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Abstract

We propose a variational autoencoder to perform improved pre-processing for clustering and
anomaly detection on data with a given label. Anomalies however are not known or labeled. We call
our method conditioned variational autonencoder since it separates the latent space by conditioning
on information within the data. The method fits one prior distribution to each class in the dataset,
effectively expanding the prior distribution to include a Gaussian mixture model. Our approach is
compared against the capabilities of a typical variational autoencoder by measuring their V-score
during cluster formation with respect to the k-means and EM algorithms. For anomaly detection,
we use a new metric composed of the mass-volume and excess-mass curves which can work in
an unsupervised setting. We compare the results between established methods such as as isolation
forest, local outlier factor and one-class support vector machine.

1 Introduction
Most anomaly and clustering methods will perform well on good data. Real life applications however do
not follow any guidelines. Actual data is typically incomplete, faulty, missing, unbalanced or consist of
outliers. Data can have a large amount of mixed categorical and numerical features making it difficult to
ascertain their relational importance. Many times there exist a size imbalance between categories. Thus
a machine learning model could bias towards the larger classes in the data set. Furthermore overlap can
make it difficult to identify the class each of the data points belongs to. In this case, anomaly detection
can be challenging since an anomalous data point for one class may be a normal point for another. Last
but not least data could be wrongly labeled which in turn can lead to severe modeling errors.

Clustering is a classic machine learning problem that is well studied but it is also heavily data de-
pendent [32]. The success of the clustering often comes down to feature engineering or otherwise
pre-processing the data in some way if it’s not already nicely placed in some euclidean space.

Anomaly detection is one of the most important problems in manufacturing [20], cyber security [28],
medical imaging [37], fraud detection and several others. At the same time anomaly detection is a
difficult problem since it is heavily depended on both data quantity and quality. The problem becomes
even more complicated when considering an unsupervised setting such as we do here.

We consider data which is unmarked in terms of containing anomalies or not. As a result, while
the class label is known, we do not know which points are anomalous and which are normal. For this
case it’s important to specify what we mean by anomaly. In this paper, we will consider anomalies to
be data points which occur in low probability regions of the dataset. We use dimensionality reduction
to find these probabilities and evaluate their degree of anomaly using the EM-MV measure [9]. More
importantly however our proposed framework will be able to work with a broad category of data in
an unsupervised manner. It will also allow us to use established methods of clustering and anomaly
detection for comparison purposes.
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We propose to use a variation of the VAE [14] for this purpose. Instead of using the generative
aspects of the VAE, we will perform our analysis in latent space. This is a reduced dimensionality space
which forces the data to be close to some prior distribution. The latent space will also retain relational
information and make it possible to observe how data features compare with each other. We propose to
name this algorithm Conditional Latent Space Variational Autoencoder or CL-VAE for short.

We apply two different clustering methods in the latent space: the k-means and the expectation
maximization (EM). Specifically the EM algorithm [15] alternates between estimating the function of the
expectation of the log-likelihood for each data point and then maximizing that expectation. This method
therefore iteratively updates the model parameters and creates a probability for each point belonging to
a cluster. The k-means method relies on Lloyd’s algorithm [18] and works much like the EM method
described above in order to cluster the data. The main difference from the EM method above is that
we must provide the number of data clusters as an input. Overall however the algorithm is simple in
its implementation. We outline the k-means method below in order to better highlight how clusters are
created:

0. Assume k clusters are to be established from the data.

1. Randomly assign k points as centroids.

2. Assign each of the points in the dataset to belong to the closest of the k centroids.

3. Compute k new centroids of each cluster based on its assigned points from above.

4. Repeat steps 2 and 3 until centroids do not change or maximum iterations exceeded.

Finally we apply the V-score as a widely accepted measure of success or failure of each clustering
method.

