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Abstract—For many streaming classification tasks, the ground
truth labels become available with a non-negligible latency. Given
this delayed labelling setting, after the instance data arrives
and before its true label is known, the online classifier model
may change. Hence, the initial prediction can be replaced with
additional periodic predictions gradually produced before the
true label becomes available. The quality of these predictions
may largely vary. Thus, the question arises of how to summarise
the performance of these models when multiple predictions for
a single instance are made due to delayed labels.

In this study, we aim to provide intuitive performance mea-
sures summarising the performance of multiple predictions made
for individual instances before their true labels arrive. Particular
attention is paid to the fact that under the delayed label setting,
the emphasis placed on the quality of initial predictions can
vary depending on problem needs. The intermediate performance
measures we propose complement existing initial and test-then-
train performance evaluation when verification latency is ob-
served. Results provided for both real and synthetic datasets
show that the new measures can be used to easily rank methods
in terms of their ability to produce and refine predictions before
the true labels arrive.

I. INTRODUCTION

The test-then-train approach is the default approach when
evaluating stream mining models. In this case, the predictive
performance of the models is evaluated based on their ability
to produce accurate predictions immediately before the true
label arrives [1], [2]. This is based on the assumption that a
true label is available after a prediction is made and before new
instances in the stream appear. However, in many domains,
such as predictive maintenance, true labels are only available
with a non-negligible latency. In such cases, the performance
of a model is commonly calculated based on the prediction
obtained at the time the unlabelled instance arrived [3], or
the prediction obtained when the ground-truth label arrives
[1]. These two options can be identified as initial performance
and test-then-train performance, and both provide measures
at the endpoints of the interval between receiving the instance
and its label. However, in many real-life scenarios, predictions
possibly made during this interval are also applicable [4].
For example, considering the predictive maintenance example,
several predictions can be obtained for a given machine when
trying to determine whether it is going to break or not. The
sooner a break is detected, the better; if it is only discovered

a few instants before the machine breaks, then it is not
useful. Ideally, prediction models always predicting a true
label immediately after receiving an instance could be sought.
However, usually, this is not possible for a number of reasons.
First of all, the model evolves after receiving instance data
and can benefit from more recent instances, both labelled
and (in the case of semi-supervised learning) unlabelled. As
an example, tree-based models can be extended with new
branches reflecting the growing availability of labelled data.
Secondly, the instance data can evolve. As an example, it can
include the data on the most recent vibration of a tool, which
can be useful to refine earlier predictions of tool failure. Last
but not least, the model after making an initial prediction for
an instance of interest may be adapted to concept drifts [5]
and may yield more accurate predictions for this instance, in
turn.

Hence, additional predictions made for the instance in the
period preceding its true label arrival are justified and can
be produced with continuous reevaluation, as proposed in our
previous study [4]. However, once many evolving predictions
are generated for an instance awaiting its true label, it is
necessary to decide how to aggregate these predictions with
summary performance measures extending the evaluation from
initial predictions to intermediate predictions i.e. evolving
predictions.

In this study, we propose performance measures that can
be used to provide a quantitative assessment of intermediate
predictions. The measures proposed and analysed in this study
aim to provide an intuitive summary of evolving predictions
taking into account that these predictions can vary depending
on whether they are available shortly after the instance is
available for the first time or at a later period. The key
contributions of this study are:

• We propose the way the initial and the test-then-train
performance measures can be extended with intermediate
performance measures (IPMs). We define a reference
IPM, named prioritised performance measure, and show
how the comparison of the three categories of measures
can be used to rank stream classifiers.

• We analyse the results of applying all these measures to
the classification of several real and synthetic datasets.
This investigation shows, among other things, how the



measures we propose can be used to investigate the
varying ability of streaming classification methods to
respond to concept drifts and adapt the models.

• We provide an open source implementation of the code
to calculate the prioritised performance measure1.

The remainder of this study is organised as follows; In
Section II, we provide an overview of the related works. In
Section III, we introduce the proposed measures. In Section
IV, the empirical experiments are presented and discussed.
Finally, Section V concludes this work with ideas for future
research.

