
Insights into WebAssembly: Compilation Performance and
Shared Code Caching in Node.js

Tobias Nießen
Faculty of Computer Science
University of New Brunswick

tniessen@unb.ca

Michael Dawson
IBM Runtime Technologies

IBM Canada
Michael_Dawson@ca.ibm.com

Panos Patros
Software Engineering
University of Waikato

panos.patros@waikato.ac.nz

Kenneth B. Kent
Faculty of Computer Science
University of New Brunswick

ken@unb.ca

ABSTRACT
Alongside JavaScript, V8 and Node.js have become essential com-
ponents of contemporary web and cloud applications. With the
addition of WebAssembly to the web, developers finally have a fast
platform for performance-critical code. However, this addition also
introduces new challenges to client and server applications. New
application architectures, such as serverless computing, require
instantaneous performance without long startup times. In this pa-
per, we investigate the performance of WebAssembly compilation
in V8 and Node.js, and present the design and implementation of
a multi-process shared code cache for Node.js applications. We
demonstrate how such a cache can significantly increase applica-
tion performance, and reduce application startup time, CPU usage,
and memory footprint.

CCS CONCEPTS
• Software and its engineering → Compilers; Software per-
formance; • Computer systems organization→ Cloud comput-
ing.

KEYWORDS
WebAssembly, compiler, code cache, Node.js, V8, JavaScript
ACM Reference Format:
Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent. 2020.
Insights into WebAssembly: Compilation Performance and Shared Code
Caching in Node.js. In Proceedings of 30th Annual International Conference
on Computer Science and Software Engineering (CASCON’20). ACM, New
York, NY, USA, 10 pages.

1 INTRODUCTION
WebAssembly is a new hardware abstraction that aims to be faster
than interpreted languages without sacrificing portability or secu-
rity. Conceptually, WebAssembly is a virtual machine and binary-
code format specification for a stack machine with separate, linearly
addressable memory. However, unlike many virtual machines for
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

high-level languages, the WebAssembly instruction set is closely re-
lated to actual instruction sets of modern processors, since the initial
WebAssembly specification does not contain high-level concepts
such as objects or garbage collection [8]. Because of the similarity of
the WebAssembly instruction set to physical processor instruction
sets, many existing “low-level” languages can already be compiled
to WebAssembly, including C, C++, and Rust.

WebAssembly also features an interesting combination of secu-
rity properties. By design, WebAssembly can only interact with its
host environment through an application-specific interface. There
is no built-in concept of system calls, but they can be implemented
through explicitly imported functions. This allows the host to mon-
itor and restrict all interaction between WebAssembly code and
the host environment. Another important aspect is the concept
of linear memory: Each WebAssembly instance can access mem-
ory through linear memory, a consecutive virtual address range
that always begins at address zero. The host environment needs
to translate virtual memory addresses into physical addresses on
the host system, and ensure that virtual addresses do not exceed
the allowed address range. On modern hardware, this can be imple-
mented using the Memory Management Unit (MMU) and hardware
memory protection features, leading to minimal overhead while
allowing direct memory access to linear memory and preventing
access to other memory segments of the host system [8]. Combined,
these properties allow running the WebAssembly code both with
full access to the real system, and in a completely isolated sandbox,
without any changes to the code itself.

These properties make WebAssembly an attractive platform for
performance-critical portable code, especially in web applications.
However, WebAssembly makes no inherent assumptions about its
host environment, and can be embedded in other contexts such as
Node.js, a framework built on top of the JavaScript engine V8. Not
only does Node.js share many technological aspects, such as the
programming language JavaScript, with web applications, but its
performance and portability goals align well with those of Web-
Assembly. Sandboxing, platform-independence, and high perfor-
mance are especially relevant in cloud-based application backends,
the primary domain of Node.js.

However, one hindrance remains: Because WebAssembly code is
tailored towards a conceptual machine, it can either be interpreted
on the host machine, or first be compiled into code for the actual
host architecture. As we will see below, interpretation leads to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/359940015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

inadequate performance. At the same time, compilation of large
WebAssembly modules can lead to considerable delays during the
application’s startup phase.

Node.js is often used in “serverless computing:” Instead of keep-
ing a number of servers running at all times, the provider allocates
resources dynamically with aminimal scope. For example, Function-
as-a-Service (FAAS), sometimes referred to as “serverless functions,”
is a deployment model in which the provider only allocates enough
resources for a single function to be executed for each request, and
no internal state is preserved between requests [2]. In this scenario,
it is crucial for the function to be executed quickly in order to
produce the desired response to an incoming request with mini-
mal latency, making it unfeasible to compile large WebAssembly
modules on each request.

In this paper, we analyze the performance of V8’s WebAssembly
compilers. Sections 2 and 3 provide an overview of background
and related work. We analyze the performance of code generated
by V8 in Section 4. In Section 5, we investigate the performance
of V8’s WebAssembly compilers themselves, and the performance
benefits of caching compiled code. Finally, in Section 6, we present
and evaluate the design and implementation of a multi-process
shared code cache for WebAssembly code in Node.js applications.

2 BACKGROUND
With the addition of WebAssembly to Node.js, there are three kinds
of code that are supported: JavaScript, native addons, and Web-
Assembly. While JavaScript code and WebAssembly are interpreted
and/or compiled by V8 (see Section 4), native addons behave like
shared libraries and allow embedding “native” code, e.g., compiled C
or C++ code. UnlikeWebAssembly, native addons have direct access
to the underlying system and its resources (file systems, network
interfaces, etc.). While this might be a desired or even required
feature for some use cases, it might be a security risk in others
[7]. Additionally, native addons usually need to be compiled on
the target platform, while WebAssembly is portable and agnostic
of the system architecture. Most existing research around Web-
Assembly focuses on performance comparisons between JavaScript,
WebAssembly, and native code.