We begin in Section 2 with a brief overview of the clustering and anomaly detection metrics which
we apply during this study. In Section 3 we present the theory behind VAE’s and in particular how
exactly we condition our VAE to fit multiple Gaussians and categorize the latent space based on the
data. The choice of loss function is critical in forming the clusters. In Section 3.3 we provide the
theoretical background on the Kullback-Leibler (KL) divergence used for regularization as well as the
reconstruction piece of the loss function. We present the unsupervised case of anomaly detection in
Section 4.2 where we also discuss the proposed EM-MV measure to evaluate its performance. We end
with a number of remarks and an overview in Section 5.

2 Approach and state of the art
There are a number of approaches to anomaly detection using generative models; many, using the recon-
struction error as a measure of "degree" of abnormality [1] [21]. However in this paper we implement a
VAE as a pre-processing algorithm for use in common anomaly detection algorithms. In order to do so
effectively, we introduce the CL-VAE which shapes the latent space by discovering which distribution
each of the data belongs to and making it easier to work with.

The idea of using a Gaussian Mixture Model (GMM) as prior for training a VAE is not a new
idea [4, 30]. However, in the case of GMVAE [4], there is no conditioning on a pre-defined label.
Rather, it tries to estimate the prior distribution with Monte Carlo methods. A similar algorithm was
cleverly described by J. Su [12] but it includes a classifier that we do not really need here since we
know which class to assign to which Gaussian. This is also related to the DEC-algorithm by J. Xie et
al. [36] and the VaDE-algorithm by Z. Jiang et al. [13] with a built-in unsupervised cluster assignment
which is not something that we attempt here. Our algorithm is different from the CVAE (Conditional
Variational Autoencoder) in [5,31] because we’re conditioning the latent space itself on the class label by
selecting the appropriate Gaussian, not assuming we can map all classes to the same Gaussian as CVAE
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does. Instead the CVAE conditions the encoder and decoder, keeping the one-gaussian assumption in
the latent space which we avoid.

Two different datasets will be used in this paper in order to illustrate different properties of the
proposed methodology. First, the standard MNIST dataset will be used to present clustering and anomaly
detection capabilities in order to compare with other publications and results on that dataset. The second
dataset we use consists of actual trades made by traders at a Swedish investment bank. Thus this data set
is typical of the many problems a real dataset can have: unbalanced classes, mislabeling, missing data
etc. This dataset was also used in the thesis [22] and is included to diversify the discussion on anomaly
detection as well as to illustrate a real application of the proposed approach.

We will first train and produce latent spaces from the two different autoencoders: VAE and CL-
VAE. We then compare how well we can perform clustering and anomaly detection on each. For the
sake of visualization we have chosen to present the results in 2 latent dimensions. We note however that
performance could increase if we were to use more dimensions in latent space as it would include more
information. Arguably two of the most standard clustering algorithms, which we also use in this paper,
are the k-means [18] and EM [15] algorithms. Similarly, for anomaly detection the most frequently used
algorithms in this area are Isolation Forest [17], LOF [2] and OCSVM [27].

2.1 Detection methodology
A typical issue for most clustering algorithms is how to evaluate their results. This is because, while
clustering itself is an unsupervised task, in some cases we can check the clusters that do form against
some ground truth. In this case, that would be class label.

The V-score or validity score is one such metric capable of measuring this kind of clustering result. It
is an entropy (12) based approach and works by measuring two interdependent characteristics in clusters:
completeness and homogeneity.

Homogeneity measures whether every member of a given cluster belongs to a single class. This is
done as follows,

h =

{
1, if H(C,K) = 0,
1− H(C|K)

H(C) , otherwise.

Note that the case with cross entropy of H(C|K) = 0 denotes a totally homogeneous cluster.
Completeness on the other hand measures whether all known members of a class are assigned to the

same cluster. We define completeness via,

c =

{
1, if H(K,C) = 0,
1− H(K|C)

H(K) , otherwise.

Note that 0 ≤ c ≤ 1. In practice however we normalize the conditional entropy by H(C) in order to
remove any class size dependencies.

The validation score or V-score is defined to be the weighted mean between c and h,

Vβ =
(1+β)hc

βh+ c
,

where β is a weight favoring completeness if β > 1 or homogeneity if β < 1.
Readers might recognize how the completeness and homogeneity defined above encompass metrics

such as inertia and the Dunn index [7] which have been used in the past to measure intra-clustering and
inter-clustering distances.