II. RELATED WORK

The evaluation of supervised machine learning models is a
complex topic [6], which requires the definition of a metric
(e.g. accuracy), and an adequate evaluation procedure (e.g.
k-fold cross-validation). When learning from streaming data,
we face even more challenges, such as the need to respect the
event-time creation of instances, the occurrence of concept
drifts [5], and non-negligible delays between the input data
appearance and the arrival of its corresponding label, referred
to as a delayed label. The latter problem results in ‘verification
latency’ [7], i.e. the fact that performance measures can be
updated only at the time of receiving labels rather than at the
time of making initial predictions. It is essential to respect the
order of the instance creation while performing evaluations to
avoid data leakage (e.g. evaluate with data generated before
the available training data); changes to the data distribution
must be reflected in the evaluation metrics as well, because
usually, one is interested in the predictive performance of a
model in the current concept with little to no influence from
how it performed in previous concepts; and finally, a delay for
the arrival of the actual labels presents analytical and practical
problems. First, it is necessary to determine which predictions
will be used to compare against the ground-truth. In some
cases, only the first prediction generated at the time the input
data appears should be saved and applied. In other situations,
a prediction made immediately before the arrival of the label
should be used. Finally, there might be situations where taking
into account every intermediary prediction for the same input
data is a sensible choice.

We proceed to discuss how different evaluation procedures
take into account how past predictions influence the model’s
predictive performance and when the ground truth becomes
available. There are well-established evaluation methods that
take into account the influence of correct/incorrect past and
new predictions. The most straightforward approaches include
periodic holdout and test-then-train. Periodic holdout evalua-
tion interleaves training and testing using predefined windows,
such that one window of instances is used for training, the next
window for testing, and so on. Test-then-train evaluation
uses each instance first for testing and then immediately after
for training.

1Available at https://github.com/mgrzenda/IntermediateMeasures. Our im-
plementation is an extension of the continuous reevaluation [4] implemented
on top of the Massive Online Analysis (MOA) framework.

Finally, in cross-validated prequential evaluation, models
are trained and tested in parallel on different folds of data to
estimate their predictive performance better.

The existence of a non-negligible delay between the input
data and the label arrival is an emerging research topic [3],
[4], [8]–[10], which we briefly survey below.

In [3], the authors present an approach to evaluating the
classification performance of a model assuming a scenario
where the labels are not readily available, i.e. the ‘delayed
labelled setting.’ In the proposed evaluation procedure, the
learner is assessed based on its capacity to produce correct
predictions immediately after the input data appears, such
that the predictions are stored for future comparisons against
the ground truth that will only be available afterward. Useful
insights can be obtained when comparing the results for both
the immediate and the delayed labelling settings, using the
same algorithms and datasets.

In [10], the authors introduce a taxonomy to determine
the delay mechanism and magnitude, present real-world ap-
plications where delayed labels occur and notation for the
delayed setting, and show how the set of delayed labels can
be used to pre-update the classifier. However, no specific
evaluation procedure was introduced in [10]. Similarly, in
[8], the authors present experiments focusing on different
approaches to exploiting delayed labeled instances using IB2
and IB3 algorithms. However, the evaluation of the results
followed the traditional holdout approach (i.e. 90% for training
and 10% for testing).

In [9], the author presents an analytical view of the con-
ditions that must be met to allow concept drift detection in
a delayed labeled setting. Three types of concept drifts are
analytically studied, and two of them are also empirically
evaluated. Similarly to [8], the experiments focusing on clas-
sification performance did not further explore the verification
latency of the data.

In [4], a novel evaluation methodology for data streams
when verification latency takes place, namely continuous re-
evaluation is proposed. The assumption is that incremental
models can refine a prediction before the corresponding label
arrives because the model is trained on other labeled instances
in the meantime. The periods of waiting for the labels are
decomposed into bins (i.e. subperiods) to analyse the changes
in the performance measures between the initial predictions
and when the labels are received. Before the label arrives all
predictions made for the instance have to be buffered, and
once the true label arrives, individual buffered predictions
can be mapped to corresponding bins, and the evaluation
of performance measures for every bin can be made. These
binned measures can be plotted to observe their evolution
over time. In [4], continuous re-evaluation was applied to
reference data streams to compare several supervised learners
(i.e. classifiers and regressors).

In the current work, we present aggregation strategies to
combine the continuous re-evaluation binned measures from
[4] into scalar values. We aim to provide a more intuitive way
to assess the results obtained by the models under verification
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Fig. 1. The accuracy of initial predictions vs. the accuracy of final predictions
made with test-than-train approach. Electricity data.

latency. Similarly to [4], we take into account the intermediary
predictions instead of just using the prediction obtained at the
time the input data arrived.

