for 3 hr at 50˚C. Reduced and denatured proinsulin was purified by RP-HPLC

using Cosmosil 5C18-AR-II (4.6 mm I.D. �250 mm, Nacalai Tesque) monitored at 220 nm. Molecular

mass of purified proinsulin was calculated using ProteinProspectors (http://prospector.ucsf.edu/pros-

pector/mshome.htm) and its identity was confirmed by MALDI-TOF/MS. Purified proinsulin was

lyophilized at �80˚C until used.

Animals
Male BALB/c mice (8 weeks old) were purchased from Shimizu Laboratory Supplies. All mouse

experiments were conducted under pathogen-free conditions and in line with Institutional Animal

Care protocols approved by Kyoto University (Q 19–68). Administration of vehicle or olanzapine was

conducted using a reusable oral gavage needle once a day. Olanzapine was dissolved in 1% acetic

acid in saline buffered with 1M NaOH to a pH >5.5 (McCormick et al., 2010).

Isolation of mouse pancreatic islets
To isolate islets from BALB/c mice, pancreas was inflated by injection of Hank’s Balanced Salt Solu-

tion (HBSS) containing 0.15 mg/ml collagenase P (Roche Diagnostics) via the common bile duct. Dis-

tended pancreas was then excised and incubated at 37˚C for 18 min. After digested pancreas had

dissociated, the tissue was washed with HBSS twice. The islets in the dissociated pancreatic tissue

were purified on discontinuous gradients (1.110, 1.103, 1.096, and 1.070 g/ml) of OptiPrep (Axis-

Shield) and ET Kyoto (ETK) solution (Otsuka Pharmaceutical). Isolated islets were cultured (37˚C/5%

CO2/95% air humidified atmosphere) in RPMI1640 medium supplemented with 10% fetal bovine

serum (FBS), 100 U/ml penicillin, and 100 mg/ml streptomycin.
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Carrillo JA, Herráiz AG, Ramos SI, Gervasini G, Vizcaı́no S, Benı́tez J. 2003. Role of the Smoking-Induced
cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in Steady-State concentration of olanzapine. Journal of
Clinical Psychopharmacology 23:119–127. DOI: https://doi.org/10.1097/00004714-200304000-00003

Chang SG, Choi KD, Jang SH, Shin HC. 2003. Role of disulfide bonds in the structure and activity of human
insulin. Molecules and Cells 16:323–330. PMID: 14744022

Citrome L, Volavka J. 2005. Consensus development conference on antipsychotic drugs and obesity and
diabetes: response to consensus statement. The Journal of Clinical Psychiatry 66:1073–1074. DOI: https://doi.
org/10.4088/jcp.v66n0818c, PMID: 16086627

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. 2011. Andromeda: a peptide search engine
integrated into the MaxQuant environment. Journal of Proteome Research 10:1794–1805. DOI: https://doi.org/
10.1021/pr101065j, PMID: 21254760

Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass
accuracies and proteome-wide protein quantification. Nature Biotechnology 26:1367–1372. DOI: https://doi.
org/10.1038/nbt.1511, PMID: 19029910

Cunningham CN, He K, Arunagiri A, Paton AW, Paton JC, Arvan P, Tsai B. 2017. Chaperone-Driven degradation
of a misfolded proinsulin mutant in parallel with restoration of Wild-Type insulin secretion. Diabetes 66:741–
753. DOI: https://doi.org/10.2337/db16-1338, PMID: 28028074

Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. 2000. EIF2AK3, encoding translation
initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nature Genetics 25:
406–409. DOI: https://doi.org/10.1038/78085, PMID: 10932183

Deng C. 2013. Effects of antipsychotic medications on appetite, weight, and insulin resistance. Endocrinology
and Metabolism Clinics of North America 42:545–563. DOI: https://doi.org/10.1016/j.ecl.2013.05.006,
PMID: 24011886

Divac N, Prostran M, Jakovcevski I, Cerovac N. 2014. Second-Generation antipsychotics and extrapyramidal
adverse effects. BioMed Research International 2014:1–6. DOI: https://doi.org/10.1155/2014/656370
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Figure 1. Effect of olanzapine on secretion of insulin from MIN6 cells. (A) Schematic representation of protein quality control in the ER, PERK-mediated

translational attenuation, and storage and secretion of insulin (see Introduction). GSK2656157 inhibits protein kinase activity of PERK. (B) Scheme for