2.2 Anomaly detection
Confirming anomalies which are not already labeled is not a trivial task. In this unsupervised setting we
can not use Precision-Recall or ROC simply because there’s no way to check our results against a ground
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truth. Therefore, the excess mass-mass volume (EM-MV) method can be a great tool at indicating
anomalies as it has been found to agree with its supervised counterparts [9].

We assume that anomalies occur on the tail ends of a probability distribution. So our goal is to
estimate the density level curves of that distribution. The method works on level sets for which a function
f equals a given constant c, Lc( f ) = {(x1, . . . ,xn) | f (x1, . . . ,xn) = c}. In our case the function f is the
probability density which we estimated by our CL-VAE in latent space. The degree of abnormality or
anomaly for the EM-MV method is given by a scoring function s : Rd −→R+ for data in Rd . The method
relies on the mass volume (MVs) and excess mass (EMs) curves of s as follows,

MVs(α) = inf
u≥0

Leb(s≥ u)s.t. P(s(X)≥ u)≥ α, (1)

EMs(t) = sup
u≥0

{P(s(X)≥ u)− tLeb(x≥ u)}, (2)

where t > 0,α∈ (0,1) and P(s≥ t) = 1
n ∑

n
i=11s(Xi)≥t . So now we can evaluate our method by computing

the distance between the level sets of f and s for excess mass and mass volume as follows: ||EMs−
EM f ||L1(I) and ||MVs−MVf ||L1(J) [9]. Practically we let I = [0.9,0.999] and J = [0,EM−1

s (0.9)] where
EM−1

s (0.9) = inf{t ≥ 0,EMs(t) ≤ 0.9} as shown in [9]. One technical issue involves the computation
of the Lebesgue terms above which can be resolved via Monte Carlo estimation.

The measure is then based on the area under the EMs and MVs curves. This area should be maximized
for EMs and minimized for MVs.

3 Creating Generative Models
As mentioned earlier, Variational Autoencoders (VAEs) are generative models introduced in 2014 by
Kingma and Welling [14]. The purpose of such a model is density estimation. Meaning, that a VAE can
estimate any underlying distribution in a dataset and start to generate new samples from that dataset.

The VAE consists of a encoder-decoder pair of neural networks, with a stochastic latent layer in the
middle as depicted in Figure 1. The encoder which we express here with pθ(z|x) processes the input
x and produces the parameters of a Gaussian distribution represented by z in the latent layer as shown
in Figure 1. The decoder which we denote by pθ(x̂|z) uses that Gaussian distribution z in latent space
as input to produce the parameters to an approximation of the probability distribution describing the
original data. The weights and biases of the encoder and decoder networks are represented in θ.
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Figure 1: Diagram of a VAE structure. The encoder neural network maps the input x to the latent space described
by the Gaussian distribution z. Then the Decoder neural network creates a reconstruction of the input in x̂.

VAEs allow us to effectively compress information within the data through dimensionality reduction
occurring in the latent space. Since the decoder goes from a smaller to a larger space information is lost.
We measure this loss by the reconstruction loss which is the log-likelihood of pθ(x̂|z) which will give us
a loss function to minimize in training. This shows also how effective the encoder was in compressing
information within z from the original data x. Furthermore VAEs can also be used with categorical data
as well as non-linear type transformations in contrast to PCA type methods [23].

Note that the VAE architecture is very similar to that of an autoencoder shown in Figure 10 in the
Appendix except for the latent space which is sampled by estimating µ and Σ. This is done by mapping
the mean and variance of these points with the stochastic layer described by ε, µ and Σ. We also note
that every point in the latent space of a VAE is forced to have feasible features since it is assigned a
variance. A prime advantage of this approach is that VAEs, unlike regular autoencoders, map values
to the latent space by retaining relational information between them so that they remain meaningful for
analysis purposes [3].