III. SUMMARY PERFORMANCE MEASURES

A. Motivation

Let t({(xk, ?)}) denote the time an instance arrived and
t̃({(xk, ?)}) denote the time the true label yk of a k-th
instance arrived. Let us refer to [t({(xk, ?)}), t̃({(xk, ?)})] as
a latency period in the remainder of this paper and let ∆tk =
t̃({(xk, ?)})− t({(xk, ?)}). Since each of the latency periods
can be divided into B subperiods the performance of possibly
evolving predictions available for every instance in the b-th
subperiod of its latency period can be evaluated. Hence, the
binned performance of bin b is calculated for the predictions
available in the periods [t({(xk, ?)})+∆tk

b−1
B , t({(xk, ?)})+

∆tk
b
B ], b = 1, . . . , B [4]. In line with [4], Λ(T, b) is a binned

performance measure such as accuracy and is calculated
on top of predictions made for all the instances in the b-th
subperiod of its latency period such that t̃({(xk, ?)}) ≤ T
i.e. such that their true labels arrived by time T . ΛA(T, b) is
used to denote binned accuracy in the remainder of this study.
Furthermore, let us note that for data streams for which the
notion of time has not been defined, time can be interpreted
as an index of an unlabelled or labelled instance in a stream.

The accuracy of the initial predictions made at t({(xk, ?)}),
and the predictions made immediately before the true labels
are received at t̃({(xk, ?)}) can be different as they are
produced with a model that may change between receiving
instance data and receiving the true label of this instance.
Furthermore, let us assume that the predictions made at
t̃({(xk, ?)}) are the predictions made immediately before
updating a model based on true label yk i.e. predictions
made in the test-then-train manner. We will refer to the latter
predictions as final predictions in the remainder of this study.
Assuming predictions from each of equal length B subperiods
of [t({(xk, ?)}), t̃({(xk, ?)})] are summarised with a perfor-
mance measure Λ(T, b), b = 1, . . . , B, the performance of
initial and final predictions will be denoted by Λ(T, 0), and
Λ(T,B + 1), respectively [4].

Fig. 1 shows the accuracy of initial and final predictions
for a reference problem of energy price prediction. These
two categories of accuracy measures were calculated for a
data stream developed based on the Electricity data described
and used inter alia in [11]. The objective of the task was to
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Fig. 2. The binned accuracy ΛA(T, b) of predictions made in individual
periods between receiving instances and their true labels. Electricity data.

perform at least 24 hours ahead prediction of energy price
changes. The raw data stream was converted to enable this
task in the same way as in [4]. Fig. 1 shows the performance
of two data stream classifiers. We select for comparison two
methods - instance-based classifier of k Nearest Neighbours
(kNN), which exemplifies methods operating on a sliding
window of instances, and Adaptive Random Forest (ARF) [3]
i.e. a recently proposed method adapting an ensemble of
tree-based models to the streaming setting. All the results
of the calculations for these two methods and the remaining
methods reported in this study were developed with Massive
Online Analysis framework [12]. Fig. 1 reveals how large the
difference between the accuracy of initial and final predictions
can be. Based on the initial and final performance, it remains
impossible to estimate which of the models polled for ad-
ditional predictions before the true label arrival, could yield
predictions of overall higher accuracy.

Continuous reevaluation proposed in [4] reveals the accu-
racy of additional predictions made in the periods preceding
true label arrivals. Fig. 2 shows the results for both kNN and
ARF and other reference stream mining techniques. These
include reference simplistic methods of Majority Class (MC)
i.e. a method always returning a dominating class, and No-
Change (NC), which repeats the last observed true label as
its prediction and exploits possible temporal dependencies in
the data [11]. Furthermore, we consider the Hoeffding tree
(HT) method proposed by Domingos and Hulten in [13], and
its adaptive version, prepared to respond to concept drifts i.e.
Hoeffding Adaptive Tree (HAT) [14]. Last but not least, a
Naive Bayes classifier representing probabilistic methods has
been included. B = 100, which follows from the analysis
performed in [4], is used in Fig. 2 and in the remainder of this
study. It enables detailed evaluation of predictions available for
each of B = 100 subperiods of latency periods.

