View metadata, citation and similar papers at core.ac.uk

brought to you by

provided by Research Commons@Waikato

Hindawi

Journal of Ophthalmology

Volume 2020, Article ID 8841927, 11 pages
https://doi.org/10.1155/2020/8841927

Hindawi

Review Article

Essentials of a Robust Deep Learning System for Diabetic
Retinopathy Screening: A Systematic Literature Review

Aan Chu®,' David Squirrell,> Andelka M. Phillips,>* and Ehsan Vaghefi '

ISchool of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
?Auckland District Health Board, Auckland, New Zealand

*Te Piringa Faculty of Law, University of Waikato, Hamilton, New Zealand

*HeLEX Centre, Faculty of Law, University of Oxford, Oxford, UK

Correspondence should be addressed to Ehsan Vaghefi; e.vaghefi@auckland.ac.nz
Received 10 August 2020; Revised 20 September 2020; Accepted 3 November 2020; Published 16 November 2020
Academic Editor: Ciro Costagliola

Copyright © 2020 Aan Chu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by
identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such
an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747
unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting
in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database
search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for
creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical
implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It
is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results.
Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm
should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and
reporting; whilst requiring minimum human input.

1. Introduction

By 2045, the global incidence of diabetes is projected to reach
629 million adults, with one-third expected to have diabetic
retinopathy (DR) [1]. DR remains the leading cause of ac-
quired vision loss in the working-age population [2] and is
the most feared microvascular complication of diabetes.
Although the aetiology of DR is multifactorial, chronic
hyperglycaemia remains the single most important driver of
retinal capillary damage. If untreated, DR can result in ir-
reversible vision loss [3] and represents a considerable
burden on both the individual and public health systems [4].
Primary prevention of diabetes focusing on modifiable risk
factors, such as obesity and lifestyle, has been shown to
reduce the development of diabetes. However, such inter-
vention strategies are intensive and require coordinated

support networks [5], as well as control of both blood
pressure [6] and blood glucose levels [7, 8]. It is now well
accepted that screening for DR reduces the risk of vision loss
in individuals with diabetes [9-11] and the most effective DR
screening modality has been shown to be mydriatic fundus
photography [12]. However, DR classification systems and
referral pathways differ according to the respective com-
munity guidelines [4], and it is often challenging to identify
the efficacy of DR screening alone [13], because even in those
areas with well-established DR screening programmes in
place, patient attendance remains suboptimal [14, 15].
Moreover, although the efficacy of DR screening is not in
dispute, systematic DR screening in developing countries is
rare [16]. Furthermore, even in developed countries, the
disparity in the number of individuals with diabetes and the
infrastructure required to sustain DR screening
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programmes, particularly in underserved regions, is ex-
pected to widen.

Artificial intelligence (AI), particularly, deep learning,
has been touted as the solution to help automate the process
of DR screening [17]. Machine learning (ML) is a branch of
artificial intelligence and is defined as the study of computer
algorithms that allow computer programs to automatically
improve through experience [18]. ML relies on working with
small to large datasets by examining and comparing the data
to find common patterns. ML uses subsets of data to gen-
erate an algorithm that may use novel or different combi-
nations of features and weights that can be derived from first
principles [19, 20]. In ML, there are four commonly used
learning methods, each useful for solving different tasks:
supervised, unsupervised, semisupervised, and reinforce-
ment learning [19, 20]. To maximize the chance of gener-
alizability to the performance of the algorithm on unseen
data, the training dataset is usually split into a slightly
smaller training dataset and a separate validation dataset.
Deep learning algorithms (DLAs) are one methodological
family of ML based on, e.g., artificial neural networks
(ANNSs), deep belief networks, recurrent neural networks, or
giving a precise example of a feed-forward ANN [21, 22].
Whilst the idea of DLAs is not new, as their origins can be
traced back to 1943 [23], the advent of supercomputers and
the availability of big data has led to a resurgence of interest
in them.