Another type of generative model is a GAN [10] that solves the same problem with a game-theoretic
approach. The VAE on the other hand is derived from a purely statistical point of view and the fact that
you can use if for generation is almost just a bonus [35]. Because of the statistical interpretability and
ease of manipulation, we chose to use a VAE for this task.

3.1 The optimization function
The choice of loss function during any optimization or neural network problem is critical and has direct
implications in success or failure of the given problem. To create a proper loss function however requires
knowledge of pθ(x) in order to compute the log pθ(x̂|z) which is intractable (see Appendix B). To counter
this problem we define a lower bound of the likelihood and optimize that instead.

Assuming that z can be estimated using the distribution qφ(z|x) we work on estimating the logarithm
of pθ(x) (see also (9) in Appendix B),
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log pθ(x) = logEz

[
pθ(x|z)

]
= Ez∼qφ(z|x)

[
log pθ(x)

]

= Ez

[
log pθ(x|z)

]
−Ez

[
log

qφ(z|x)
pθ(z)

]
+Ez

[
log

qφ(z|x)
pθ(z|x)

]
.

This however is a typical application for the Kullbag-Leibler (KL) divergence (see Appengix C
or [33]). The Kullback-Leibler divergence is a semi-metric [33] and can provide an estimate of the
distance between two measures P and Q,

DKL(P||Q) = Ex∼P

[
log

P(x)
Q(x)

]
.

Using the KL divergence therefore we can express log pθ(x) as,

log pθ(x) = Ez∼qφ(z|x)

[
log pθ(x|z)

]
−DKL(qφ(z|x)||pθ(z))+DKL(qφ(z|x)||pθ(z|x)). (3)

The first term above is possible to compute directly from the decoder and sampling with the reparam-
eterization trick [14], which will be discussed later. The second term is a KL-divergence between a
general and a normal Gaussian which has a closed form solution based on Property 2 of Appendix C.
Finally, the problematic last term can be shown to be greater than 0 [34] through Property 1 in Appendix
C. Therefore we can define the lower bound of (3) as,

L(θ,φ;x) = Ez∼qφ(z|x)

[
log pθ(x|z)

]
−DKL(qφ(z|x)||pθ(z)). (4)

Thus our task is to minimize the above with respect to the parameters θ and φ,

φ
∗,θ∗ = argmin

φ,θ
L(θ,φ;x). (5)

The only remaining issue is to resolve the expected value in (4). This can be accomplished with a
reparameterization idea from [14] provided below for completeness.

3.2 The change of variables idea
Functions such as (4) are not uncommon in optimization problems [11]. The novel idea, introduced
in [14], which removes difficulties of the expected value in (4) is to introduce a suitable change of
variables.

We express z∼ qφ(z|x) through a deterministic transformation gφ and a random variable ε∼ p(ε) as
z = gφ(x,ε), where p(ε) is a simple distribution which does not depend on x or φ. In our case we choose
p(ε) = N(0,1) since we want the latent space to be Gaussian. This reduces z to,

z = gφ(x,ε) = µφ(x)+σφ(x)� ε, ε∼ N(0,1)

We now define an auxiliary function f (x,z) = log pθ(x,z)− logqφ(z|x) over the distribution qφ(z|x) and
write (4) as an expectation of f . If we then substitute z and compute the gradient with respect to φ we
get,

∇φEz∼qφ(z|x)[ f (x,z)] = ∇φEgφ(x,ε)∼p(ε)[ f (x,gφ(x,ε))] = Egφ(x,ε)∼p(ε)[∇φ f (x,gφ(x,ε))].

