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Abstract—Boosting is an ensemble method that combines
base models in a sequential manner to achieve high predictive
accuracy. A popular learning algorithm based on this ensemble
method is eXtreme Gradient Boosting (XGB). We present an
adaptation of XGB for classification of evolving data streams.
In this setting, new data arrives over time and the relationship
between the class and the features may change in the process,
thus exhibiting concept drift. The proposed method creates new
members of the ensemble from mini-batches of data as new
data becomes available. The maximum ensemble size is fixed,
but learning does not stop when this size is reached because
the ensemble is updated on new data to ensure consistency with
the current concept. We also explore the use of concept drift
detection to trigger a mechanism to update the ensemble. We test
our method on real and synthetic data with concept drift and
compare it against batch-incremental and instance-incremental
classification methods for data streams.

Index Terms—Ensembles, Boosting, Stream Learning, Classi-
fication

I. INTRODUCTION

The eXtreme Gradient Boosting (XGB) algorithm is a

popular method for supervised learning tasks. XGB is an

ensemble learner based on boosting that is generally used with

decision trees as weak learners. During training, new weak

learners are added to the ensemble in order to minimize the

objective function. Different to other boosting techniques, the

complexity of the trees is also considered when adding weak

learners: trees with lower complexity are preferred. Although

configuring the multiple hyper-parameters in XGB can be

challenging, it performs at the state-of-the-art if this is done

properly.

An emerging approach to machine learning comes in the

form of learning from evolving data streams. It provides an

attractive alternative to traditional batch learning in multiple

scenarios. An example is fraud detection for online banking

operations, where training is performed on massive amounts of

data. In this case, consideration of runtime is critical: waiting

for a long time until the model is trained means that potential

frauds may pass undetected. Another example is the analysis

of communication logs for security, where storing all logs is

impractical (and in most cases unnecessary). The requirement

to store all data is a significant limitation of methods that need

to perform multiple passes over the data.

Stream learning comprises a set of additional challenges,

such as: models have access to the data only once and need

to process it on the go since new data arrives continuously;

models need to provide predictions at any moment in time;

and there is a potential change in the relationship between

features and learning targets, known as concept drift. Concept

drift is a challenging problem, and is common in many

real-world applications that aim to model dynamic systems.

Without proper intervention, batch methods will fail after a

concept drift because they are essentially trained for a different

problem (concept). A common approach to deal with this

phenomenon, usually signaled by the degradation of a batch

model, is to replace the model with a new model, which

implies a considerable investment on resources to collect and

process data, train new models and validate them. In contrast,

stream models are continuously updated and adapt to the new

concept.

We list the contributions of our work as follows:

• We propose an adaptation of the eXtreme Gradient Boost-

ing algorithm for evolving data streams.

• We provide an open-source implementation1 of the pro-

posed algorithm.

• We perform a thorough evaluation of the proposed

method in terms of performance, hyper-parameter rele-

vance, memory, and training time.

• Our experimental results update the existing literature

comparing instance-incremental and batch-incremental

methods, with current state-of-the-art methods.

This paper is organized as follows: In Section II we ex-

amine related work. The proposed method is introduced in

Section III. Section IV describes the methodology for our

experiments. Results are discussed in Section V. We present

our conclusions in Section VI.

II. RELATED WORK

Ensemble methods are a popular approach to improve pre-

dictive performance and robustness. One of the first techniques

to address concept drift with ensembles trained on streaming

data is the SEA algorithm [1], a variant of bagging [2]

which maintains a fixed-size ensemble trained incrementally

on chunks of data. Online Bagging [3] is an adaptation of

bagging for data streams. Similar to batch bagging, M models

are generated and then trained on N samples. Different to

batch bagging, where samples are selected with replacement,

in Online Bagging, samples are assigned a weight based

on Poisson(1). Leveraging Bagging [4] builds upon Online

Bagging. The key idea is to increase accuracy and diversity

1https://github.com/jacobmontiel/AdaptiveXGBoostClassifier
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on the ensemble via randomization. Additionally, Leveraging

Bagging uses the ADWIN [5] drift detector; if a change is

detected, the worst member in the ensemble is replaced by

a new one. The Ensemble of Restricted Hoeffding Trees [6]

combines the predictions of multiple tree models built from

subsets of the full feature space using stacking. The Self

Adjusting Memory algorithm [7] builds an ensemble with

models targeting current or former concepts. SAM works

under the Long-Term — Short-Term memory model (LTM-

STM), where the STM focuses on the current concept and

the LTM retains information about past concepts. Adaptive

Random Forest [8] is an adaptation of the Random Forest

method designed to work on data streams. The base learners

are Hoeffding Trees, attributes are randomly selected during

training, and concept drift is tracked using ADWIN on each

member of the ensemble.