Haas et al. described the motivation behind WebAssembly, its
design goals, code execution and validation [8]. The authors used
the PolyBench/C benchmark [23] to compare the performance of
WebAssembly to that of native code and asm.js [12], a subset of
JavaScript designed to be used as a compilation target for C code,
which could then be executed by a JavaScript runtime. They found
that WebAssembly was 33.7% faster on average than asm.js, and
that the execution time of WebAssembly was less than 150% of the
native execution time for 20 out of 24 benchmarks. It is important
to note that V8 only implemented the TurboFan compiler [25] at
that time, and did not use the Liftoff compiler [10].

Herrera et al. used the Ostrich benchmark suite [16] to compare
the performance of native code, WebAssembly, and JavaScript. The
benchmark performs numerical computations that are deemed rel-
evant for scientific computations, such as machine learning. While
they also found WebAssembly in Node.js to be slower than native
code, WebAssembly consistently outperformed JavaScript in all
tested web browsers and Node.js [13, 14].

Malle et al. conducted experiments comparing WebAssembly
to JavaScript, asm.js, and native code in the context of artificial
intelligence algorithms [18]. The results are in line with the results
reported by Haas et al. [8] and Herrera et al. [13, 14], and again show
that WebAssembly is faster than JavaScript, but slower than native
code. The authors suggest that future additions to WebAssembly
such as SIMD instructions will likely reduce the difference between
WebAssembly and native code.

Hall et al. investigated WebAssembly as a platform for server-
less applications. They came to the conclusion that the security
properties of WebAssembly allow isolation similar to virtualization
via containers, and that, while WebAssembly generally did not out-
perform native code, containers often took longer to start than the
respective WebAssembly implementations [9].

Matsuo et al. suggested using WebAssembly in browser-based
volunteer computing. They found WebAssembly outperformed
JavaScript for long-running tasks, but the overhead of compiling
and optimizing WebAssembly before being able to run it caused
performance gains to disappear for tasks with short durations [19].

Jangda et al. exposed performance flaws of WebAssembly im-
plementations in web browsers [15]. They found that, on average,
WebAssembly code in the V8-based web browser Chrome is 55%
slower than native code. While comparing code generated by V8 to
native code generated by a C compiler, the authors observed that V8
produces more instructions. This leads to more CPU cycles required
to execute the code and more cache misses in the processor’s L1
instruction cache. Code generated by V8 also suffers from increased
register pressure due to sub-optimal register allocations and the fact
that V8 reserves some registers for memory management. Finally,
the WebAssembly specification mandates certain safety checks at
runtime, which also incur a performance cost. However, despite
these problems, the authors also showed that WebAssembly was
54% faster than asm.js in the same browser.

The multitude of publications highlighting the performance ben-
efits of WebAssembly over JavaScript has inspired efforts to sim-
plify the integration of WebAssembly into existing JavaScript ap-
plications. For example, Reiser et al. proposed a cross-compilation
method from JavaScript toWebAssembly that resulted in significant
speedups of computationally intensive algorithms [24].

3 RELATEDWORK
The idea of caching compiled code beyond single processes is not
new, and has been implemented for other languages.

Bhattacharya et al. discussed improvements for the shared class
cache (SCC) used by the J9 Java virtual machine. While its primary
purpose is to reduce memory usage by sharing required class files,
the SCC also contains compiled code, reducing application startup
times significantly [3, 11].

Patros et al. invented a mechanism to reuse compilation results
for Platform as a Service (PaaS) clouds via Dynamically Compiled
Artifact Sharing (DCAS), with a focus on the Java SCC [6, 21].

Park et al. proposed a method to reuse code generated by an
optimizing JavaScript just-in-time (JIT) compiler, allowing ahead-
of-time (AOT) compilation based on previous compilations of the
same code. Their benchmarks demonstrated significant speedups



Insights into WebAssembly: Compilation Performance and Shared Code Caching in Node.js CASCON’20, November 10–13, 2020, Toronto, Canada

in JavaScript application performance [20]. The authors also high-
lighted the need for such technologies due to the increasing code
size of web applications.

Haas et al. discuss two ways to improve compilation and startup
times for WebAssembly in web browsers [8]. According to their
research, parallel compilation using multiple threads leads to com-
pilation times that are 80% lower than those of single-threaded
compilation. V8 already implements parallel compilation by as-
signing individual WebAssembly functions to separate compilation
threads. The authors also suggest that developers cache compiled
WebAssembly modules in browsers using client-side IndexedDB
databases [1]. However, IndexedDB is not available in Node.js,
and as of 2020, support for WebAssembly modules in IndexedDB
databases has been removed from V8, making it impossible for
developers to explicitly cache compiled WebAssembly modules.
Instead, web browsers are encouraged to implement implicit code
caching as part of streaming WebAssembly compilation [4], which
is not available in Node.js.

4 COMPILATION AT RUNTIME
The compiler infrastructure within V8 has changed significantly in
the last few years. Even for the relatively new WebAssembly lan-
guage, V8 implements a complex combination of compilation proce-
dures for WebAssembly. The basic components are a WebAssembly
interpreter, the baseline compiler Liftoff [10], and the optimizing
compiler TurboFan, that V8 also uses to compile JavaScript [25, 26].