The expectation and the gradient commute which allows us to practically optimize the above using back
propagation.
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3.3 The Conditional Variational Autoencoder
VAEs are designed to estimate the unknown probability distribution pθ(x) for the given x using a Gaus-
sian in latent space. Instead we propose to use information which is already available in the data in order
to more accurately express the dataset x through several Gaussians. We specify the Gaussians in latent
space by conditioning on any one of the labels in the data set. For the MNIST data set of images for
instance we condition on the number label associated with each image. Therefore for N = 10 categories
in that label in the data,

pθ(x) =
N

∑
y=1

∫
pθ(x|y,z)pθ(z|y)pθ(y)dz. (6)

where we chose pθ(y) to be a weighted uniform distribution since the numbers in the MNIST data are
discrete constants and pθ(z|y) is a set of N Gaussians each with unknown mean and variance. Finally to
understand pθ(z|x,y) we apply Bayes rule,

pθ(z|x,y) =
pθ(x|y,z)pθ(z|y)pθ(y)

pθ(x)
, (7)

where pθ(z|x,y) can be estimated from the encoder qφ(z|x,y). Note furthermore that pθ(y) is known and
gives pθ(z|y). We can therefore write pθ(x|y,z) = pθ(x|z).

Following arguments similar to constructing the loss function for VAE we now produce the following
loss function for our CL-VAE,

L(θ,φ;x) = Ez∼qφ(z|x)

[
log pθ(x|z)

]
−DKL(qφ(z|x,y)||pθ(z|y)). (8)

Since y is discrete the KL divergence above can be written as,

DKL(qφ(z|x,y)||pθ(z|y)) = Ez|y

[
log

qφ(z|x,y)
pθ(z|y)

]
=

N

∑
y=1

pθ(z|y) log
qφ(z|x)
pθ(z|y)

To produce a closed form solution for DKL(qφ(z|x,y)||pθ(z|y)) in the non-normal Gaussian case we
follow ideas from [12] and let qφ(z|x) be some Gaussian distribution that is conditioned on x,

qφ(z|x) =
exp
{
− 1

2

∣∣∣∣∣∣ z−µ(x)
σ(x)

∣∣∣∣∣∣2}
∏

d
i=1

√
2πσ2

i (x)

We now let pθ(z|y) be Gaussian with mean µy and variance 1,

pθ(z|y) =
1

(2π)d/2 exp
{
− 1

2
||z−µy||2

}
and use in simplifying,

log
qφ(z|x)
pθ(z|y)

=−1
2

d

∑
i=1

logσ
2
i (x)−

1
2

∣∣∣∣∣
∣∣∣∣∣z−µ(x)

σ(x)

∣∣∣∣∣
∣∣∣∣∣
2

+
1
2
||z−µy||2.

We apply the same reparameterization idea as before with z = gφ(x,ε) = µφ(x)+σφ(x)� ε where ε ∼
N(0,1) which simplifies the expression above to,

log
qφ(z|x)
pθ(z|y)

=−1
2

d

∑
i=1

logσ
2
i (x)+

1
2
||z−µy||2.

Computation of ∑
N
y=1 p(z|y) log qφ(z|x)

pθ(z|y) now reduces to a simple matrix operation.
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4 Clustering and Anomaly Detection Results

Figure 2: The 2D-latent space for the MNIST test data. Here the colors represent the 10 number classes for the
VAE (left), the CL-VAE (middle) and a weight adjusted CL-VAE (right). The CL-VAE produces a clear latent
space fitting and automatic separation between classes.

Training a regular VAE on the MNIST dataset we are treated by a latent space representation where
the classes accumulate around a single Gaussian. The model is trained on minimizing the loss function
(4) with a single Gaussian normal prior. The result of this is clear in the top of Figure 2 as the points
are all expanding outward from the origin where the normal Gaussian has its mean. As can be seen
in that figure, there is some structure and class separation but clusters have inconsistent shapes and are
overlapping heavily. Class overlap is natural since numbers can easily resemble each other and can be
hard to tell apart for humans as well. However, class overlap will remain a problem when using the
VAE. This is attributed to the fact that classes are trying to adapt their form to a single Gaussian prior.

We also train the CL-VAE on the same data set and present the results in the middle of Figure 2. It
is immediately evident, at least visually, that the class separation has now improved compared with that
from a regular VAE. The class overlap is still visible since numbers due to their inherent shape resemble
each other in the MNIST data. In that respect it is not surprising to see that the distribution for numbers
6 and 0 are close to each other and the clusters forming 4 and 9 are completely overlapping. We also
see that 4 and 9 seem to be completely overlapping and 3, 5 and 7 are partially overlapping. This is not
going to be helpful for clustering.