In the batch setting, boosting is an extremely popular

ensemble learning strategy. The Pasting Votes [9] method is

the first to apply boosting on large data sets by using different

sub-sets of data for each boosting iteration; it does not require

to store all data and potentially can be used on stream data. A

similar approach is Racing Committees [10]. Different to [9],

Racing Committees includes a adaptive pruning strategy to

manage resources (time and memory). In the stream setting,

a number of approaches for boosting have been proposed.

Learn++.NSE [11], inspired in AdaBoost [12], generates a

batch-based ensemble of weak classifiers trained on different

sample distributions and combines weak hypotheses through

weighted majority voting.

In stream learning, two main branches of algorithms can

be distinguished depending on the schema used to train a

model. Instance-incremental methods [3], [4], [6], [8], [7],

where a single sample is used at a time, and batch-incremental

methods [9], [11], [10] that use batches of data: Once a given

number of samples are stored in the batch, they are used

to train the model. The Accuracy-Weighted Ensembles [13],

is a framework for mining streams with concept drift using

weighted classifiers. Members of the ensemble are discarded

by an instance-based pruning strategy if they are below a

confidence threshold. A relevant study is [14], where the

authors compare batch-incremental and instance-incremental

methods for the task of classification of evolving data streams.

While instance-incremental methods perform better on aver-

age, batch-incremental methods achieve similar performance

in some scenarios.

III. ADAPTING XGB FOR STREAM LEARNING

In this section, we present an adaptation of the XGB

algorithm [15] suitable for evolving data streams.

A. Preliminaries

The goal of supervised learning is to predict the responses

Y = {yi} : i ∈ {1, 2, . . . , n} corresponding to a set of feature

vectors X = {~xi} : i ∈ {1, 2, . . . , n}. Ensemble methods yield

predictions ŷi corresponding to a given input ~xi by combining

the predictions of all the members of the ensemble E. In this

paper, we focus on binary classification, that is, y ∈ {C1, C2}.

In the case of boosting, the ensemble E is created sequen-

tially. In each iteration k, a new base function fk is selected

and added to the ensemble so that the loss ℓ of the ensemble

is minimized:

ℓ(E) =
K
∑

k=1

ℓ(Y, Ŷ (k−1) + fk(X)) + Ω(fk). (1)

Here, K is the number of ensemble members and each fk ∈ F
with F being the space of possible base functions. Commonly,

this is the space of regression trees, so each base function

is a step-wise constant predictor and the ensemble prediction

Ŷ , which is simply the sum of all K base functions, is also

step-wise constant. The regularization parameter Ω penalizes

complex functions.

The ensemble is created using forward additive modeling,

where new trees are added one at a time. At step k, the training

data is evaluated on existing members of the ensemble and

the corresponding prediction scores Y (k) are used to drive the

creation of new members of the ensemble. The base functions

predictions are combined additively:

Ŷ (k) =

K
∑

k=1

fk(X) = Ŷ (k−1) + fk(X) (2)

The final prediction for a sample ŷi is the sum of the

predictions for each tree fk in the ensemble.