Fig. 2 shows the accuracy of initial predictions (bin b=0),
final predictions (bin b=101) and predictions made in each of
the B=100 subperiods between t({(xk, ?)}) and t̃({(xk, ?)}).
Importantly, this illustrates that apart from Λ(T, 0) represent-
ing the accuracy of initial predictions made since the beginning
of the stream, additional B = 100 accuracy trends are
received. Hence, the accuracy Λ(T, b) of additional predictions
depends on both the bin index and the number of labelled
instances processed by T . Fig. 2 shows how continuous reeval-
uation reveals the accuracy of predictions made between initial
and final predictions and explains major accuracy difference



between initial and final performance. Results shown in Fig. 2
show that predictions relying on more recent streaming models
can be more (the case of NC providing the highest final
accuracy) or even less accurate than initial ones (the case of
kNN for some of the bins). Hence, the question arises of how
to extend standard performance measures developed for initial
and final predictions shown in Fig. 1 by measures showing
the overall performance of the models polled for additional
predictions in the periods before true label arrival.

Let us observe that the performance measures showing the
overall performance of periodic predictions should simplify
the comparison of the merits of periodic predictions vs. initial
predictions and match the needs of varied domain problems.
The former requirement means that the values of intermediate
measures should be directly comparable with the measures
calculated for initial and final performance. In particular, the
performance measure function should yield a single perfor-
mance measure Ψ(T ) ∈ R rather than a (B + 1)-dimensional
vector [Λ(T, 0), . . . ,Λ(T,B)] such as those visualised in
Fig. 2. Creating a weighted average of vector elements can be
a solution to this problem, as suggested in possible extensions
outlined in [4]. Still, the question remains of how to provide
an intuitive way of setting the weights under varied domain
needs.

As far as domain needs are concerned, let us note that the
question of whether initial predictions are equally important
as those made while waiting for a true label may be answered
differently for different problems. As an example, if the ob-
jective of the prediction is to provide data to display expected
arrival times at a bus stop, the quality of all predictions
displayed for a bus of interest before it actually arrives can
be considered equally important. In other words, for some
use cases, the quality of predictions made shortly before true
label arrival may be equally important as the quality of initial
predictions. In other cases, such as bankruptcy predictions,
correct predictions made possibly early are clearly preferred
to predictions made shortly before true label arrival i.e. before
the true company status is known. Furthermore, when the
assessment of periodic predictions is driven mostly by early
predictions, it is natural that the relative impact of later
predictions on the summary assessment should be configurable
to let a domain expert control it.

B. Extending existing performance measures with intermedi-
ate measures

Let us now go beyond initial performance and test-then-
train performance evaluation and avoid the complexity of
investigating performance changes for individual bins at the
same time. To answer the needs identified above, let us propose
the prioritised performance measure i.e. a performance mea-
sure which assigns possibly higher weights to the predictions
made shortly after receiving the instance. The measure we
propose aims to ensure the convenience of a single metric, by
aggregating performance measures developed for individual
subperiods of latency periods.

Input: S1,S2, ... - data stream, B - the number of
bins, α - the weight showing relative
importance of initial vs. pre-final performance

Data: L - list of tuples ({(xk, ?)}, . . .), containing the
data of instances awaiting their true labels,
P (k) - list of timestamped predictions made for
Si = {(xk, ?)}, Λ(t, b) - performance measure
such as accuracy observed by time t for
predictions available in b-th bin, hi - the
prediction model

begin
h1 = φ;
for i = 1, . . . do

/* New unlabelled instance or new version of
evolving instance arrived */

if Si = {(xk, ?)} then
/* k-th instance first version */
if ¬L.contains(k) then

L.add({(xk, ?)});
/* obtain the first or an additional prediction */
P(k).add(hi(xk), t(Si), b = 0);

else
/* Si = {(xk, yk)}, i.e. true label arrived */
/* perform test-then-train prediction */
P(k).add(hi(xk), t(Si), b = B + 1);
T = t(Si);
/* Update performance measures for every bin */
for b = 0, . . . , B + 1 do

Λ(T, b)=updPerformance(P (k), yk, t(Si));

end
/* Calculate summary performance measures */
Ψ(T )α = Ψα(Λ(T, 0), . . . ,Λ(T,B));
L.remove(k);
/* generate new predictions for instances

awaiting true labels */
L.generateNewPredictions();
/* Update the model */
hi+1=train(hi, {(xk, yk)});

end
end

end
Algorithm 1: Extending continuous re-evaluation with
intermediate performance measures

We propose a parametric prioritised performance measure
based on an exponential decay function. The justification
for such performance measure is that several domains may
require high accuracy predictions very early, or can equally
benefit from evolving predictions made even shortly before
true label arrival. Hence, for α ∈ R, α ≥ 1, let us propose the
generic formula:

Ψ(T )α =

∑B
b=0 Λ(T, b)( 1

α )
b
B∑B

b=0( 1
α )

b
B

(1)
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Fig. 3. The impact of different α settings on weights applied to performance
measures Λ(T, b) determined for individual bins.