Since JavaScript code itself does not contain static type informa-
tion, it is difficult to compile it directly [20]. Due to this difficulty, V8
begins JavaScript execution using the Ignition interpreter, and only
when the interpreter has identified “hot” code sections, the Turbo-
Fan compiler is used to optimize and compile these JavaScript func-
tions using type information gathered by Ignition. WebAssembly,
on the other hand, is not a high-level language, and not dynamically
typed, and it is, therefore, not necessary to collect dynamic type
information before compiling WebAssembly code [10].

The TurboFan compiler optimizes and compiles WebAssembly
through a complicated pipeline that first decodes WebAssembly
function bodies and constructs graph representations. These graph
representations are in Static Single Assignment form (SSA) and use
the “Sea of Nodes” concept introduced by Click in his dissertation
[5]. TurboFan then applies optimizations to the SSA, selects ap-
propriate instructions for the target architecture, allocates CPU
registers, and finally generates code.

The Liftoff compiler, on the other hand, was designed to be fast
at the cost of generating less optimized code. Even though it is
newer than the TurboFan compiler, it is not meant as a replacement,
but as the initial compilation stage to quickly produce a usable
module. Like TurboFan, Liftoff begins by decoding WebAssembly
function bodies, but then immediately begins code generation in a
single pass, without constructing an SSA graph representation or
optimizing the code [10].

4.1 WebAssembly JavaScript Interface
From an application developer’s perspective, JavaScript applications
can compile WebAssembly modules in two ways. The first is to
call the constructor of the WebAssembly.Module class, which will

synchronously compile the code, meaning that it will block the
calling thread for the duration of the compilation. The second is
the asynchronous function WebAssembly.compile, which will not
block the calling thread.

By default, WebAssembly.Module uses Liftoff to compile the
code, which is the faster compiler, and thus causes the smallest
delay in the calling thread. V8 compiles the same module again, in
a set of background threads, using the optimizing TurboFan com-
piler. When the optimized compilation result for a WebAssembly
function is ready, the next invocation of the function uses the code
produced by the TurboFan compiler instead of the output of Liftoff.
This process is called “tiering up”, and is a tradeoff between startup
time and code generation quality [10].

WebAssembly.compile, on the other hand, is an asynchronous
function and, therefore, not as concerned with blocking the calling
thread. Its default behavior is to use the TurboFan compiler, skip-
ping the baseline compilation step. This causes the compilation to
generally take longer than synchronous compilation would, but
produces the optimized result directly.

4.2 Performance of generated code
In order to compare the performance of code generated by Liftoff
to code generated by TurboFan, we compiled the PolyBench/C 4.2
benchmarks [23] to WebAssembly with compiler optimization and
Link Time Optimization (LTO) enabled. These benchmarks are
scientific computing kernels andwere already used byHaas et al. [8]
and Jangda et al. [15] to compare the performance of WebAssembly
to the performance of native code execution. Instead, we use the
benchmarks to compare the performance of code generated by
Liftoff to the performance of code generated by TurboFan.

We conducted all experiments on Ubuntu 19.04 running on an
Intel® Core™ i7-8700 processor (base frequency 3.20GHz, turbo
frequency 4.60GHz, 6 cores, 12 threads) with 32GB of memory (2666
MHz). We used Node.js v14.2.0, the most recent Node.js version at
the time of writing, which is based on V8 version 8.1.307.31-node.33.

We compiled and ran each of the 30 PolyBench/C benchmarks
one hundred times with only Liftoff enabled, and another one hun-
dred times with only TurboFan enabled. We measured the time it
took for the benchmarks to complete, which does not include their
respective compilation times. Figure 1 shows the average speedup
of the code generated by TurboFan with respect to the code gen-
erated by Liftoff for each benchmark, with error bars indicating
the standard deviation. All benchmarks were faster when compiled
with TurboFan, the average speedup across all benchmarks is 2.0,
and the maximum speedup is 3.2.

We also ran all benchmarks using V8’s WebAssembly interpreter.
On average, the PolyBench/C benchmarks were 247 times slower
when interpreted than when compiled using TurboFan, and 115
times slower than when compiled using Liftoff. Sixteen of the 30
benchmarks were at least 200 times faster when compiled with Tur-
boFan than when interpreted. While interpretation allows running
WebAssembly code without prior compilation, its code execution
is too slow for use in real applications.

We can conclude that the optimized code generated by TurboFan
is indeed significantly faster than code generated by the baseline
compiler Liftoff, and that the code produced by both compilers is



CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

2m
m
3m
m adi ata

x
bic
g

cho
les
ky

cor
rel
ati
on

cov
ari
an
ce

der
ich
e

do
itg
en
du
rbi
n
fdt
d-2
d

flo
yd
-w
ars
ha
ll
gem

m
gem

ver

ges
um
mv

gra
ms
chm

idt

he
at-
3d

jac
ob
i-1
d

jac
ob
i-2
d

lud
cm
p lu mv

t

nu
ssi
no
v

sei
del
-2dsym

m
syr
2k syr

k
tris
olvtrm

m
0

0.5

1.5
2

2.5
3

1

PolyBench/C 4.2 benchmark

Sp
ee
du

p

Figure 1: Speedup of code generated by TurboFan with respect to Liftoff

much faster than V8’s WebAssembly interpreter. However, Poly-
Bench/C is not a good basis for testing the performance of the
compilers themselves, since the benchmarks are small and the Web-
Assemblymodules are structurally very similar. In the following, we
compare compilation times as well as CPU and memory footprint
of both compilers.

5 CODE CACHING
Due to portability and security concerns, WebAssembly was de-
signed to be compiled to the target architecture’s instruction set at
runtime. However, when running code from a trusted source on a
single architecture, or untrusted code within a container or sand-
box, these concerns become less relevant. Especially in scenarios
where a Node.js application is expected to be initialized quickly, for
example, when used as a command-line tool, as a desktop appli-
cation, or in serverless computing, performance might be a more
crucial factor. Here, usingWebAssembly modules by first compiling
them can cause visible delays.