ŷi =

K
∑

k=1

ft(xi) (3)

B. Adaptive eXtreme Gradient Boosting

In the batch setting, XGB training is performed using all

available data (X,Y ). However, in the stream setting, we

receive new data over time, and this data may be subject to

concept drift. A continuous stream of data can be defined

as A = {(~xt, yt)}|t = 1, . . . , T where T → ∞, ~xt is

a feature vector, and yt the corresponding target. We now

describe a modified version of the XGB algorithm for this

scenario, called ADAPTIVE EXTREME GRADIENT BOOSTING

(AXGB). AXGB uses an incremental strategy to create the

ensemble. Instead of using the same data to select each base

function fi, it uses sub-samples of data obtained from non-

overlapping (tumbling) windows. More specifically, as new

data samples arrive, they are stored in a buffer w = (~xi, yi) :
i ∈ {1, 2, . . . ,W} with size |w| = W samples. Once the

buffer is full, AXGB proceeds to train a single fk. We can

rewrite Eq. 2 as:

Ŷ (k) =

K
∑

k=1

fk(wk) = Ŷ (k−1) + fk(wk) (4)

The index k of the new base function within the ensemble

determines the way in which this function is obtained. If it



(a) Push

(b) Replace

Fig. 1: Ensemble creation strategies.

is the first member of the ensemble, f1, then the data in the

buffer is used directly. If k > 1, then the data is passed through

the ensemble and the residuals from the first k− 1 models in

the ensemble are used to obtain the new base function fk.

C. Updating the Ensemble

Given that data streams are potentially infinite and may

change over time, learned predictors must be updated con-

tinuously. Thus, it is essential to define a strategy to keep the

AXGB ensemble updated once it is full. In the following, we

consider two strategies for this purpose:

• A push strategy (AXGB[p]), shown in Figure 1a, where

the ensemble resembles a queue. When new models

are created they are appended to the ensemble. If the

ensemble is full then older models are removed before

appending a new model.

• A replacement strategy (AXGB[r]), shown in Figure 1b,

where older members of the ensemble are replaced with

newer ones.

Notice that in both cases, we have to wait K iterations

to have a completely new ensemble. However, in AXGB[r],

newer models have a more significant impact on predictions

than older ones, while the reverse is true for AXGB[p].

A requirement in stream learning is that models are ready to

provide predictions at any time. Given the incremental nature

of AXGB, if the window (buffer) size W is fixed, the ensem-

ble will require K · W samples to create the full ensemble.

A negative aspect of this approach is that performance can

be sub-optimal at the beginning of the stream. To overcome

this, AXGB uses a dynamic window size W that doubles

in each iteration from a given minimum size Wmin until a

maximum size Wmax is reached. In other words, it grows

exponentially until reaching Wmax. The window size, W (i),
for the ith iteration is defined as:

W (i) = min(Wmin · 2i,Wmax) (5)

From Eq. 5, we see that the number of iterations i required

to reach the maximum window size is:

i =

⌈

log2

(

Wmax

Wmin

)⌉

(6)

Similarly, we see that the number of samples required to

create K models to fill the ensemble is smaller when using

the dynamic window size approach than when using a fixed

window size Wmax given that

K−1
∑

i=0

Wmin · 2i ≪ K ·Wmax. (7)

Because we monotonically increase the window size, we

see that both ensemble update strategies replace base functions

trained on small windows with newer ones trained on more

data.

D. Handling Concept Drift

Although the incremental strategy used by AXGB to create

the ensemble indirectly deals with concept drift—new mem-

bers of the ensemble are added based on newer data—it may

be too slow to adjust to fast drifts. Hence, we use ADWIN [5],

to track changes in the performance of AXGB, as measured

by a metric such as classification accuracy. We use subscript A

to denote ADWIN, therefore the concept-drift-aware version

of AXGB is referred in the following as AXGBA.

AXGBA uses the change detection signal obtained from

ADWIN to trigger a mechanism to update the ensemble. This

mechanism works as follows:

1) Reset the size of the window w to the defined minimum

size Wmin.

2) Train and add new members to the ensemble depending

on the chosen strategy:

a) Push: New ensemble members are appended to the en-

semble while the oldest are removed from it. Since new

models are trained on increasing window sizes they

will be added at a faster rate initially; this effectively

works as a flushing strategy to update the ensemble.

b) Replacement: The index used to replace old members

of the ensemble is reset so that it points to the

beginning of the ensemble. There are two consider-

ations: First, new models replace the oldest ones in

the ensemble. Second, new models are trained without

considering the residuals of old models that were

trained on the older concept.

IV. EXPERIMENTAL METHODOLOGY

In this section, we describe the methodology of our tests,

which we classify into the following categories: predictive per-

formance, hyper-parameter relevance, memory usage / model

complexity, and training time.