It is trivial to note that ( 1
α )

b
B is equal to 1 for b = 0

and 1
α for b = B, respectively. This generic formula can

be used to aggregate different performance measures such as
accuracy, kappa [6] or kappa plus, initially introduced in [11].
A method for calculation of Ψ(T )α is proposed in Alg. 1. The
measure is updated every time a true label arrives. It aggregates
binned performance developed for intermediate predictions i.e.
predictions generated for instances awaiting their true labels.

Furthermore, Ψ(T )Aα , Ψ(T )κα and Ψ(T )κ+α will stand for
intermediate accuracy, intermediate kappa and intermediate
kappa plus, respectively. Similarly to the F measure, the α pa-
rameter weighs the importance of underlying measures, which
are summarised by Ψ(T )α. While α can be used to scale the
impact of precision and recall on Fα measure, in the analysed
case we suggest using α to weigh the relative importance of
initial vs. late predictions. By setting α = 1, we get a balanced
Ψ(T )1 or simply Ψ(T ) i.e. all Λ(T, b), b = 0, . . . , B have an
equal impact on Ψ(T )1.

By setting α > 1 e.g. α = 2 or α = 10, we get Ψ(T )2 and
Ψ(T )10. These measures weigh the performance measure for
predictions made shortly before true label arrival i.e. Λ(T,B)
twice and ten times less important than the initial predictions
Λ(T, 0), respectively. In other words, Ψ(T )A2 weighs initial
accuracy twice as much as pre-final accuracy Λ(T,B). Fig. 3
shows the relative importance ω of performance measures
developed for individual subperiods of latency periods for
different α values. Importantly, since Ψ(T )α follows an expo-
nential decay formula, higher α values strengthen the impact
of initial predictions on the ultimate value of the prioritised
performance measure.

Let us note that the prioritised performance measure pro-

posed above extends initial and test-then-train evaluation by
also considering intermediate predictions. Hence, we refer to
these measures as intermediate measures. It is important to
note that for some applications, true labels may arrive with a
latency of several minutes or a few hours (true arrival in public
transport), but also several months (predictive maintenance
tasks). In such cases, periodic predictions can be of particular
value, assuming they provide increased accuracy, which can
be easily aggregated and compared with the accuracy of initial
predictions.

IV. RESULTS

To analyse whether the prioritised performance measure
can provide valuable insights into the performance of stream
mining methods, we have selected a number of real and
synthetic datasets. This included the Electricity data stream
already used above to provide the background for this study.
We describe the datasets used in the experiments as follows2:

• Electricity. The Electricity dataset3 poses the problem of
detecting changes to energy prices (UP or DOWN). Based
on the raw electricity data price evolution, we develop a
stream of instances reflecting a frequent practice in power
systems by performing a 24-hour-ahead prediction.

• LED. The LED data is based on the LED generator intro-
duced in [15]. This synthetic generator yields instances
with 24 Boolean features, 17 of which are irrelevant.
The remaining 7 features correspond to each segment
of a seven-segment LED display. The goal is to predict
the digit displayed on the LED display. In this dataset,
we simulate 3 abrupt drifts each with an amplitude of
3.75k up to 7.5k instances and centered at the 3.75k,
7.5k and 15k instance, respectively. The first drift swaps
3 features, the second drift swaps 5 features, and the last
one 7 features. Furthermore, the delay was set to 1,000
instances.

• Hyperplane.The hyperplane data generator [16] sim-
ulates a binary classification problem, such that class
labels are divided into the space by a hyperplane. It is
possible to change the hyperplane orientation and position
by slightly changing its relative size of the weights wi.
Thus, a generator can be used to simulate time-changing
concepts, by varying the values of its weights as the data
stream progresses. For this data stream we set the latency
of true label to a fixed value of 100.