Figure 1 continued on next page
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Figure 1 continued

measuring the level of insulin secreted into medium in response to glucose stimulation. After culture in a medium containing 25 mM glucose, MIN6

cells were starved for 1 hr in medium containing 3 mM glucose (Stav), and then cultured in medium containing 25 mM glucose (Stim or 3 mM glucose

as control). The amount of insulin secreted into the medium during the 1 hr incubation was determined using an ELISA. The data are normalized to the

amounts of total cellular proteins and presented as the mean ± SD (n = 2). (C) MIN6 cells were pretreated with the indicated concentrations of

olanzapine (OLA) for 4 hr or 14 hr in medium containing 25 mM glucose before glucose starvation as shown in (B). (D) MIN6 cells were pretreated with

50 mM olanzapine or risperidone (RIS) for 14 hr before glucose starvation as shown in (B). (E) Schematic representation of the signaling cascade for

insulin secretion in response to glucose stimulation. Cells intake glucose (�). Glucose metabolism (�) triggers an increase in cellular ATP/ADP ratio (�),

which inhibits K+ channels and induces depolarization (�). This leads to opening of Ca2+ channels (�) and increased influx of Ca2+ (�), inducing the

fusion of insulin granules to the plasma membrane for secretion (�). Mastoparan (Mast) enhances insulin secretion by increasing the intracellular

concentration of Ca2+ independently of glucose intake. (F) MIN6 cells were pretreated with 50 mM olanzapine or risperidone for 14 hr before glucose

starvation as shown in (B). Mastoparan (Mast, 20 mM) was added at the time of glucose stimulation to aliquots of cells not pretreated or pretreated with

50 mM olanzapine for 14 hr.
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Figure 2. Characterization of two anti-insulin monoclonal antibodies utilized. (A) Schematic representation of maturation of insulin 2. Each circle

denotes an amino acid residue. Preproinsulin 2 comprises a signal sequence (light gray), B chain (blue), C peptide (gray), and A chain (green).

Preproinsulin 2 is converted to proinsulin 2 after cleavage of the signal sequence, and proinsulin 2 becomes mature proinsulin 2 via formation of three

intramolecular disulfide bonds. Mature proinsulin 2 is converted to insulin 2 after proteolysis at the residues indicated by the two arrows. The red circles

represent cysteine residues that form the disulfide bonds (bars), and which are required for insulin folding and activity. The region encompassing V36,

indicated by the yellow circle, is recognized by the anti-insulin monoclonal antibody #8138, which immunoprecipitates (immature) proinsulin 2 and

detects proinsulin 2 and insulin 2 (B chain) after reducing SDS-PAGE. In contrast, the anti-insulin monoclonal antibody I2018 immunoprecipitates mature

proinsulin 2 and insulin 2, and detects insulin 2 after non-reducing SDS-PAGE. (B) Lysates of MIN6 cells and mouse islets were analyzed by

immunoblotting using #8138 and I2018 after reducing (DTT +) and non-reducing (DTT -) SDS-PAGE. (C) The indicated amounts of recombinant and

purified proinsulin and insulin were subjected to reducing SDS-PAGE followed by immunoblotting using #8138.
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Figure 3. Secretion of proinsulin 2, processed proinsulin 2 and insulin 2 from MIN6 cells. (A) Schemes of the experiments shown in (B) and (C). (B)

cDNAs encoding mouse preproinsulin 1, preproinsulin 2, proinsulin 1, and proinsulin 2 were subjected to in vitro transcription and translation in the

Figure 3 continued on next page
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Figure 3 continued

presence of 35S-Met and 35S-Cys, and then to immunoprecipitation using #8138. A pulse (20 min)-chase (80 min) experiment was performed in MIN6

cells, and cell lysates and media were collected and subjected to immunoprecipitation using #8138. The immunoprecipitates were analyzed by

reducing SDS-PAGE and autoradiography. (C) A pulse (3 or 20 min)-chase (30 min) experiment was performed in MIN6 cells, and cell lysates and media

(M) were analyzed as in (B). (D) MIN6 cells untreated or treated with brefeldin A (BFA, 10 mg/ml) were subjected to pulse-chase experiment to

determine changes in the levels of intracellular and extracellular proinsulin as well as processed proinsulin, as shown in the schema (top). (E) cDNAs

encoding mouse proinsulin 2, B chain of mouse insulin 1, and B chain of mouse insulin 2 were treated as in (B). A pulse (20 min)-chase (40 min and 80

min) experiment was performed in MIN6 cells, and cell lysates and media were collected and subjected to immunoprecipitation using #8138 or I2018.