1) Predictive performance. Our first set of tests evaluates

the predictive performance of AXGB. For this we use

both, synthetic and real-world data sets. We then proceed

to compare AXGB against other learning methods. This



comparison is defined by the nature of the learning

method as follows:

a) Batch-incremental methods. In this type of learning

methods, batches of samples are used to incrementally

update the model. We compare AXGB against a batch-

incremental ensemble created by combining multiple

per-batch base models. New base models are trained

independently on disjoint batches of data (windows).

When the ensemble is full, older models are replaced

with newer ones. Predictions are formed by majority

vote. In order to compare this approach with AXGB,

we use XGB as the base batch-learner to learn an

ensemble for each batch. Thus, our batch-incremental

model is an ensemble of XGB ensembles. We refer

to this batch-incremental method as BXGB. We also

consider Accuracy-Weighted Ensembles with Decision

Trees as the base batch-learner. We refer to this method

as AWE-J48. We choose this configuration since

AWE-J48 is reported as the top batch-incremental

performer in [14], so it serves as a baseline for batch-

incremental methods.

b) Instance-incremental methods. We are also interested

in comparing AXGB against methods that update

their model one instance at a time. The following

instance-incremental methods are used in our tests:

Adaptive Random Forest (ARF), Hoeffding Adaptive

Tree (HAT), Leverage Bagging with Hoeffding Tree

as base learner (LBHT), Oza Bagging with Hoeffding

Tree as base learner (OBHT), Self Adjusting Memory

with kNN (SAMkNN) and the Ensemble of Restricted

Hoeffding Trees (RHT). In [14], LBHT is reported as

the top instance-incremental performer.

We perform non-parametric tests to verify whether there

are statistically significant differences between algo-

rithms, as described in [16], [17].

2) Hyper-parameter relevance. The XGB algorithm relies

on multiple hyper-parameters, which can make the model

hard to tune for different problems. We are interested

in analyzing the impact of hyper-parameters in AXGB.

For this purpose, we use a hyper parameter tuning setup

where a model is trained on the first 30% of the data

stream using different combinations of hyper-parameters.

Then, the best performers during the training phase

are evaluated on the remaining 70% of the stream. To

evaluate the influence of hyper-parameters, we compare

performance between AXGB and BXGB.

3) Memory usage and model complexity. The potentially

infinite number of samples in data streams requires re-

sources such as time and memory to be properly man-

aged. We use the total number of nodes in the ensemble

to gain insight into memory usage and model complexity

as AXGB is trained on a data stream. We compare the

proposed versions of AXGB against a baseline XGB

model trained on all the data from the stream. The

baseline number of nodes in the XGB model is expected

to be larger than the number of nodes in incremental-

models that evolve with the stream. By analyzing memory

usage and model complexity we aim to get intuition on

the evolution of the model over time.

4) Training time. Another relevant way to analyze the

proposed method is in terms of training time. We compare

the training time of the different versions of AXGB

against XGB, reporting results in terms of training time

(seconds) and in terms of throughput (samples per sec-

ond).

Our implementation of AXGB is based on the official XGB

C-API2 on top of scikit-multiflow3 [18], a stream learning

framework in Python. Tests are performed using the official

XGB implementation, the implementations of ARF, RHT and

AWE in MOA [19], and for the rest of the methods, the imple-

mentations available in scikit-multiflow. Default parameters of

the algorithms are used unless otherwise specified.

A. Data

In the following, we provide a short description of the

synthetic and real world datasets used in our tests. All datasets

are publicly available. A summary of the datasets used in our

experiments is available in Table I.

• AGRAWAL – Based on the Agrawal generator [20],

represents a data stream with six nominal and three

numerical features. Different functions map instances into

two different classes. Three abrupt drifts are simulated for

AGRa and three gradual drifts for AGRg.

• HYPER – A stream with fast incremental drifts where a d-

dimensional hyperplane changes position and orientation.

Obtained from a random hyperplane generator [21].

• SEA – A data stream with three numerical features where

only two attributes are related to the target class. Created

using the SEA generator [1]. Three abrupt drifts are

simulated for SEAa and three gradual drifts for SEAg .