• Airlines. The airlines dataset4 contains flight departure
and arrival records for all commercial flights within the
USA. A part of this dataset limited to non-cancelled
flights arriving at Atlanta International Airport (ATL)
was used in our experiments. The objective is to predict
whether a flight will arrive at ATL before time, on time or

2We rely on the same data streams and the way they were adapted to
delayed labelling setting as the reference data streams used in [4]. Hence,
the description provided here is a brief overview of a more detailed summary
present in [4].

3http://www.inescporto.pt/j̃gama/ales/ales 5.html
4http://stat-computing.org/dataexpo/2009/



TABLE I
DATA STREAMS USED IN THE EXPERIMENTS

Data |Ω(T )| dim(xi) Type Label latency
Electricity 44204 149 real data varied
LED 20000 24 synthetics fixed
Hyperplane 250 2 synthetic data fixed
Airlines 6227 10 real data varied
Agrawal 10000 9 synthetic data fixed
CovType 24500 54 real data fixed

delayed, based on instance data describing the flight and
including features such as distance, planned departure and
arrival time, origin airport and carrier. We assume that the
instance data becomes available at the planned departure
time. Moreover, the delayed label becomes available at
true arrival time. Therefore, the time t(Si) and the time of
receiving its true label t̃(Si) = t(Si)+∆ti is the planned
departure and true arrival time, respectively. Before the
label of an instance arrives, evolving predictions for the
instance are expected to be made based on a more recent
model possibly reflecting weather conditions and the
resulting major delays at the destination airport.

• Agrawal. AGRAWAL [17] produces data streams with
six nominal and three continuous attributes. This gen-
erator simulates a hypothetical loan application [18].
There are ten different functions that map instances into
two different classes. It is possible to simulate concept
drift by changing the function. In our experiments with
AGRAWAL, we simulated 4 gradual concept drifts. The
size of the window of change for each drift was set to 400;
the amount of instances per concept was set to 2, 000; the
functions (concepts) varied from 1 to 5; the total amount
of instances was set to 10, 000; and the delay was fixed
to 1, 000.

• CovType. The forest cover type dataset (CovType) [19]
contains 581, 383 instances, with each of them represent-
ing one of 7 different forest cover types. This dataset does
not contain a “natural” delay; therefore we simulated a
delay of 1,000 instances.

For each of the data streams, the same set of stream mining
methods as reported in Fig. 2 was used. Table I provides a
brief summary of all the data streams used in the experiments,
including the number of instances |Ω(T )|, the dimensionality
of input vectors dim(xi), type of the stream and the latency
of its labels.

A. Electricity data

Let us start the investigation from the Electricity data. Fig. 4
extends the performance trends of initial and final accuracy al-
ready shown in Fig. 1 by adding intermediate accuracy Ψ(T )A2 .
The addition of intermediate accuracy answers the question
of which method out of those analysed in Fig. 1 yields the
highest intermediate accuracy when additional predictions are
considered. Fig. 4 shows that the intermediate performance for
ARF is almost identical to initial performance and remains at
a lower level than the intermediate performance that kNN pro-
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Fig. 4. Initial, intermediate and final accuracy for Electricity data stream

vides. Interestingly, the intermediate accuracy for kNN tends to
be lower than the accuracy of initial predictions made by kNN.
This shows that in the case of the Electricity dataset, prediction
performed with more recent instances present in the buffer
may yield lower accuracy. The more detailed investigation of
Fig. 2 confirms that the performance observed for bins indexed
15-45 is lower than the initial prediction. The explanation
of this phenomenon lies in periodic changes in Electricity
data, which make the more recent content of the instance
buffer, which the kNN method relies on, not always more
suitable to provide accurate classification. Importantly, the fact
that the accuracy of kNN predictions may deteriorate during
some periods is conveniently reflected with the intermediate
measure. Hence, the intermediate performance provided by the
prioritised performance measure can be used for immediate
comparison of the merits of periodic predictions with the initial
and test-then-train performances of the models.

While Fig. 4 provides a summary of initial, intermediate,
and final performance for two data stream mining meth-
ods, typically more than two methods are compared. Table
II provides a summary of the performance of all methods
analysed in this study for every data stream. Apart from the
aforementioned kNN and ARF, we consider methods typical
of varied approaches present in machine learning domain,
already listed above. In every case, the results of running a
stream mining method for a stream were aggregated to produce
the values of all four categories of performance measures
i.e. initial, binned, final and intermediate performance, out of
which the last one is the one proposed in this study.