5.1 Code extraction and insertion
Prior to designing a shared code cache, we need to find a way to
efficiently retrieve compiled code from V8, and later inject the same
code in a different V8 process.

While current versions of V8 provide such features for streaming
WebAssembly compilation, no usable interface exists for Node.js,
which only supports non-streaming WebAssembly compilation.
However, V8 has internal functions that allow serializing compiled
WebAssembly modules into byte sequences, and deserializing byte
sequences into compiled WebAssembly modules. We developed
an add-on for Node.js that exposes these internal V8 features to
Node.js applications: serialize returns a JavaScript ArrayBuffer
based on a given WebAssembly.Module, and deserialize creates
a WebAssembly.Module based on the WebAssembly module bytes
(referred to as “wire bytes” within V8) and the byte sequence gen-
erated by the serialize function.

This pair of functions is sufficient to extract code from a compiled
module, store it in a cache entry, and later use the cache entry to
obtain a usable module. This data flow is depicted in Figure 2.

V8 allows selectively disabling Liftoff and TurboFan. If a pro-
cess is started with only Liftoff enabled, V8 prevents inserting code

Wire Bytes

Compiler

Module

Serializer Cache Entry

Wire Bytes

Deserializer

Module

Figure 2: WebAssembly cache data flow: Cache entry cre-
ation (left) and cache entry retrieval (right)

generated by TurboFan (and vice versa). A proper cache lookup
therefore requires knowledge about the current process’s V8 con-
figuration. To achieve this, our Node.js add-on allows applications
to check relevant V8 flags.

In order to create realistic benchmarks, we extracted 115 Web-
Assembly modules from existing JavaScript applications, with mod-
ule sizes ranging from as little as 1068 bytes to 37.3 MiB. It would be
difficult to run the code represented by the WebAssembly modules
in the way intended by their creators, since each module performs
application-specific tasks and has certain requirements towards its
host environment. However, our experiment is focused on compil-
ing WebAssembly modules, which does not require running the
compiled modules.

The approach Park et al. [20] used to cache compiled JavaScript
code used cache entries that were much larger than the original
JavaScript files. Similarly, we observe that serialized compiled Web-
Assembly modules are often considerably larger than the original
WebAssembly files. Figure 3 shows the ratio of the serialized size to
the original size based on the WebAssembly modules we extracted
from existing applications, depending on which compiler was used
by V8. In the case of JavaScript, better performance was achieved
by caching optimized code in addition to intermediate bytecode, ef-
fectively increasing the size of cache entries [20]. For WebAssembly,



Insights into WebAssembly: Compilation Performance and Shared Code Caching in Node.js CASCON’20, November 10–13, 2020, Toronto, Canada

TurboFan Liftoff
0
1
2
3
4
5
6

Compiler

Si
ze

fa
ct
or

Figure 3: Ratio of serialized compilation result size to Web-
Assembly module size

it is sufficient to store the optimized compilation result (left side),
which is significantly smaller than the result of the non-optimizing
compiler Liftoff (right side), but still up to five times larger than the
original WebAssembly module.

5.2 Compiler performance
Most importantly, we need to compare the performance of both
compilers to the previously mentioned deserialization method. The
hypothesis is that deserializing cached code uses less resources
than compiling a WebAssembly module.

In order to test the hypothesis, wemeasured the real elapsed time
it takes to obtain a compiled, usable module from the WebAssembly
module bytes (“wire bytes”). To achieve comparable results, we
disabled tiering up (see Section 4.1), only enabled one compiler at a
time, and used the synchronous WebAssembly.Module constructor
for Liftoff and TurboFan. Additionally, we took the same measure-
ments for the previously described deserialization method. In this
case, the module had already been compiled and optimized by the
TurboFan compiler, and the serialized compiled module is available
in memory (in addition to the wire bytes).

Each measurement is taken in a separate process. For each such
process, we also record the CPU time of the process, that is, the
total duration that threads of the process were scheduled on any
of the CPU cores in user or system mode, and the peak physical
memory usage through the VmHWM statistic provided by the Linux
kernel. These metrics are equally if not more important than the
elapsed real time required to compile a module. Even under the
simplified assumption that CPU time and memory are the only
resource constraints of a process, both of these resources are finite,
and must be shared among all processes on the same system. While
a high CPU time to real elapsed time ratio is an indication of well-
designed parallelism, it also means that few concurrent instances of
the same process might already use all available CPU time, and any
additional instances could cause the performance of all processes to
degrade. For cloud applications, it is realistic to assume that more
than one process will be active on the same hardware at a time.

We recorded eachmeasurement for each of the 115WebAssembly
modules 100 times. The mean values of elapsed real time, CPU time,
and memory usage for each module are depicted in Figures 4, 5,
and 6, respectively.

As shown in Figure 4, all three methods generally take longer for
larger modules than for smaller ones. For legibility, Figures 4, 5, and
6 do not include errors bars. Instead, Figures 7, 8, and 9 show the
significance of improvements. For two variables with mean values
`1, `2 and standard deviations 𝜎1, 𝜎2, we define the significance
of the change as (`1 − `2)/(𝜎1 + 𝜎2). By convention, we call the
difference statistically significant if the significance is at least one.

By this definition, Liftoff was significantly faster than TurboFan
for 111 modules (96.5%), used significantly less CPU time for 98
modules (85.2%), and had a significantly smaller memory footprint
for 110 modules (95.7%).