• AIRLINES – Real world data containing information from

scheduled departures of commercial flights within the US.

The objective is to predict if a flight will be delayed.

• ELECTRICITY – Data from the Australian New South

Wales Electricity Market, where prices are not fixed but

change based on supply and demand. The two target

classes represent changes in the price (up or down).

• WEATHER – Contains weather information collected

between 1949–1999 in Bellevue, Nebraska. The goal is

to predict rain on a given date.

V. EXPERIMENTAL RESULTS

The results discussed in this section provide information

about predictive performance, parameter relevance, memory

and time for the different versions of AXGB.

2https://github.com/dmlc/xgboost
3https://github.com/scikit-multiflow/scikit-multiflow
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TABLE I: Datasets. [Type] S: synthetic data; R: real world

data. [Drifts] A: abrupt, G: gradual; If : incremental fast,

?: drifts with unknown nature.

Dataset # instances # features # classes Type Drift

AGRa 1000000 9 2 S A

AGRg 1000000 9 2 S G

HYPERf 1000000 10 2 S If
SEAa 1000000 3 2 S A

SEAg 1000000 3 2 S G

AIRL 539383 7 2 R ?

ELEC 45312 6 2 R ?

WEATHER 18159 8 2 R ?

TABLE II: Parameters used for batch-incremental methods.

Parameter AXGB * BXGB AWE-J48

ensemble size 30 30 30
ensemble size (base learner) - 30 -
max window size 1000 1000 1000
min window size 1 - -
max depth 6 6 -
learning rate 0.3 0.3 -

* The same parameter configuration is used for all variations: AXGB[p] ,

AXGBA[p] , AXGB[r] and AXGBA[r] .

A. Predictive Performance

We evaluate the performance of AXGB against other batch-

incremental methods and against instance-incremental meth-

ods. We use prequential evaluation [22], where predictions

are generated for a sample in the stream before using it to

train/update the model. We use classification accuracy as the

metric in our tests in order to measure performance. First,

we compare the different versions of AXGB (AXGB[p],

AXGBA[p], AXGB[r] and AXGBA[r]) against two batch-

incremental methods: BXGB and AWE-J48. The parameters

used to configure these methods are available in Table II.

Results comparing against batch-incremental methods are

available in Table III. We see that the overall top performer

in this test is AXGB[r], followed by AXGBA[r]. Next are

the versions of AXGB using the push strategy. Interestingly,

we find that AWE-J48 performs better than BXGB, which

comes last in this test. This is noteworthy considering that the

base learner in AWE-J48 (a single decision tree) is simpler

than the one in BXGB (an ensemble of trees generated using

XGBoost).

These tests provide insights into the different versions of

AXGB. We see that, in the push-strategy versions, track-

TABLE III: Comparing performance of AXGB vs batch-

incremental methods.

Dataset AXGB[p] AXGB[r] AXGBA[p] AXGBA[r] BXGB AWE-J48

AGRa 0.919 0.931 0.927 0.928 0.703 0.926
AGRg 0.896 0.907 0.897 0.901 0.710 0.905
AIRL 0.604 0.621 0.611 0.618 0.641 0.599
ELEC 0.718 0.739 0.740 0.747 0.702 0.614
HYPERf 0.822 0.847 0.825 0.847 0.756 0.777
SEAa 0.865 0.875 0.866 0.874 0.856 0.860
SEAg 0.863 0.873 0.863 0.872 0.857 0.860
WEATHER 0.765 0.774 0.767 0.747 0.737 0.712

avg. rank 4.188 1.438 3.063 2.313 5.125 4.875

TABLE IV: Comparing performance of AXGB vs instance-

incremental methods.