In the context of DR screening, the aim of the DLA is to
perform DR grading of fundus photographs, independently of
humans. The process of training a DLA to perform DR
grading has been described elsewhere [24], but in brief, it
involves training a convolutional network (CNN) on a large
dataset of images labelled with the correct DR grade: the
“ground truth.” The DLA then starts assigning a DR grade to
each image, and the result generated is then compared with
the ground truth. After every comparison, the DLA modifies
the neural networks’ parameters to improve and maximise its
accuracy. This process is repeated until the DLA has “learnt”
to assign the correct DR grade to the images in the training
dataset. Once training is complete; the DLA’s performance is
then tested and validated against a bank of unseen images. As
challenging as it is to train a DLA, arguably the critical step is
its translation into clinical practice, and to date, only a few
DLAs have successfully navigated this final hurdle. The ob-
jective of this systematic review is to lay the groundwork for
both clinicians and developers to evaluate DLAs and highlight
potential barriers to their clinical implementation in the
context of DR screening. It also aims to stimulate further
discussion of appropriate governance in this context. By
applying predetermined selection criteria, we aim to only
include high-quality studies from our literature search. We
will focus on the limitations of the current studies when
discussing the barriers to the clinical translation of DR DLAs,
as we believe this to be a significant issue.

2. Methods

Several databases including Embase (1980-2019 Week 50)
via Ovid, MEDLINE (Ovid MEDLINE Epub Ahead of Print,
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In-Process & Other Non-Indexed Citations, Ovid MED-
LINE Daily, and Ovid MEDLINE 1946-Dec 20, 2019),
Scopus, PubMed, and the Cochrane Library were searched.
No restrictions on time period, language, or publication type
were applied to the electronic database search. A filter was
used only for PubMed results to exclude animal studies. All
databases were searched on December 20, 2019. The final
combination of search terms that returned relevant and
nonrestrictive results was ((deep learning OR DNN OR deep
neural network OR CNN OR convolutional neural network
OR deep learning algorithm OR DLA OR machine learning
OR artificial intelligence) AND (diabetic retinopathy OR
retinopathy OR maculopathy OR DMO OR DME OR di-
abetic macular oedema OR diabetic macular oedema)). Only
one relevant published systematic review was found from the
electronic database search results [25]. We conducted a
manual search through the reference lists of this systematic
review [25] and that of six review articles found from the
electronic database search [17, 26-30], which did not yield
any additional results.

All search results obtained from the electronic databases
were exported to RefWorks. A total of 1135 results were
found, of which we removed 388 duplicates. After excluding
the duplicate results, we applied the predetermined selection
criteria to the remaining 747 titles and abstracts, if available
(Table 1). As the objective at this point was to be deliberately
overinclusive, only the inclusion criteria for population,
algorithm type, publication category, and image modality
were applied. To this end, studies in which a definite decision
could not be reached based solely on the title or abstract were
still included. This resulted in the exclusion of 682 titles and
the inclusion of 67 titles.

We attempted to retrieve the full text of the 65 studies
which met stage 1 of the inclusion criteria. Studies that were
not available in their entirety were excluded. The remaining
studies were assessed against the full inclusion and exclusion
criteria. All nonjournal articles, such as conference abstracts
or proceedings, comments, and reviews, were excluded, in
addition to articles not related to convolutional neural
networks. Studies that were not published in English or had
incomplete or insufficient information on training, valida-
tion, or outcomes were also excluded. The complete selection
criteria can be found in Table 1. Note that the inclusion
criterion of >5000 images, as DLA training source, was
arbitrarily determined. Large training datasets lead to im-
proved performance [17]. However, the exact number of
training images needed is uncertain [31]. We identified 15
studies from the electronic database results which met the
full selection criteria (Figure 1). AC conducted the data
collection and assessment against the selection criteria.
Uncertainties in study inclusion were evaluated through
discussion with EV and DS until full consensus was reached.

The potential algorithm limitations of each study, as
decided by the information provided for its validation set,
were then considered (Table 2). The performance of the
trained DLAs was also reported. Due to different target
conditions amongst the studies and the complexity of
reporting all the results, it was decided to focus on the
sensitivity and specificity measures for detecting referable
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TaBLE 1: Study selection criteria. Stage 1 included population, algorithm type, publication category, and image modality and was applied to
747 articles. The full selection criteria were used for the remaining 65 articles, resulting in the final selection of 13 articles. "These were only
used as additional search resources. *This number was arbitrarily determined.