Finally, we also show a weight adjusted CL-VAE in the bottom of Figure 2. Here the reconstruction
error is weighted down s.t. γ = 0.3 and β = 1.0. This means that more focus is put on the KL-divergence
term in training. Visually, we can see that 4 and 9 no longer overlap and no other class is completely
overlapping with any other.

4.1 Clustering
We now present and analyze a number of clustering results comparing our proposed CL-VAE and a reg-
ular VAE. During our analysis we use two different clustering methods: the k-means and the expectation
maximization (EM). A visual inspection of the results is always helpful although we also measure the
V-score in order to better assert the success of each algorithm.
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Figure 3: The results of performing EM-clustering on the three different latent spaces of Figure 2 using the optimal
number of clusters from Table 1. Comparing this Figure with Figure 2 we can see which numbers ended up in
each of the clusters. Note that the numbers 4 and 9 ended up in the same cluster for the standard CL-VAE.

Based on the latent space representations from VAE and CL-VAE we compute their respective V-
scores in order to find the optimal number of clusters for each. For the VAE, the V-score is quite bad
for both the EM and k-means clustering algorithms as can be seen in Table 1. Another problem is that
it reaches its maximum V-score using 14 clusters, more than the true amount of numbers in the dataset.
This however is not that strange since the clusters based on the VAE latent space shown in Figure 2 are
not clearly separated.

Table 1: The results of clustering for each of the 3 different latent spaces. The left column under type of clustering
algorithm is the optimal V-score and the right column is the optimal number of clusters. As is evident, the CL-VAE
with the reconstruction error weighted down performs the best (boldface).

Algorithm EM k-means
VAE 0.6313 14 0.5572 14

CL-VAE 0.8132 7 0.8088 7
γ = 0.3 0.9248 10 0.9233 10

For the CL-VAE we get a higher V-score for both the EM and k-means algorithms but the clusters
are now too few instead. Inspecting Figure 3 and comparing it with Figure 2 we see that the numbers 4
and 9 ended up in the same cluster. The same is true for the numbers 3, 5 and 7 as well.

Finally, considering the weight adjusted CL-VAE we find that we get 10 unique clusters and again,
a much higher V-score for both EM and k-means. Using this setup you can therefore actually cluster the
numbers quite successfully. As a result we will use the weight adjusted CL-VAE to identify anomalies
in the next section.

4.2 Anomaly detection
In this section we present and compare unsupervised anomaly detection capabilities based on the latent
space of the proposed CL-VAE versus that of the regular VAE. We perform these comparisons under the
context of three of the most widely used methods for anomaly detection. We also note that neither of
our data sets include information or labels as to whether a given data point is an anomaly or not.

Some of the algorithms applied here to identify anomalies include hyper-parameters which must be
tuned. We have therefore undertaken this task and in all results presented we have already established
the best set of such hyper-parameters for those methods.
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Table 2: Comparisons of excess mass (EMs) and mass volume (MVs) scores for three different anomaly detection
methods based on either the VAE or the CL VAE latent space of MNIST. The results indicate that the one-class
support vector machine (OCSVM) performs best for both latent spaces. However, during further investigation
OCSVM was ruled out as it classifies about half of the data as anomalous. Note that the latent space of the VAE
gets better scores than the CL-VAE with all three algorithms.

LS/Algo. EMs (10−3) MVs

VAE
IF

LOF
OCSVM

2.532
2.014
2.533

2.465
3.136
2.442

CL-VAE
IF

LOF
OCSVM

0.884
0.841
0.926

7.065
7.236
6.754

Remembering that we should maximize the EMs score and minimize the MVs score, the results
presented in Table 2 clearly indicate that the VAE produces better EM-MV scores than the CL-VAE.
This is rather unexpected and something we’ll discuss further. It’s also clear that the OCSVM provides
the best EM-MV scores for both types of latent spaces. Investigating a little further, we find that the
OCSVM classifies more than half of the test data as anomalous. This obviously deems it rather useless.