Dataset AXGB[r] AXGBA[r] ARF HAT LBHT OBHT SAMkNN RHT

AGRa 0.931 0.928 0.939 0.807 0.881 0.915 0.686 0.936
AGRg 0.907 0.901 0.912 0.792 0.858 0.847 0.669 0.911
AIRL 0.621 0.618 0.680 0.608 0.670 0.658 0.605 0.648
ELEC 0.739 0.747 0.855 0.874 0.836 0.794 0.799 0.873
HYPERf 0.847 0.847 0.849 0.869 0.814 0.806 0.870 0.896
SEAa 0.875 0.874 0.897 0.827 0.891 0.869 0.876 0.889
SEAg 0.873 0.872 0.893 0.825 0.889 0.869 0.873 0.885
WEATHER 0.774 0.747 0.791 0.693 0.783 0.749 0.781 0.758

avg. rank 4.750 5.688 1.625 6.125 3.750 6.000 5.313 2.750

CD =  4.9469

ARF

RHT

LBHT

AXGB[r]

AXGBA[r]

SAMkNN

OBHT

HAT

AWE-J48

BXGB

Fig. 2: Nemenyi post-hoc test (95% confidence level), identi-

fying statistical differences between all methods in our tests.

ing performance to detect concept drift (AXGBA[p]) pro-

vides a consistent advantage over the drift-unaware ap-

proach (AXGB[p]). The reason for this is that, as expected,

AXGBA[p] reacts faster to changes in performance: When a

drift is detected, the window size is reset and new models are

quickly added to the ensemble, flushing-out older models. This

is not the case for methods using the replace-strategy, with

AXGB[r] providing the best performance for most datasets.

These results are significant given the compromise between the

computational overhead of tracking concept drift and the gains

in performance. We analyze this trade-off when discussing

results of the running time tests.

Next, we compare AXGB against instance-incremental

methods. Results are shown in Table IV. For AXGB, we

only show results of AXGB[r] and AXGBA[r]. We see that

the top performer in this test is ARF, closely followed by

RHT. AXGB’s performance is not on par with that of the

top performers, but it is important to note that (i) these results

are consistent with those in [14], where instance-incremental

methods outperform batch-incremental methods, and (ii) both

AXGB[r] and AXGBA[r] are placed in the top tier between

LBHT and SAMkNN.

The corrected Friedman test with α = 0.05 indicates that

there are statistical significant differences between the methods

in Table III and Table IV . The follow-up post-hoc Nemenyi

test, Figure 2, indicates that there are no significant differences

among the methods in the top tier. We believe that these

findings serve to indicate the potential of eXtreme Gradient

Boosting for data streams.

B. Hyper-parameter Relevance

As previously mentioned, hyper parameters play a key role

in the performance of XGB. Thus, we also need to consider

their impact in AXGB. In order to do so, we present results



TABLE V: Parameter grid used to evaluate hyper-parameters

relevance.

Parameter Values

max depth 1, 5, 10, 15
learning rate 0.01, 0.05, 0.1, 0.5
ensemble size 5, 10, 25, 50, 100
max window size 512, 1024, 2048, 4096, 8192
min window size 4, 8, 16

obtained by running multiple tests on different combinations of

key parameters: the maximum depth of the trees, the learning

rate (eta), the ensemble size, and the maximum and minimum

window size. To cover a wide range of values for each

parameter, we use a grid search based on the grid parameters

specified in Table V. The parameter grid corresponds to a

total of 4× 4× 5× 5× 3 = 1200 combinations. For this test,

we compare the following XGB-based methods: AXGB[p],

AXGBA[p] and BXGB.

For establishing the effect of parameter tuning, the test is

split into two phases: training and optimization on the first

30% of the stream—using this validation data to evaluate all

parameter combinations in the grid and choosing the best one

using prequential evaluation of classification accuracy—and

performance evaluation on the remaining 70% of the stream

to establish accuracy of the parameter-optimized algorithm

by evaluating the algorithm with the identified parameter

settings using prequential evaluation on this remaining data.

The ensemble model is trained from scratch in this second

phase. This strategy is limited in the sense that the nature of

the validation data, including concepts drifts, is assumed to be

similar to that of the remaining data. Nonetheless, it provides

insights into the importance of hyper parameters.

Results from this experiment are available in Table VI.

Reported results correspond to measurements obtained with

parameter tuning (Tuning) vs. reference results (Ref ) obtained

using the fixed parameters in Table II, building an ensemble

from scratch on the same 70% portion of the stream.

We can see that optimizing hyper parameters clearly benefits

all methods. As expected, hyper-parameters can provide an

advantage over other methods. In this case, under-performers

are now on par or above LBHT . Surprisingly, BXGB obtains

the largest boost in performance and is now the method that

performs best. When analyzing the parameter configurations

(detailed results not included due to space constraints), we see

TABLE VI: Parameter tuning results.