Inclusion criteria Exclusion criteria

Individuals with diabetes (type 1 or 2)
Patients with any DR stage and/or DMO
Populations with DR and other related eye diseases (if data for
populations with DR only is separate)

Individuals without diabetes

Populati . .
opulation Other retinal diseases

Deep learning systems
Algorithm type

Classification tasks (e.g., grading /screening DR)
Convolutional neural networks (CNN)

Manual feature construction
Expert systems
Segmentation tasks (e.g., lesion quantification)
Prediction tasks (e.g., future outcomes/prognosis)

Peer-reviewed
Published

Publication
category

Editorials, letters, opinion pieces, notes or comments
Conference abstracts /proceedings
Systematic reviews /meta-analyses’

Grey literature (e.g., statistics on diabetes /DR, white
papers, clinical practice guidelines)

Any retinal camera type
Field of view: 40 to 45°
Retinal colour fundus photographs

Image modality

Images from:
Smartphones /mobiles
OCT
Fluorescein angiography
Stereoscopic imaging
Wide/ultrawide field fundus photography

Text availability Full text available

Full text not available

Screening or grading DR

DR classification DR severity scale

Not screening or grading DR
No DR severity scale

Reference . i
Determined by human graders Not determined by human graders
standard
- e o N itivi d ificit f DR
Outcomes Sensitivity and specificity measures of DR classification © sensitivity and specificity measures o

classification

Training dataset >5000 images*

<5000 images

Validation

dataset Total number of images

Includes images used for training

diabetic retinopathy (rDR), where available. When results on
different operating points for high sensitivity or specificity
were provided, results reflecting a high sensitivity operating
point were included as this is more relevant for screening
purposes. If more than one measure of sensitivity and
specificity was available for different validation datasets in a
study, the best performance achieved was reported.

3. Results

Of the 747 unique records obtained from the electronic
database search, only 15 studies met the selection criteria for
this systematic literature review [24, 32-45] (Table 2). The
DLA developed by Gulshan et al. [24] functions as the core
of several studies, which was originally trained to perform
binary classifications of colour fundus photographs as either
rDR or nonreferable DR. Krause et al. [33] and a later
Gulshan et al. [32] modified this neural network to make
multiway classifications into five DR grades according to the
International Clinical Diabetic Retinopathy Disease Severity
Scale (ICDR). Krause et al. [33] also made other improve-
ments to the original neural network, such as the use of
adjudicated data as part of algorithm development. Gulshan
et al. [32] then implemented these modifications in their
study. The improvements made by Krause et al. became the

final DLA used in another study, which evaluated its per-
formance in the DR screening programme in Thailand [34].
Voets et al. [35] attempted to reproduce the results achieved
by Gulshan et al. [24]; however, they used publicly available
datasets for algorithm training and validation, instead of
private datasets. Three of the included studies focused on
IDx-DR [39-41]. IDx-DR is the first Al diagnostic medical
device authorised by the Food and Drug Association (FDA).
Ting et al. [42] developed a DLA that detected rDR, referable
AMD, and possible glaucoma. Large datasets of fundus
photographs from the Singapore National Diabetic Reti-
nopathy Screening Program were used for DLA training and
validation. A secondary validation was performed on ten
additional datasets from multiethnic cohorts. Bellemo et al.
[43] trained an additional model and combined this with the
DLA developed by Ting et al. [42], but only DR and DMO
were considered. To better understand the DLA, attention
maps were generated to visualise areas in the fundus pho-
tographs that contributed most to the DLA output. Visu-
alisation attention maps were also used by Gargeya and Leng
[38] for a DLA that detected no DR or DR of any severity. Li
et al. [37] developed a DLA for the detection of vision
threatening rDR, and Ramachandran et al. [36] validated a
third party DLA for detecting rDR. Rogers et al. [44] created
a DLA for rDR screening which was then used in
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FIGURE 1: Flowchart of the study selection process. CNN = convolutional neural network.

conjunction with a handheld camera, which is known for
lower image qualities compared to stationary cameras. They
showed that whilst DLA performed on a par with previous
algorithms developed, some mentioned here, it did not
perform at the same level using a portable camera setup.
Finally, Bhaskaranand et al. [45] assessed the performance of
their DLA under real-world conditions and demonstrated
that if designed correctly, DLAs can play a vital role as a
clinical assistive technology.