When comparing deserialization to compilation using TurboFan,
we measured statistically significant compilation time improve-
ments for 112 modules (97.4%), CPU time improvements for 102
modules (88.7%), and memory usage improvements for 101 modules
(87.8%). For 111 modules (96.5%), the speedup was at least 2, and
for 77 modules (67.0%), the speedup was at least 20. Similarly, for
98 modules (85.2%), the CPU time was reduced by at least 50%, and
for 54 modules (47.0%), it was reduced by at least 90%.

Compared to compilation using Liftoff, we observed significant
compilation time improvements for 99 modules (86.1%), significant
CPU time improvements for 77 modules (67.0%), and significant
memory usage improvements for 41 modules (35.7%). For 69 mod-
ules (60.0%), the speedup was at least 2. The CPU time was reduced
by at least 50% for 64 modules (55.7%).

The only statistically significant regression is an increase in
memory usage for 39 modules (33.9%) when compared to Liftoff,
and for 6 modules (5.2%) when compared to TurboFan. In these
cases, however, the difference is small (less than 20%, see Figure 6).

Since the deserializer is synchronous, it is consistent to compare
it to synchronous WebAssembly compilation. However, we also
repeated this experiment with asynchronous WebAssembly compi-
lation, and found that asynchronous compilation was significantly
slower than synchronous compilation for 85 modules (73.9%) in
the case of TurboFan, and for 91 modules (79.1%) in the case of
Liftoff. For both compilers, this results in even larger differences
when compared to deserialization, and we therefore decided not to
present these results in detail.

We also repeated the experiment with deserialization of code
generated by Liftoff instead of optimized code produced TurboFan,
which leads to a larger serialized format (see Section 5.1). We found
that it also causes longer deserialization times, and no significant
improvements of real elapsed time, CPU time, or memory usage.

5.3 Module identification
The client needs to be able to identify each WebAssembly module
in order to look it up in a cache. Since the JavaScript WebAssembly
API is agnostic to the source of the WebAssembly module code, a
module can only be identified by its code, and no file path or URL
is available. Traditional information-theoretic algorithms, such as
CRC32C, and cryptographic hash functions, such as SHA-1, pro-
vide reliable and, in the case of hash functions, collision-resistant
identification methods. In scenarios where a hash collision could
result in a security problem, cryptographic hash functions must be
used for identification. However, these functions generally run in



CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

100

101

102

103

WebAssembly module size [bytes]

El
ap
se
d
re
al
tim

e
[m

s]

TurboFan
Liftoff
Deserialization

Figure 4: Compilation times by approach

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

102

103

104

WebAssembly module size [bytes]

Co
m
pi
la
tio

n
CP

U
tim

e
[m

s]

TurboFan
Liftoff
Deserialization

Figure 5: Compilation CPU times by approach

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
225

226

227

228

229

230

WebAssembly module size [bytes]

M
em

or
y
us
ag
e
[b
yt
es
]

TurboFan
Liftoff
Deserialization

Figure 6: Compilation memory usage by approach



Insights into WebAssembly: Compilation Performance and Shared Code Caching in Node.js CASCON’20, November 10–13, 2020, Toronto, Canada

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

10

100

1

WebAssembly module size [bytes]

D
iff
er
en
ce

(d
iv
id
ed

by
𝜎
1
+𝜎

2) Improvement over TurboFan
Improvement over Liftoff

Figure 7: Significance of compilation time improvements

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

10

100

1

WebAssembly module size [bytes]

D
iff
er
en
ce

(d
iv
id
ed

by
𝜎
1
+𝜎

2) Improvement over TurboFan
Improvement over Liftoff

Figure 8: Significance of compilation CPU time improvements

213 214 215 216 217 218 219 220 221 222 223 224

10

100

1

WebAssembly module size [bytes]

D
iff
er
en
ce

(d
iv
id
ed

by
𝜎
1
+𝜎

2) Improvement over TurboFan
Improvement over Liftoff

Figure 9: Significance of memory usage improvements



CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

211 214 217 220 223
103

104

105

106

107

WebAssembly module size [bytes]

Ti
m
e
[n
s]

CRC32C
SHA-1
fp16

Figure 10: Performance comparison between fp16, CRC32C,
and SHA-1 in Node.js

mq

wasm

Lx Lt

Tx Tt

Server

Compiler

Figure 11: Shared cache server architecture

Θ(𝑛), which is undesirable for large WebAssembly modules in situ-
ations where a collision would not result in a security problem, e.g.,
because access to the cache is restricted to a single client. For such
cases, we define the function family fp𝑟 for 𝑟 ≥ 2 as follows: Let
𝑏0, . . . , 𝑏𝑛−1 be the input byte sequence, with 𝑏𝑖 ∈ { 0, . . . , 28 − 1 }
for 0 ≤ 𝑖 < 𝑛. Let 𝑝 be a linear congruential generator with
𝑝 (0) = 𝑏 ⌊𝑛/2⌋ and 𝑝 (𝑖 + 1) = (𝑎 ∗ 𝑝 (𝑖) + 𝑐) mod 232. We chose
𝑎 = 1664525 and 𝑐 = 1013904223 as suggested by Knuth [17]. Let
the result be the 𝑟 byte vector 𝑓0, . . . , 𝑓𝑟−1 with 𝑓0 = ⌊𝑛/28⌋ mod 28,
𝑓1 = 𝑛 mod 28, and 𝑓2+𝑖 = 𝑏𝑝 (𝑖+1) mod 𝑛 . In other words, the re-
sult consists of the length 𝑛 modulo 216 and the module bytes at
𝑟 − 2 pseudo-random locations. Each such function fp𝑟 only re-
quires 32-bit integer arithmetic, can be implemented efficiently in
JavaScript, and runs in O(1). While the resulting “fingerprint” is
neither unique nor collision-resistant, it is sufficiently unlikely to
collide with another module’s fingerprint. Figure 10 shows a perfor-
mance comparison between fp16, CRC32C, and SHA-1 in Node.js,
based on running each function 100,000 times on each of the 115
WebAssembly modules. With a constant runtime of 4.0 `s, fp16 is
significantly faster than other identification methods.