Ref Tuning Ref Tuning Ref Tuning

Dataset AXGB[p] AXGB[p] AXGBA[p] AXGBA[p] BXGB BXGB

AGRa 0.881 0.927 0.933 0.931 0.727 0.930
AGRg 0.898 0.906 0.902 0.905 0.728 0.909

AIRL 0.616 0.627 0.588 0.628 0.632 0.639

ELEC 0.713 0.736 0.658 0.739 0.631 0.742

HYPERf 0.816 0.873 0.833 0.876 0.754 0.904
SEAa 0.879 0.889 0.881 0.892 0.854 0.890
SEAg 0.877 0.888 0.878 0.889 0.855 0.888
WEATHER 0.755 0.767 0.758 0.765 0.703 0.782

average 0.804 0.827 0.804 0.828 0.736 0.835

that BXGB favors smaller values for max window size, learn-

ing rate and max depth. The observed increase in performance

can be attributed to the impact of the hyper parameters on the

base learner in BXGB (batch XGB models), remembering

that BXGB is an ensemble of ensembles. Another factor to

consider is the small window sizes. In practice, having smaller

windows means that models are replaced faster as the stream

progresses and this can ameliorate the lack of drift awareness

to some degree. It is reasonable that the same applies to

the reduction in the performance gap between AXGB[p] and

AXGBA[p]. In the case of AXGB, our results show that

the learning rate has a consistent impact on performance

(lower is better), followed by max window size and max

depth. Finally, our tests reveal the contrast in the impact

of the ensemble size on the two versions of AXGB. While

AXGB[p] benefits from a smaller ensemble size, the opposite

applies to AXGBA[p]. This supports the intuition that drift-

aware methods can benefit from larger ensembles (to build

complex models) which adapt faster in the presence of drift

by triggering the corresponding ensemble update mechanism.

On the other hand, batch-incremental methods without explicit

drift detection mechanisms rely on their natural ability to

adapt, which can be counterproductive with large ensemble

sizes. It is important to note that although BXGB is the top

performer in this test, it is not efficient in terms of resources

(time and memory), which affects stream applications where

resources are limited.

C. Memory Usage and Model Complexity

In this section, we analyze memory usage of the proposed

methods during the learning process. For this purpose, we

count the number of nodes in the ensemble, including both

leaf nodes and internal nodes of each tree. This approach also

provides some intuition regarding the model’s complexity. We

perform this test on a synthetic dataset with 40 features (only

30 of which are informative) and 5% noise, corresponding

to the Madelon dataset, described in [23]. We use 1 million

samples for training and calculate the number of nodes in the

ensemble to get an estimate of the model size. Models are

trained using the following configuration: ensemble size = 30,

max window size = 10K, min window size = 1, learning

rate = 0.05, max depth = 6. We measure the number of nodes

as new members of the ensemble are introduced. Results from

this test are available in Figure 3, and serve to compare the

number of nodes in the batch model vs. the stream models. For

reference, the number of nodes in the XGB model is 12.7K

(outside the plot area). It is important to note that this number

is constant since it represents the size of the model trained on

all the data.

In Figure 3a, we see that AXGB[p] and AXGB[r] have

similar behaviors. As the stream progresses, the number of

nodes added to the ensemble increases until reaching a plateau.

This is expected since new models are trained on larger

windows of data. The plateau corresponds to the region where

the ensemble is complete and old members of the ensemble are

replaced by new members trained on equally large windows.
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Fig. 3: Insight into ensemble complexity by number of nodes

and ensemble members over the stream. For reference, an

XGB model with 30 ensemble members trained on all the

data has 12.7K nodes (outside the plot area).

On the other hand, AXGBA[p] and AXGBA[r] also exhibit an

incremental increase in the number nodes over the stream—at

a lower rate than the AXGB versions—but with some inter-

esting differences. In AXGBA[p], we see multiple drop points

in the nodes count, which can be attributed to the ensemble

update mechanism. When drift is detected, the window size

is reset and new models are pushed into the ensemble, in

other words, simpler models are quickly introduced into the

ensemble. In contrast, the number of nodes in AXGBA[r]

increases steadily. This difference in number of nodes can

explain the difference in performance between AXGB[r] and

AXGBA[r] discussed in Sec. V-A.