Validation datasets were classified as being publicly
available or privately held. Of the included studies, four
solely used public datasets [35, 38, 39, 45], whilst eight
employed privately acquired fundus photographs for vali-
dation and four used a combination of both private and
public validation datasets. Several studies used the Messidor-
2 or Kaggle (from EyePACs screening centres) public
datasets as part of the validation dataset. However, a
breakdown of the population demographics was not pro-
vided in these datasets and those studies that used the public
dataset. Ting et al. [42] and Bellemo et al. [46] included the
most comprehensive data on patient demographics,
detailing systemic risk factors for the development of DR,

such as BMI (body mass index), blood pressure, and cre-
atinine levels, in addition to mean age, sex, and ethnicity.

The number of graders used to determine the reference
standard for the validation datasets also varied across the
studies, from single to 8 graders.

Six studies did not detect DMO as part of the validation
process, but studies that did detect DMO commonly used
hard exudates within 1 disc diameter of the macula as a
surrogate for DMO. Li et al. [37] used this criterion or the
presence of hard exudates in the macular region that
encompassed at least 50% of the disc area. Ting et al. [42]
used a less restrictive criterion of any hard exudates in the
posterior pole. In addition to exudates, Abramoff et al. [39]
used retinal thickening or microaneurysms within one disc
diameter of the fovea as indicators of DMO. Only one group
developed a DLA which also detected possible glaucoma and
referable AMD [42].

Ten studies used more than one camera type to take
colour fundus photographs for the validation datasets, whilst
the known input image resolutions used amongst the studies
were 299 x299 pixels [24, 32, 35, 37], 512x512 pixels
[38, 39, 42], and 779 x 779 pixels [33, 34]. The number of
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TaBLE 2: Potential sources of algorithm limitations present in the validation datasets of the 13+2 included studies. v/ =yes; X =no;

+=combination; } = exact number unspecified; § =unknown.

Reference
Public standard DMO >1 Imag‘e Number . Automate'd Image cher
. camera  resolution image quality ; disease
dataset grader detection . of fields curation .
number ype (pixels) assessment detection
Gulshan et al. [24] T 7-8 v v 299 x 299 1 X v X
Gulshan et al. [32] X 3+ v v 299 x 299 1 X v X
Krause et al. [33] X 6 v N 779 x 779 1 X v X
Ruamviboonsuk X 2-3 v v 779X 779 1 X v X
et al. [34]
Voets et al. [35] 4 ¥ X 4 299 x 299 1 X N X
Ramachandran
et al. [36] + 2+t X v § 1-3 X v X
Li et al. [37] T 1-5 N v 299 x 299 S X v X
Gargeya et al. [38] v ¥ X v 512x 512 S X v X
Abramoft et al.
4 3 v X N 1 X X X

(39]
Verbraak et al.
[40] X >2 X X N 2 T 4 X
ﬁkﬁamoff et al. « ; x x s ) v v «
Ting et al. [42] X k3 4 v 512 x 512 N X X v
Bellemo et al. [43] X 2 v X 512 x 512 1 X v X
Rogers et al. [44] T >2 v v N 1 X v X
Bhaskaranand Y o) x Y s 3 « Y x
et al. [45]

fields refers to how many different areas of centration were
obtained of the retina in the fundus photographs. Only two
studies acquired three fields in a subset of images used for
validation [36, 45].

Automated image quality assessment refers to the au-
tomatic determination of whether the fundus photographs
taken are of adequate quality for grading by a DLA. This was
only undertaken by Abramoff et al. [39]. Verbraak et al. [40]
also initiated automated image quality assessment but only
after manual assessment of the validation dataset images.
Image curation is the removal of poor quality or ungradable
images from datasets. Only two studies did not curate the
validation datasets [42, 46].

Sensitivity, specificity, and AUC measures of the in-
cluded DLAs are shown in Table 3. As different target
conditions and DR grading scales were used, it is difficult to
directly compare the included studies. For example, 11
studies defined rDR as having moderate or worse DR, with
some including DMO, whereas others used a more severe
definition of rDR as preproliferative or worse DR, DMO, or
both. Additionally, one study did not use rDR as a target
condition, detecting only the absence or presence of DR.