The immunoprecipitates were analyzed by reducing and non-reducing SDS-PAGE followed by autoradiography.
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Figure 4. Effect of olanzapine and risperidone on maturation and secretion of proinsulin and insulin in MIN6 cells. (A) Schemes of the experiments

shown in (B). (B) MIN6 cells untreated or treated with olanzapine (50 mM) or risperidone (50 mM) from the start of starvation were subjected to pulse-

chase experiment to determine changes in the levels of proinsulin (P), processed proinsulin (P’), mature prinsulin (mP), insulin (I), HMP-1 (1) and HMP-2

(2) in cells and medium. Cell lysates and media were collected and immunoprecipitated with #8138 or I2018. The immunoprecipitates were analyzed by

reducing and non-reducing SDS-PAGE followed by autoradiography. The intensity of each band was determined, and the intensity of intracellular

proinsulin or mature proinsulin at time 0 in control cells was defined as 100% (n = 3) [categorized in a, b and c].
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Figure 5. Effect of the proteasome inhibitor MG132 on the level of proinsulin accumulated intracellularly in olanzapine-treated MIN6 cells. (A) Schemes

of the experiments shown in (B). (B) MIN6 cells untreated or treated with olanzapine (10 mM) or risperidone (10 mM) for 4 hr were analyzed as in

Figure 4B to determine changes in the levels of proinsulin (P) and processed proinsulin (P’) in cells and medium using #8138 and reducing SDS-PAGE.

The intensity of intracellular proinsulin at time 0 was defined as 100% (n = 3). (C) Schemes of the experiments shown in (D). (D) MIN6 cells untreated or

treated with olanzapine (50 mM), MG132 (30 mM) or olanzapine (50 mM) and MG132 (30 mM) were analyzed as in Figure 4B to determine changes in the

level of proinsulin (P) in cells and medium using #8138 and reducing SDS-PAGE. The intensity of intracellular proinsulin at time 0 was defined as 100%

(n = 3).
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Figure 6. Effect of olanzapine on processing of phogrin-GFP, secretion of A1PI, and maturation of hemagglutinin in MIN6 cells. (A) MIN6 cells

transfected with a phogrin-GFP expression vector were untreated or treated with olanzapine (50 mM) or risperidone (50 mM) for 4 hr and then subjected

Figure 6 continued on next page
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Figure 6 continued

to pulse-chase experiment in the presence of olanzapine (50 mM) or risperidone (50 mM) to determine the rate of processing of phogrin-GFP. The

amounts of full-length and cleaved phogrin-GFP were determined and are shown below with the amount of full-length phogrin-GFP at time 0 defined

as 100% (n = 1). (B) MIN6 cells transfected with an A1PI expression vector were untreated or treated with olanzapine (50 mM) or risperidone (50 mM) for

4 hr and then subjected to pulse-chase experiment in the presence of olanzapine (50 mM) or risperidone (50 mM) to determine the rate of secretion of

A1PI. The amounts of intracellular and extracellular A1PI were determined and are shown below with the amount of intracellular A1AP at time 0,

defined as 100% (n = 3). (C) (D) MIN6 cells transfected with an A1PI expression vector were untreated (C) or treated with olanzapine (50 mM) for 14 hr

(D). Fixed and permeabilized cells were analyzed by immunofluorescence using anti-A1PI and anti-KDEL antibodies. Bars: 5 mm. (E) MIN6 cells

transfected with a hemagglutinin expression vector were untreated or treated with olanzapine (50 mM) or risperidone (50 mM) for 4 hr and then

subjected to pulse-chase experiment to determine the rate of maturation of hemagglutinin. The immunoprecipitates were digested with

endoglycosidae H and then analyzed by reducing SDS-PAGE and autoradiography. The amounts of high-mannose type and complex type

hemagglutinin were determined and are shown below, with the amounts of high-mannose type hemagglutinin at time 0 defined as 100% (n = 1).
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Figure 7. Effect of olanzapine on localization of proinsulin and phogrin-GFP in MIN6 cells (Bars: 5 mm). (A) MIN6 cells were analyzed by

immunofluorescence using anti-insulin #8138 and anti-calnexin antibodies. (B) MIN6 cells transfected with a phogrin-GFP expression vector were

analyzed by immunofluorescence using anti-insulin #8138 and anti-GFP antibodies. (C) – (F) MIN6 cells treated with (C) olanzapine (50 mM), (D)

olanzapine (10 mM), (E) risperidone (50 mM), or (F) risperidone (10 mM) for 14 hr were analyzed by immunofluorescence using anti-insulin #8138 and anti-

calnexin antibodies. (G) (H) MIN6 cells transfected with a phogrin-GFP expression vector were (G) untreated or (H) treated with olanzapine (50 mM) for