6 SHARED CODE CACHE
With the previously discussed cache creation and retrieval method
from Section 5.1 and the performance benefits of code caching pre-
sented in Section 5.2, it is viable to construct a disk-based cache that
can be populated and used by individual processes. However, this
approach is troublesome for large application clusters: First, write

access to the code cache should be controlled strictly to prevent
malicious code injections, and it might be undesirable for all pro-
cesses that use WebAssembly to have permission to write compiled
code to the cache. Second, if a process uses Liftoff or tiering up to
improve its own startup time (see Sections 4 and 5.2), it might not
insert optimized code into the cache, but instead the output of the
baseline compiler. Third, a disk-based cache might reduce expected
speedups due to disk access times associated with potentially large
cache entries (see Section 5.1), which each new process might copy
from disk into memory.

6.1 Design and Implementation
To circumvent these problems, we designed and implemented a
novel approach to share compiled WebAssembly code between
Node.js processes. In the following, we will refer to the processes of
one or more Node.js applications as client processes. In this context,
a V8 configuration is a set of flags that affect V8’s internal behavior.
The cache implementation prevents loading incompatible cache
entries, and potentially maintains multiple cache entries for the
same WebAssembly module, but for different V8 configurations.
For example, Figure 11 includes a matrix of four configurations Lx,
Lt, Tx, and Tt, where the first letter indicates which is the fastest
enabled compiler (Liftoff or TurboFan), and the second indicates
whether the compiler is used exclusively, or if tiering up is enabled.

Client processes compile WebAssembly modules through a mod-
ified WebAssembly JavaScript Interface, which is compatible with
the one described in Section 4.1. The compilation procedure, given
a module represented by bytes 𝑏0, . . . , 𝑏𝑛−1, computes the module
identifier fp16 (𝑏0, . . . , 𝑏𝑛−1), and attempts to locate a cache entry
in a shared memory segment based on the computed module iden-
tifier and the current V8 configuration. If such an entry exists, the
compilaton procedure deserializes the cache entry to obtain a Web-
Assembly module instance without having to compile the module
bytes. If no such entry exists, the client process copies 𝑏0, . . . , 𝑏𝑛−1
into a new sharedmemory segment (wasm in Figure 11), and sends a
pointer to the new shared memory segment and the current V8 con-
figuration to an existing message queue (mq in Figure 11). Finally,
the client process falls back to V8’s original compilation procedure,
which, depending on the current configuration, uses Liftoff and/or
TurboFan to compile the code.

A separate server process is responsible for creating the message
queue mq. Upon receiving a pointer to a shared memory segment
wasm along with a valid V8 configuration, the server process starts
a new compiler process with parameters matching the received
V8 configuration. The compiler process loads the module bytes
𝑏0, . . . , 𝑏𝑛−1 from the sharedmemory segment, unlinks the segment,
and computes the module’s fingerprint fp16 (𝑏0, . . . , 𝑏𝑛−1). After
ensuring that no other compiler process is already compiling the
same module with the same V8 configuration, the process compiles
the module. If TurboFan has not been disabled in the given V8
configuration, the compiler process uses it to produce optimized
code. Only if TurboFan has been disabled, the compiler process uses
Liftoff, and therefore generates unoptimized code. Once compilation
finishes, the compiler process serializes the compiled WebAssembly
module, and writes the result to shared memory.



Insights into WebAssembly: Compilation Performance and Shared Code Caching in Node.js CASCON’20, November 10–13, 2020, Toronto, Canada

The modified WebAssembly JavaScript Interface was implement-
ed in JavaScript, except for the deserialization logic, which was
implemented in C++ due to the necessity to access internal V8
features, and communication with the message queue, which was
implemented in C++ and uses POSIX functions.

The server process code is written in C using POSIX functions
to access the message queue. The compiler processes execute Java-
Script code, and serialization logic written in C++. The actual com-
pilation procedures are an existing part of V8.

6.2 Evaluation
To evaluate our design and implementation, we consider two cases:

Cache miss: When a client process fails to locate a compiled
WebAssembly module in the shared cache, it not only needs to
compile the module itself, but also suffers from two additional
performance impairments. First, the client process needs to copy
the WebAssembly module bytes to a shared memory segment, and
notify the server process about the cache miss. Depending on the
module size, this can cause a short delay before compilation begins.
Second, while the client process compiles the module itself, the
server process will spawn a compiler process, which also compiles
the module, effectively increasing the system load, and potentially
increasing compilation times.

Cache hit: Upon successfully locating a compiled WebAssembly
module in the shared cache, the client process benefits from two
performance aspects. First, it does not need to compile the module,
which, on average, improves the time until the module is available,
and likely reduces CPU load and memory footprint (see Section 5.2).
According to the model proposed by Patros et al. [22], this also
reduces performance interference on co-located cloud tenants. Sec-
ond, if not forbidden by the process’s V8 configuration, the obtained
compiled code is already optimized, which would not be the case
with V8’s default tiering up behavior, or when using Liftoff. As we
have seen in Section 4.2, this can lead to improved execution times.