4. Discussion

Despite different methods of DLA development, image
datasets, and reference standards, a comparison of the in-
cluded studies is still valuable as it serves to highlight areas
that warrant further investigation and improvement. By
considering the characteristics of the validation datasets
used in the 15 studies, we have identified a number of the

current barriers to the clinical implementation of DLAs.
These can be categorised into four broad areas, namely, lack
of generalizability, limited scope, data protection, and data
sovereignty issues. It should be noted though that none of
the studies we reviewed herein mentioned intellectual
property or privacy issues in any significant way and it is
hoped that this article will encourage further discussion of
these issues.

One of the key considerations when reviewing the utility
of any DLA is to understand its generalizability, as this will
determine whether it is suited to the task that it is intended
for. Briefly, the generalizability of DLA can be limited by
algorithmic bias or by having a scope that does not serve or
only incompletely serves those patients with whom it is used.
Algorithmic bias is known to be a significant issue in DLA
generalizability and subsequent clinical implementation
[22,47]. One recent example of bias has been identified in Al
facial recognition systems, where the error rate of gender
misclassification in darker-skinned females was 34.7%,
compared to 0.8% in lighter-skinned males [48]. Conse-
quently, in order to understand any bias inherent in a DR
screening Al, it will be necessary to review whom the DLA
was trained upon. A good Al should have access to a large
dataset of relevant images. This should include sufficient
examples of each class, diseased/nondiseased, etc. This can
be challenging to achieve in medicine, where cases of rare
diseases or outcomes are, by definition, rare. Whilst some
biases may be obvious, others are more subtle and human
bias may, therefore, be inadvertently built into a DLA’s
decision making [49]. For example, the majority of DLAs
developed to date have relied on either private datasets and/
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TaBLE 3: Sensitivity, specificity, and AUC validation results of the 15 included studies. Differences in target condition and grading scales
made direct comparisons of validation results difficult. AUC=area under the receiver operating characteristic curve; CI=confidence
interval; DMO =diabetic macular oedema; DR=diabetic retinopathy; ETDRS=Early Treatment Diabetic Retinopathy Study;
ICDR = International Clinical Diabetic Retinopathy Disease Severity Scale; NHS =English National Health Service; NZ MoH =New

Zealand Ministry of Health.

% (95% CI)

Sensitivity Specificity  AUC (95% CI) Target condition DR grading scale
97.5 93.4 Moderate or worse DR, referable
Gulshan et al. [24] (95.8-98.7)  (92.8-94.0) - DMO, or both ICDR
92.1 95.2
Gulshan et al. [32] (90.1-93.8) (94.2-96.1) 0.980 Moderate or worse DR ICDR
Krause et al. [33] 97.1 92.3 0.986 Moderate or worse DR ICDR
Ruamviboonsuk et al. 96.8 95.6 0.987
[34] (93.9-100)  (98.3-96.8)  (0.977-0.995) Moderate or worse DR ICDR
Voets et al. [35] 90.6 84.7 © 927.9—%1956) Moderate or worse DR ICDR
0.980 Moderate or worse DR, or exudates ICDR and NZ MoH
Ramachandran et al. [36] 96.0 200 (0.973-0.986) in 1 disc diameter of the fovea guidelines
. Preproliferative or worse DR, NHS diabetic eye
Lietal [37] 97:0 L4 0-989 DMO, or both screening guidelines
Gargeya et al. [38] 93.0 87.0 0.940 No DR or any DR —
. 96.8 87.0 0.980 Moderate or worse DR, DMO, or
Abramoff et al. [39] (93.3-98.8)  (84.2-89.4)  (0.968-0.992) both ICDR
Verbraak et al. [40] (66 759_;17 9) 92 913134 9) — More than mild DR ICDR
Abramoff et al. [41] 87.2 207 — More than mild, or DMO, or both ETDRS
: (81.8-912)  (88.3-92.7) ’ ’
. 98.9 92.2 0.983 Moderate or worse DR, DMO, and/
Ting et al. [42] (97.5-99.6)  (89.5-94.3)  (0.972-0.991) or ungradable image ICDR
92.3 89.0 0.973 Moderate or worse DR, DMO, and/
Bellemo et al. [43] (901-941)  (87.9-90.3)  (0.969-0.978) or ungradable image ICDR
0, 0 0 0,
93.4% (95%  94.2% (95% 98.5% (95% Referable DR (RDR) and Scottish DR grading
Rogers et al. [44] CL CL CI: 97.8-99.2) roliferative DR (PDR) scheme
90.8-95.8)  91.0-97.2) T P
91.3% (95%  91.1% (95% 0.965 (95% American academy of
Bhaskaranand et al. [45]  CI: 90.9%- CI: 90.9%- CIL: Severe NPDR, proliferative DR ophthalmolo Y
91.7%) 91.3%) 0.963-0.966) p gy