We also analyze AXGB by counting the number of models

in the ensemble across the stream, shown in Figure 3b. Notice

that the number of models reach the maximum value when the

ensemble is full; from that point on, new models replace old

ones. As anticipated, we see that AXGBA[p] fills the ensemble

quickly at the beginning of the stream because concept drift

detection triggers the reset of the window size and speeds up

the introduction of new models. AXGB[p] and AXGB[r] fill
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Fig. 4: Training time (top) and throughput (bottom) test results.

the ensemble at a slower rate and finish filling the ensemble

before the 200K mark. This is in line with our expectations

given the introduction of new models trained on increasing

window sizes as defined in Eq. 5. Finally, AXGBA[r] is the

slowest to fill the ensemble at around the 700K mark. This

is expected given that upon drift detection, AXGBA[r] starts

replacing the oldest models of the ensemble.

It is important to mention that additional memory resources

are used by the different AXGB variants given their batch-

incremental nature: mini-batches are accumulated in memory

before they are used to fit a tree. In this sense, other things

being equal, instance-incremental methods are more memory

efficient. However, our results show that all versions of AXGB

keep the size of the model under control, a critical feature

when facing theoretically infinite data streams.

D. Training Time

Finally, we measure training time for the different versions

of AXGB. We use as reference the time required to train

an XGB model on the Madelon dataset used in the model

complexity test. Models are trained using the following con-

figuration: ensemble size = 30, max window size = 10K,

min window size = 1, learning rate = 0.05, max depth = 6.

We used the following dataset sizes: 200K, 400K, 600K,



800K and 1M. Results correspond to the average time after

running the experiments 10 times for each dataset size and

for each classifier. Measurements are shown in Figure 4 in

terms of time (seconds) and in Figure 4 in terms of throughput

(samples per second). These tests show that the fastest learners

are AXGB[p] and AXGB[r], both showing small change in

training time as the number of instances increases. This is an

important feature given that training time plays a key role in

stream learning applications. On the other hand, AXGBA[p]

and AXGBA[r] have similar behaviour in terms of training

time compared to XGB while being slightly slower. This

can be attributed to the overhead from the drift-detection

process, which implies getting predictions for each instance

and keeping the drift detector statistics. Additionally, we see

that AXGBA[p] is the slowest classifier, which might be

related to the overhead incurred by predicting using more

ensemble members, given that the ensemble is quickly filled

as previously discussed.

VI. CONCLUSIONS

In this paper, we propose an adaptation of the eXtreme

Gradient Boosting algorithm (XGB) to evolving data streams.

The core idea of ADAPTIVE XGBOOST (AXGB) is the in-

cremental creation/update of the ensemble, i.e., weak learners

are trained on mini-batches of data and then added to the

ensemble. We study variations of the proposed method by

considering two main factors: concept drift awareness and

the strategy to update the ensemble. We test AXGB against

instance-incremental and batch-incremental methods on syn-

thetic and real-world data. Additionally, we consider a simple

batch-incremental approach (BXGB) consisting of ensemble

members that are full XGB models trained on consecutive

mini-batches. From our tests, we conclude that AXGB[r] (the

version that performs model replacement in the ensemble but

does not include explicit concept drift awareness) represents

the best compromise in terms of performance, training time

and memory usage.

Another noteworthy finding from our experiments is the

good predictive performance of BXGB after parameter tuning.

If resource consumption is a secondary consideration, this

approach may be a worthwhile candidate for application in

practical data stream mining scenarios, particularly consider-

ing that our parameter tuning experiments did not investigate

optimizing the size of the boosted ensemble for each mini-

batch in BXGB. (The size of each sub-ensemble was fixed

at 30 members.) Overall, despite the limitations of mini-

batch-based data stream mining, and its drawbacks compared

to instance-incremental methods, it appears that XGB-based

techniques are promising candidates for data stream applica-

tions. In a similar way, we believe AXGB is an interesting

alternative to XGB for some applications given its efficient

management of resources and adaptability.
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