Table II illustrates the way initial and final accuracy, i.e. the
test-then-train accuracy, can be extended with the measures
reflecting the quality of predictions made during latency
periods. More precisely, this can be attained in two ways.
First of all, binned performance ΛA(T, ·) can be shown, which
aggregates the performance of the predictions made during one
of the subperiods of latency period. However, this measure
does not reflect the overall performance during delay periods.
It is the intermediate performance, here represented by Ψ(T )Aα ,
that provides the assessment of the loss between the true and
predicted labels of both initial and periodic predictions. In
the case of the Electricity data, the best method out of all
analysed in this study turns out to be kNN, the accuracy of
which goes beyond the accuracy of tree-based models, such as
HT and its adaptive version i.e. the Hoeffding Adaptive Tree.
The intermediate measure resolves the problem of whether
one of and if so which of the competing methods yielding



TABLE II
COMPARISON OF PERFORMANCE MEASURES FOCUSED ON INITIAL, INTERMEDIATE AND FINAL PREDICTIONS FOR REAL AND SYNTHETIC DATA. THE

BEST RESULTS FOR EVERY STREAM AND EVALUATION PROCEDURE ARE SHOWN IN BOLD.

Data Measure category Measure NB NC MC kNN HT HAT ARF

Airlines
Initial ΛA(T, 0) 47.53 39.68 48.45 44.66 45.59 45.25 47.47

Binned ΛA(T, 50) 47.94 40.79 48.47 47.10 46.43 46.12 48.26
Final ΛA(T, 101) 49.24 42.52 48.58 50.33 47.34 46.92 48.76

Intermediate Ψ(T )A1 48.04 39.92 48.46 46.70 46.40 46.12 47.98

Electricity

Initial ΛA(T, 0) 53.44 49.78 57.51 64.36 56.93 59.54 57.00
Binned ΛA(T, 50) 53.70 48.33 57.49 63.81 57.04 59.85 58.21

Final ΛA(T, 101) 54.34 85.37 57.56 71.58 61.59 64.99 68.27
Intermediate Ψ(T )A2 53.49 51.93 57.51 62.95 56.82 59.62 56.88

CovType
Initial ΛA(T, 0) 61.09 34.20 31.16 52.75 53.37 53.51 51.12

Binned ΛA(T, 50) 64.08 37.27 34.80 59.87 58.30 58.76 57.17
Final ΛA(T, 101) 70.92 70.51 39.62 79.94 70.85 73.09 80.87

Intermediate Ψ(T )A2 64.19 38.58 34.49 59.98 58.50 59.22 58.08

Hyperplane

Initial ΛA(T, 0) 75.60 49.60 52.40 73.20 75.60 75.20 72.80
Binned ΛA(T, 50) 85.20 56.40 48.40 82.80 85.20 84.00 82.40

Final ΛA(T, 101) 92.40 46.40 46.80 92.80 91.60 91.20 92.40
Intermediate Ψ(T )A2 83.43 50.70 49.57 81.07 82.77 82.50 80.94

Agrawal

Initial ΛA(T, 0) 56.47 53.18 50.11 54.39 56.80 56.07 53.29
Binned ΛA(T, 50) 58.76 53.05 51.17 57.48 60.76 60.42 55.93

Final ΛA(T, 101) 61.07 51.95 52.37 60.35 66.42 66.64 58.04
Intermediate Ψ(T )A2 58.46 52.52 51.11 57.19 60.50 60.30 55.72

LED
Initial ΛA(T, 0) 53.74 9.75 10.58 56.66 59.56 59.13 56.17

Binned ΛA(T, 50) 56.64 10.42 10.64 59.10 62.80 62.58 58.84
Final ΛA(T, 101) 59.61 9.45 10.65 62.10 66.27 65.98 62.13

Intermediate Ψ(T )A2 56.25 9.98 10.63 58.86 62.39 62.16 58.69

the highest accuracy of initial predictions (kNN) and final
predictions (NC) provides the highest accuracy when initial
prediction can be updated with more recent predicted labels.
In our simulations, we used α = 2 for the majority of datasets
to make initial predictions twice as important as the ultimate
predictions, except for α = 1 used for the Airlines data. In
the latter case, when the objective was to update predicted
flight status at a destination airport periodically, we considered
all periodic predictions i.e. all binned ΛA(T, ·) values equally
important.