or used datasets that are dominated by a single ethnicity for
their training and validation. The AI thus derived may
deliver excellent health outcomes for those in the socio-
economic class or ethnic group that the Al was trained on
but will perform less well on all others. Adopting the wrong
AT may therefore worsen, not improve, existing health in-
equalities. Diversification of training datasets and validation
of DLAs using data independent of the training dataset are
crucial measures to both reduce and evaluate bias [50]. Thus,
uncovering bias requires developers to fully disclose the
demographics of those it is trained and validated on.
Publishing the demographics of the training and validation
datasets is, therefore, crucial to understanding the gener-
alizability of the DLA. Our review reveals that most of the
major studies published thus far have used relatively small
private datasets for the validation of the DLAs. Moreover, of
these, only two published significant demographic infor-
mation [42, 46]. Clearly, this needs to be addressed in further
studies.

Another bias inherent within any algorithm is the in-
tegrity of the underlying “ground truth” and how this was

derived. Across the studies included in this review, there was
great diversity in the number and experience of the graders
used to determine the reference standard of the validation
datasets. Additionally, each study followed a different
protocol to generate its reference standard. Arguably, when
establishing “ground truth,” a majority vote may not be
sufficiently rigorous. Instead, a live adjudicated consensus of
several retinal specialists should be incorporated into future
studies involving DLAs to improve algorithm accuracy and,
subsequently, patient outcomes. Although live adjudication
involves greater resources at the outset of training, only a
small proportion of images may need to be subject to this
[33]. This was demonstrated by Ruamviboonsuk et al. [34],
where expert graders only adjudicated a subset of images
that the algorithm and regional graders disagreed on.
Further investigation into establishing a method of adju-
dication that is time and resource-efficient and yields im-
proved algorithm performance is needed.

Defining the scope within which the DLA has been
trained and validated is clearly also important, as this will
have a direct impact on its generalizability. Most established
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DR screening services have developed a granular grading
system for diabetic retinopathy, with varying scales across
the world. Almost all studies reviewed in this analysis have
simplified the various DR grades by combining them into
fewer classifications: mild or nonreferable DR versus
moderate or worse DR or “referable” DR. However, less
granular classifications fail to adequately capture the dif-
ferent risk profiles of DR progression. Of the included
studies, only Krause et al. [33] developed and provided
results for a DLA, which classified fundus photographs into
the five-point ICDR grading scale. A DLA that can gradeto a
more exacting grading system is valuable, as each DR se-
verity level may indicate different management and moni-
toring pathways depending on regional guidelines and the
population involved [51, 52]. However, granular DR clas-
sifications in DLAs are more difficult to achieve because, in
many datasets, there is a relative paucity of images with more
severe and high-risk DR due to the lower prevalence of these
grades amongst people with diabetes undergoing screening
[53].

Currently, many of the DLAs reviewed do not include
diabetic macular oedema (DMO) as a separate entity. DMO
is a significant cause of visual impairment in individuals with
diabetes [54], and within a standard DR screening pro-
gramme, both retinopathy and maculopathy need to be
detected and graded [55]. Arguably, a DLA designed to be
deployed as a tool to deliver DR screening must, therefore,
be trained to grade both, and those DLAs which do not
detect DMO as a separate entity may result in underreferral
of patients with suboptimal patient outcomes. Finally, many
of the DLAs published thus far have been trained to read
only a single foveal centred image, with many being exposed
to a single manufacturer’s camera system. Currently, most
DR screening programs, such as the English and the New
Zealand National Diabetic Eye Screening Programmes, re-
quire 2 image fundus photographs of two 45 degree fields,
one fovea centred and one optic disc centred [55]. A DLA
that only analyses single field, fovea centred, fundus pho-
tographs would not be implementable in this screening
setting.