While we already know the impact of deserialization as com-
pared to compilation based on Section 5.2, we used PolyBench/C
(see Section 4.2) to create a set of artificial Node.js applications to
evaluate the performance impact of the shared cache. We measured
the real elapsed time it takes for each application to compile and
then execute its associated PolyBench/C benchmark. For this ex-
periment, we use the default V8 configuration, which enables both
Liftoff and TurboFan, and uses tiering up (see Section 4), and ran
each application 45 times.

Figure 12 shows the mean execution times for cache misses and
cache hits, with error bars corresponding to the standard deviation.
Since execution times between benchmarks vary tremendously,
all execution times were divided by the same measurement taken
without a cache in place. Similarly, the ratio between execution time
and compilation time varies greatly, therefore, we do not display
compilation and execution times in a stacked manner.

As expected, we see a performance regression for cache misses.
It is worth noting that the benchmarks with the largest (by per-
centage) performance regressions such as jacobi-1d are particularly
short-running, which means that the delay caused by copying the
module bytes to shared memory has a larger (by percentage) impact
on the total elapsed time.

We also observe performance improvements for almost all bench-
marks when a cache entry is found. The average speedup is 1.8, and
the maximum speedup is 3.0. We expect that different Node.js appli-
cations would see vastly different performance benefits, depending
on the WebAssembly modules in use.

Finally, most operating systems allow protecting shared memory
segments from unintended write access. It appears that such mea-
sures allow controlling read and write access to the shared code
cache sufficiently to prevent malicious code injections, for example,
by only giving write access to the compiler processes, and not to
client processes.

7 FUTUREWORK
A future direction for a shared code cache could be an extension to
a disk-based cache. While the system kernel might keep frequently
accessed cache entries in memory up to a certain size, large cache
entries might still have to be loaded from the disk, and could nega-
tively affect the cache performance. A balanced strategy might be
to only move modules from shared memory to disk when most of
the available memory is in use, and to prioritize frequently accessed
modules in memory.

While our shared cache implementation prevents duplicate com-
pilation on the server side, it does not prevent duplicate work
among client processes. The primary reason is that client processes
benefit from the shorter compilation times of tiering up, whereas
the server process is focused on producing optimized code at the
cost of longer compilation times. A future implementation could
reduce the amount of duplicate work between processes further.

It might also be worth considering data compression for cache
entries. Park et al. compressed cache entries in their JavaScript code
cache implementation, and successfully reduced the size of the code
cache with only minimal performance sacrifices [20]. However, as
long as cache entries are stored in shared memory, decompression
would require copying the decompressed data to a new memory
area on each invocation, which makes it unlikely to result in large
performance improvements. A disk-based cache solution could
potentially benefit from compression to reduce cache entry sizes
and therefore disk access times.

8 CONCLUSION
As we have seen in Section 5.2, compiling WebAssembly modules
at runtime can lead to a delay of multiple seconds during an ap-
plication’s startup phase, and can require vast amounts of CPU
time and physical memory. While Liftoff is much faster than the
optimizing compiler TurboFan, its generated code is significantly
slower than the code produced by TurboFan, but still much faster
than interpreting WebAssembly code without compiling it first.

We reduced module load times by caching compiled and op-
timized code for the target architecture, and observed large per-
formance benefits for many WebAssembly modules. Finally, in
Section 6, we extended the idea to a scalable multi-process shared
code cache, which provides an efficient way to load WebAssembly
modules in Node.js applications, without having to compile and op-
timize each module in each process. The smaller CPU and memory
footprint can reduce interference on co-located cloud tenants, and,
therefore, improve scalability [22].



CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

2m
m
3m
m adi ata

x
bic
g

cho
les
ky

cor
rel
ati
on

cov
ari
an
ce

der
ich
e

do
itg
en
du
rbi
n
fdt
d-2
d

flo
yd
-w
ars
ha
ll
gem

m
gem

ver

ges
um
mv

gra
ms
chm

idt

he
at-
3d

jac
ob
i-1
d

jac
ob
i-2
d lu
lud
cm
p

mv
t

nu
ssi
no
v

sei
del
-2dsym

m
syr
2k syr

k
tris
olvtrm

m
0

0.25
0.5
0.75

1.25
1.5
1.75

1

PolyBench/C 4.2 benchmark

Re
la
tiv

e
ex
ec
ut
io
n
tim

e Cache miss
Cache hit

Figure 12: Shared cache performance impact on PolyBench/C benchmarks

While WebAssembly is still an emerging technology, we expect
growing adoption over the next few years. These performance
improvements and reduced startup times presented in this paper
might allow widespread use of WebAssembly in serverless comput-
ing and other cloud configurations, without sacrificing the speed,
portability, and security of WebAssembly.

9 ACKNOWLEDGMENTS
This research was conducted within the Centre for Advanced Stud-
ies — Atlantic, Faculty of Computer Science, University of New
Brunswick. The authors are grateful for the colleagues and facilities
of CAS Atlantic in supporting our research. The authors would
like to acknowledge the funding support of the Natural Sciences
and Engineering Research Council of Canada (NSERC), 501197-
16. Furthermore, we would also like to thank the New Brunswick
Innovation Foundation for contributing to this project.

REFERENCES
[1] 2018. Indexed Database API 2.0. https://www.w3.org/TR/IndexedDB/
[2] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. 2017. Serverless Computing: Current Trends and Open
Problems. In Research Advances in Cloud Computing, Sanjay Chaudhary, Gaurav
Somani, and Rajkumar Buyya (Eds.). Springer Singapore, Singapore, 1–20.

[3] Devarghya Bhattacharya, Kenneth B. Kent, Eric Aubanel, Daniel Heidinga, Pe-
ter Shipton, and Aleksandar Micic. 2017. Improving the performance of JVM
startup using the shared class cache. In 2017 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM). IEEE, Victoria, BC.