14 hr, and then analyzed by immunofluorescence using anti-GFP and anti-calnexin antibodies.
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Figure 8. Effect of olanzapine on localization of insulin as well as solubility and oligomerization of proinsulin in MIN6 cells. MIN6 cells untreated (A) or

treated with olanzapine (50 mM) (B) for 14 hr were analyzed by immunofluorescence using anti-insulin I2018 antibody. Bars: 5 mm. (C) MIN6 cells treated

Figure 8 continued on next page
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Figure 8 continued

with DMSO (control), olanzapine (10 or 50 mM) or risperidone (50 mM) for 14 hr were lysed in 1% NP40. After centrifugation at 14,000 rpm for 10 min,

supernatant and precipitate were analyzed by immunoblotting using anti-insulin #8138 and anti-GAPDH antibodies. Eight times greater amounts were

used to analyze precipitate than total and supernatant. (D)-(G) MIN6 cells untreated or treated with olanzapine (50 mM) for 4 hr were lysed with 1%

NP40 buffer containing 10 mM NEM. (D) Cell lysates were analyzed by reducing and non-reducing SDS-PAGE followed by immunoblotting using #8138.

(E) Cell lysates were subjected to immunoprecipitation using #8138, and then to negative staining after non-reducing SDS-PAGE. (F) Gels at the

position of HMP-1 were excised and analyzed by mass spectrometry. The results are shown by the scatter plot of log2 of the median peak area from

three independent experiments between untreated cells (X axis) and olanzapine-treated cells (Y axis). A 5.7-fold increase by olanzapine treatment was

observed for Ins2 as shown in the red circle. (G) Intensities of Ins2-derived fragments in untreated and olanzapine-treated cells in each experiment are

shown along with the fold-induction.
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Figure 8—figure supplement 1. Interaction of olanzapine with various oxidoreductases. (A) ITC measurements of

the interaction between olanzapine and PDI, ERp46, ERp57, ERp72, or P5. (B) (left) HPLC profile of reduced and

denatured purified proinsulin. Proteins were eluted using a 20–60% linear gradient of CH3CN in 0.05%

trifluoroacetic acid at an increasing rate of 1 %/min and at a flow rate of 1.0 ml/min, and elution was monitored at

220 nm. (right) MALDI-TOF/MS spectra derived from the peak around 30 min. The observed [M+H]+ is 9526.7,

corresponding to the calculated [M+H]+ (9526.9).
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Figure 9. Effect of the proteasome inhibitor MG132 on the levels of proinsulin, HMP-1, and HMP-2 in olanzapine-treated MIN6 cells. (A) Schemes of the

experiments shown in (B). (B) MIN6 cells pulse-labeled for 20 min were chased for the indicated periods with or without 50 mM olanzapine to determine

changes in the levels of proinsulin (P), HMP-1 (1), and HMP-2 (2) in cells and medium as in Figure 4B using #8138 and non-reducing SDS-PAGE. The

intensity of intracellular proinsulin at time 0 was defined as 100% (n = 3). (C) Schemes of the experiments shown in (D). (D) MIN6 cells untreated, treated

with olanzapine (50 mM), or olanzapine (50 mM) and MG132 (30 mM) were analyzed as in Figure 4B to determine changes in the levels of proinsulin (P),

HMP-1 (1), and HMP-2 (2) in cells and medium using #8138 and reducing and non-reducing SDS-PAGE. The intensity of intracellular proinsulin at time 0

was defined as 100% (n = 3).
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Figure 10. Effect of olanzapine on proinsulin oligomerization in mouse islets. (A)-(C) Isolated mouse islets were untreated or treated with the indicated

concentration of olanzapine, GSK2656157 (GSK, 2 mM) or risperidone (10 mM) for the indicated period and analyzed by immunoblotting using anti-

Figure 10 continued on next page

Ninagawa et al. eLife 2020;9:e60970. DOI: https://doi.org/10.7554/eLife.60970 16 of 17

Research article Cell Biology

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://doi.org/10.7554/eLife.60970


Figure 10 continued

insulin #8138, anti-PDI and anti-GAPDH antibodies after reducing and non-reducing SDS-PAGE. $ denotes aggregated proinsulin. (D) Isolated mouse

islets were treated or untreated with MG132 (30 mM) for 1 hr, then treated with olanzapine (50 mM) for the indicated period, and analyzed by

immunoblotting using anti-insulin #8138 and anti-GAPDH antibodies after reducing SDS-PAGE. (E) (F) Islets were isolated from mice the indicated week

after daily oral administration of the indicated dose of olanzapine, and analyzed by immunoblotting using anti-insulin #8138 and anti-GAPDH

antibodies after reducing and non-reducing SDS-PAGE. (G) Model for olanzapine-induced b-cell dysfunction (see text).
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