Until recently, it was considered sufficient to simply publish
the results of your AI by way of a receiver operator curve, with
no explanation as to how the DLA derived this result. This is a
critically important issue because what “all” the Al is doing
during training is making associations. It is therefore important
to be able to assess whether the associations it is making are
correct or even relevant. The lack of transparency as to how an
Al comes to its decisions is called the “black box phenomenon,”
and arguably, if a DLA cannot be understood, how can one
assess its reliability and justify its results to patients? This issue
can be addressed by the use of attention maps, which highlight
which areas within the image the DLA is focusing on when
making its decision. With one or two exceptions, most DLAs
published thus far have not published such maps. Given that
almost any software-based system can be vulnerable in some
way, being able to explain black boxes may also be necessary
from a debugging perspective.

On a practical level, one aspect which will limit the scope
of DR DLA clinical implementation has been the lack of

automated image quality assessment or the need for images
to be curated manually before being presented to the DLA.
Arguably, if manual image quality assessment by profes-
sionals is needed prior to an Al inference, the scope of Al
implementation is then limited to health centres and pro-
viders with such resources and severely reduces the practical
utility of the AI Furthermore, curating images prior to
validation of the DLA will likely artificially improve the
sensitivity and specificity measures in the test environment,
whilst reducing its subsequent utility in a real-world setting.

Although matters such as ethics and intellectual property
rights are beyond the scope of this review, a brief discussion
is warranted, as concerns around the intellectual property
have already been raised [17, 56]. It is also important to
recognise the lack of discussion of intellectual property is-
sues in the studies reviewed herein and the need for future
work to fill this gap. For instance, clinicians and developers
should consider whether the DLA they are using or the
software related to it is patentable. They should also consider
who has ownership of the algorithm and who owns patient
data. In relation to patient rights with respect to their data
and medical records, there may be overlap with data pro-
tection law. Clinicians will therefore need to consider how
they can ensure that patients are informed about the data
held about them. Clinicians should also have systems in
place to ensure that patient records are kept up to date.
Developers should also consider whether the tool they are
developing could be treated as a medical device, and if this is
the case, they will also need to comply with the frameworks
regulating medical devices.

These considerations become more important as there is
new evidence that “graph databases” can offer an even higher
level of accuracy in matching patient’s needs and healthcare
delivery, by combining many different datasets [57]. Graph
databases are a technology that is currently used by social
media organizations. It is increasingly believed that data-
driven approaches can help reduce the current healthcare
expenditure [58]. To minimize redundancy and dependency,
healthcare data are typically stored and managed using their
“normalized” forms [59]. Those normalized tables are later
either restructured or “denormalized” for data analytics [60].
By aggregating these forms, a graph database can handle a
wide range of graph queries even with big data, whilst re-
vealing many more hidden data about the patient.

Hence, procedures for obtaining informed consent from
patients in light of possible reidentification risks and privacy
breaches need to be established [61, 62]. It may be helpful for
clinicians and developers working with DLA to refer to other
electronic consent studies, such as the Dynamic Consent
project [63, 64]. Clinicians and developers working in this
space also need guidance on how to ensure compliance with
both data protection laws (such as the General Data Pro-
tection Regulation (GDPR) [65]) and data security re-
quirements. As many countries are currently in the process
of reforming their privacy laws in order to align more with
the GDPR, privacy and data protection law are currently in a
state of flux, and for those utilising data from several
countries, adhering to higher data protection standards to
begin with may assist in limiting risks to both patients and



organisations in the event of a data breach. Consideration of
creating standards for best practices along with other codes
of practice could prove useful tools here. Existing privacy
and data protection regulators may be able to contribute to
this development. In New Zealand, the Office of the New
Zealand Privacy Commissioner has previously developed a
Health Information Privacy Code [66], which has recently
been updated (Health Information Privacy Code 2020:
https://privacy.org.nz/privacy-act-2020/codes-of-practice/
hipc2020/).

The issue of establishing where liability lies, when a DLA
makes an error resulting in misdiagnosis or poor patient
outcomes, must also be addressed [67]. The development of
medico-legal governance frameworks should precede the
implementation of DLAs, with some suggesting a code of
conduct upholding the principles of the Hippocratic Oath
[62, 68]. Specifically, in considering the development of legal
governance frameworks in line with the literature to date,
attention should be paid to the following principles:
transparency, trust, justice, fairness, equity, nonmaleficence,
beneficence, responsibility, accountability, respect for au-
tonomy, sustainability, dignity, and solidarity [69].