[4] Bill Budge. 2019. Code caching for WebAssembly developers. https://v8.dev/
blog/wasm-code-caching

[5] Cliff Click and Keith D. Cooper. 1995. Combining analyses, combining optimiza-
tions. ACM Transactions on Programming Languages and Systems (TOPLAS) 17, 2
(March 1995), 181–196.

[6] Michael H. Dawson, Dayal D. Dilli, Kenneth B. Kent, Panagiotis Patros, and
Peter D. Shipton. 2019. Dynamically compiled artifact sharing on PaaS clouds.
Patent US 10,338,899 B2.

[7] Node.js Foundation. [n.d.]. C++ Addons. https://nodejs.org/api/addons.html
[8] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and Jf Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation - PLDI 2017.
ACM Press, Barcelona, Spain, 185–200.

[9] Adam Hall and Umakishore Ramachandran. 2019. An execution model for
serverless functions at the edge. In Proceedings of the International Conference on

Internet of Things Design and Implementation - IoTDI ’19. ACM Press, Montreal,
Quebec, Canada, 225–236.

[10] Clemens Hammacher. 2018. Liftoff: a new baseline compiler for WebAssembly in
V8. https://v8.dev/blog/liftoff

[11] Daniel Heidinga, Peter D. Shipton, Aleksandar Micic, Devarghya Bhattacharya,
and Kenneth B. Kent. 2020. Enhancing Virtual Machine Performance Using
Autonomics. Patent US 10,606,629 B2.

[12] David Herman, Luke Wagner, and Alon Zakai. 2014. asm.js. http://asmjs.org/
[13] David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren. 2018. Numerical

computing on the web: benchmarking for the future. In Proceedings of the 14th
ACM SIGPLAN International Symposium on Dynamic Languages - DLS 2018. ACM
Press, Boston, MA, USA, 88–100.

[14] David Herrera, Laurie Hendren, Hangfen Chen, and Erick Lavoie. 2018. Web-
Assembly and JavaScript Challenge: Numerical program performance using modern
browser technologies and devices. Technical Report SABLE-TR-2018-2. Sable Re-
search Group, School of Computer Science, McGill University, Montréal, Canada.

[15] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019. Not
So Fast: Analyzing the Performance of WebAssembly vs. Native Code. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 107–120.

[16] Faiz Khan, Vincent Foley-Bourgon, Sujay Kathrotia, and Erick Lavoie. 2014.
Ostrich Benchmark Suite. https://github.com/Sable/Ostrich

[17] Donald E. Knuth. 1981. The Art of Computer Programming, Volume II: Seminu-
merical Algorithms, 2nd Edition. Addison-Wesley.

[18] Bernd Malle, Nicola Giuliani, Peter Kieseberg, and Andreas Holzinger. 2018.
The Need for Speed of AI Applications: Performance Comparison of Native vs.
Browser-based Algorithm Implementations. arXiv:1802.03707 (Feb. 2018).

[19] Hiroyuki Matsuo, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto. 2019.
Madoop: Improving Browser-Based Volunteer Computing Based on Modern Web
Technologies. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, Hangzhou, China, 634–638.

[20] Hyukwoo Park, Sungkook Kim, Jung-Geun Park, and Soo-Mook Moon. 2018.
Reusing the Optimized Code for JavaScript Ahead-of-Time Compilation. ACM
Transactions on Architecture and Code Optimization 15, 4 (Dec. 2018), 1–20.

[21] Panagiotis Patros, Dayal Dilli, Kenneth B. Kent, and Michael Dawson. 2017.
Dynamically Compiled Artifact Sharing for Clouds. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, Honolulu, HI, USA, 290–300.

[22] Panagiotis Patros, Stephen A. MacKay, Kenneth B. Kent, and Michael Dawson.
2016. Investigating Resource Interference and Scaling on Multitenant PaaS
Clouds. In Proceedings of the 26th Annual International Conference on Computer
Science and Software Engineering (CASCON ’16). IBM Corp., USA, 166–177.

[23] Louis-Noel Pouchet and Tomofumi Yuki. 2016. PolyBench/C. https://web.cse.
ohio-state.edu/~pouchet.2/software/polybench/

[24] Micha Reiser and Luc Bläser. 2017. Accelerate JavaScript applications by cross-
compiling to WebAssembly. In Proceedings of the 9th ACM SIGPLAN International
Workshop on Virtual Machines and Intermediate Languages - VMIL 2017. ACM
Press, Vancouver, BC, Canada, 10–17.

[25] V8 Team. 2017. Launching Ignition and TurboFan. https://v8.dev/blog/launching-
ignition-and-turbofan

[26] Seth Thompson. 2016. Experimental support for WebAssembly in V8. https:
//v8.dev/blog/webassembly-experimental

https://www.w3.org/TR/IndexedDB/
https://v8.dev/blog/wasm-code-caching
https://v8.dev/blog/wasm-code-caching
https://nodejs.org/api/addons.html
https://v8.dev/blog/liftoff
http://asmjs.org/
https://github.com/Sable/Ostrich
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://v8.dev/blog/launching-ignition-and-turbofan
https://v8.dev/blog/launching-ignition-and-turbofan
https://v8.dev/blog/webassembly-experimental
https://v8.dev/blog/webassembly-experimental

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Compilation at runtime
	4.1 WebAssembly JavaScript Interface
	4.2 Performance of generated code

	5 Code caching
	5.1 Code extraction and insertion
	5.2 Compiler performance
	5.3 Module identification

	6 Shared code cache
	6.1 Design and Implementation
	6.2 Evaluation

	7 Future Work
	8 Conclusion
	9 Acknowledgments
	References