We highlight the fact that the mismatch between a) the
best method in terms of initial predictions and b) the best
method in terms of final predictions, occurs not only for the
Electricity data. On the contrary, typically the method that
yields the highest initial accuracy is not the one that provides
the best final accuracy. For all the datasets, the intermediate
measure helps resolve which of the methods yields the best
overall accuracy of periodic predictions. Let us investigate in
greater detail the results for the LED data, even though the
LED results reported in Table II are seemingly the ones that
show a clear superiority of the Hoeffding tree method.

B. LED data

When analysing the LED data, we used the same classifiers
as in the case of the Electricity data. It follows from Table II
that both kNN and ARF gradually increase their accuracy.
The closer the prediction is to true label arrival, the higher the
accuracy of the two methods.

Fig. 5 shows the performance of these two methods includ-
ing, as in the former case of Electricity data, not only initial,
but also intermediate and final accuracy. Interestingly, the
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Fig. 5. Initial, intermediate and final accuracy for LED data stream

inclusion of intermediate accuracy provides additional insight
into the behaviour of both methods. The LED data stream
is affected by abrupt drift events. This results in a decreased
accuracy period, after which models learn new dependencies
and recover their ability to classify newly arriving instances.
What follows from Fig. 5 is that compared to ARF, the
kNN learner has a shorter period of reduced initial accuracy,
after which the accuracy starts to grow again. Owing to the
buffer of instances it operates on, it has an inherent ability
to entirely ‘forget’ about old instances and dependencies in
the data, in turn. Even more interestingly, the period during
which deteriorating intermediate accuracy of kNN is observed
is even shorter. In other words, the gradual growth of inter-
mediate accuracy restarts even faster. This phenomenon can
be explained by the fact that periodic predictions performed
by a more recent kNN model mean that initial predictions can
be gradually replaced with more accurate predictions relying
on the more recent buffer of instances maintained by kNN.
Hence, when a prediction is made with an out-of-date kNN
model, it can be replaced before true label arrival with more
accurate periodic predictions. This shows that the prioritised
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performance measure can be used to enable a straightforward
comparison with initial performance. Not only can it help to
create a ranking of stream mining methods, but it also assesses
the ability of specific methods to update initial predictions
with more accurate ones after concept drift occurs and before
true labels arrive. Hence, additional insight into the merits
of particular methods, also in non-stationary environments is
provided.

Finally, let us analyse why the HT method provides the
highest intermediate accuracy for the LED data. Fig. 6 answers
this question by showing that even though kNN recovers from
drift events faster, its base accuracy is substantially lower than
the accuracy of Hoeffding tree models. Therefore it is the
HT method that yields both the best initial and intermediate
accuracy. This comparison, similarly to the previous ones,
shows how the intermediate performance measures proposed
in this study can improve understanding of how much time is
needed for a model to respond to concept drifts by refining its
previous predictions. This is of particular value for the cases
when major label latency is observed, as during such periods
the models may differ in their ability to reflect the changes in
the underlying nonstationary process.

V. CONCLUSIONS

For many data streams, labels arrive with a major latency.
This means that predictions performed at the time of receiving
an instance do not immediately precede label arrival. Given
an incremental learner, the trained model is likely to evolve
during the period between receiving the input data and its
label, as a consequence of training on other labelled instances.
This results in verification latency, but also raises the question
of whether an evolving stream mining model can generate
possibly newer predictions for the instances awaiting their
actual labels. The way such predictions can be made and
aggregated to reveal performance measures such as accuracy
for individual subperiods of the latency period has recently
been studied in previous work.

Our current study identifies the requirements that should
be met by performance measures capturing the performance
of possibly many predictions made during latency periods for
individual instances awaiting their true labels. The intermedi-
ate measures we propose generalise existing measures, such
as accuracy. Through comparisons with usually substantially
different initial and final accuracy, we have shown that the
measures we propose enable a precise evaluation of the
ability of individual methods to refine initial predictions. These

measures reveal prediction updates i.e. refined predictions
caused both by adapting models to concept drifts and tuning
models to static classification borders. Hence, the intermediate
measures help provide an increased understanding of the
learning process and develop new techniques relying on such
increased understanding. In the future, the development of
such techniques designed to address real-life constraints of
delayed labelling in non-stationary environments is planned.
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