Notably, some of the issues mentioned above may need
to be addressed in quite distinct ways depending on where
the DLA is being developed and deployed. In countries with
indigenous populations and other vulnerable groups, DLA
developers and clinicians implementing them will need to
take account of the specific issues and concerns of these
communities [46, 61, 70]. This may necessitate a more
cautious approach that gives greater weight to issues of
equity, dignity, and social justice, as well as taking account of
Indigenous Data Sovereignty [71]. Essentially, the idea of
data sovereignty for indigenous peoples can be viewed as
referring “to the proper locus of authority over the man-
agement of data about indigenous peoples, their territories
and ways of life” [71-74].

As our research is conducted in New Zealand, consid-
eration of the Maori perspective in New Zealand is vital. The
Te Mana Raraunga Maori Data Sovereignty Network has
developed a Charter, which researchers could refer to as an
example of one indigenous perspective on data sovereignty.
According to the Charter “Data is a living taonga [treasure]
and is of strategic value to Maori” and “Maori data is subject
to the rights articulated in the Treaty of Waitangi and the
UN’s Declaration on the Rights of Indigenous Peoples, to
which Aotearoa New Zealand is a signatory.” [75].

Te Mana Raraunga’s Principles include authority, rela-
tionships, obligations, collective benefit, reciprocity, and
guardianship. Applying these principles to DLA screening to
Maori would mean that they need to be given a voice in how
data relating to their community is used and also how these
services are offered to their community.

In the New Zealand context, as well as Te Mana Rar-
aunga, there has also been previous work with the Maori
community to develop guidelines for health research. The
Maori Health Committee, which is part of the New Zealand
Health Research Council, has developed general guidelines
for health research involving Maori [76]. Hudson et al. have
also developed guidelines for biobanks that handle Maori
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samples [77]. Both sets of guidelines could serve as examples
of the type of work needed where other clinicians and de-
velopers want to work with other indigenous peoples.
Beaton et al. [78] also provide useful insight into engaging
Maori and taking account of the community’s ethical
concerns in medical research. Researchers in diabetic reti-
nopathy should think about how they can include Maori and
other indigenous groups in an ongoing dialogue in relation
to their participation in screening.

Depending on where developers and clinicians are based,
they will therefore need to consider how the use of DLA
complies with the relevant data protection laws. There is
then a need to consider how best to approach these issues
prior to wide-scale clinical implementation of a DLA for DR,
with the intention of both avoiding harm and enhancing
patient trust. It may be useful to utilise focus groups in this
context, a move that could provide insight into patients’
views in this context. Including patients’ voices in this space
would also help to minimise harm and ensure that respect
for dignity and autonomy are upheld.

5. Conclusion

In this systematic review, predetermined selection criteria
were applied to include high-quality studies. The validation
results of 15 studies were analysed to highlight possible
barriers currently hindering DLA implementation. We
categorised these under lack of generalizability, limited
screening scope, data protection, and data sovereignty is-
sues. We do hope that future work will consider the legal and
ethical issues raised by DLA in greater depth. There is also a
real need to develop the governance framework for DLA
before its widespread deployment.

An ideal DLA for DR screening should be camera-,
clinic-, and clinician-agnostic, whilst being validated on the
local patient demographics. Furthermore, it should include
automatic image quality assessment, capable of using unc-
urated data for granular grading of retinopathy and mac-
ulopathy. Finally, this DLA must comply with the local
governing body’s requirements for data sovereignty, storage,
privacy, and reporting.

A good Al then, is one that has been trained and val-
idated on large datasets that represent the population in
which it is deployed. It is one that reflects the cultural values
of the jurisdiction where it is used in and it is one that will
not further exacerbate existing health inequalities. In-
creasingly, leading Al scientists are now of the opinion that
“Decisions about people should be made by people; Al
should be considered a tool to assist human decision
making, not its replacement” [79]. Thus, at least for now, it is
arguably best to consider DLAs as clinical decision support
tools that will aid clinicians and health providers to achieve
the best health outcomes for their patients. As such the most
effective use of such systems may be to develop new DR
DLAs that have a very high negative predictive value to aid
the rapid identification of those patients, who are the vast
majority, without the disease. This would leave the greatly
unburdened human grading team with the task of only
needing to assess the small minority with the disease.
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