Ruling out the OCSVM, the Isolation Forest algorithm performs the best on both latent spaces.
Closer investigation of the anomaly classification mechanism however reveals that the IF algorithm
classifies the center of the prior distribution for the VAE as normal and the edges of the distribution as
anomalous. This means that, while the number of elements in each class are approximately the same,
the numbers 0, 1 and 7 are over-represented among the anomalies while numbers 6, 9, 2, 8 and 5 are
under-represented. Taking a look at the top Figure 2 again the reason for this becomes clear as there
is plenty of class overlap in the center of the distribution for the VAE where 6, 9, 2, 8 and 5 are all
put in the middle. At the same time, 0, 1 and 7 occupy the fringes of the distribution, leading to the
over-representation in the number of anomalies.

This behavior is not as prevalent in the LOF algorithm which actually finds some anomalies between
clusters, leading to a more well-balanced distribution of anomalies among the different classes. So even
though the LOF performed the worst on the EM-MV score, it seems to be the most reasonable classifier
of anomalies in this case.
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Figure 4: A bar chart comparing the anomalies (in percent) found within each class when performing anomaly
detection on the two different latent spaces. The CL-VAE gets closer to the actual distribution and therefore gets
a lower RMSE, which is the number displayed in the box next to each algorithm.

Now considering the weight adjusted CL-VAE, we find that again disregarding the OCSVM, Isola-
tion Forest gets the best EM-MV scores. However, the same over- and under-representation problems
apply here. It seems like it weighs the regions with classes that are slightly overlapping as ’more nor-
mal’ while classes that are clearly distinct are considered ’more anomalous’. For instance, it finds 144
anomalies for the number 6’s while only 14 anomalies for the number 8. Once again however LOF
manages to provide us with a much more even distribution of anomalies.

Figure 5: The results of running anomaly detection using the LOF algorithm on the two different latent spaces.
In this case, the 15 most anomalous points are highlighted with a red star and some are filled in with their
corresponding image in MNIST. As is clear, the VAE tends to overemphasize certain numbers in anomaly detection
as was described earlier, that tend to end up on the fringes of the prior distribution. While the CL-VAE finds it’s
most uncommon anomalies between clusters that tend to be more unclear of what class they actually belong to.

Overall however we see that in general VAE produces better EM-MV scores than CL-VAE. This
could be because the VAE latent space has a few points that end up far out on the tail of the distribution
and therefore the algorithms have an easier time distinguishing normal points from anomalous. That
being said, these points are mostly consisting of a few classes, leading to a more unbalanced set of
anomalies which is clearly wrong. That is where the CL-VAE has an advantage. To visualize this, we
have plotted the percentages of anomalies for each class in Figure 4. What is clear from this plot is that
both autoencoders over-estimate and under-estimate certain classes. But overall, the CL-VAE get’s a
lower RMSE from the actual distribution of the dataset at 0.0326 compared with 0.0408 for the VAE.
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To summarize our findings in this section we found that the VAE separates the data in a more extreme
way than CL-VAE while at the same time overestimating anomalies for some classes at the edges of its
single-blob type latent space. This higher degree of separation seems to be why the VAE achieves better
EM-MV scores. The CL-VAE produces a more balanced set of anomalies in the dataset which stem for
all of the classes in the data. Considering Figure 5, the most extreme anomalies seem more difficult to
categorize than those anomalies identifies by the VAE.

4.3 Anomaly Detection in Trading Data
The dataset of trades from [22] contains about 100 000 rows and has columns describing what type
of trade occurred. These include margin, nominal value, currency, type of instrument, counter party,
portfolio and importantly trader name. By conditioning on what trader did what trade, we can try and
create similar clusters to Figure 2. Instead of variations of handwritten numbers, the clusters describe
the trading behavior of each trader in the dataset. Two overlapping traders for instance suggest that they
traded in a similar fashion, meaning we have found a trading category. For more details related to the
data we refer to the thesis work in [22].

Table 3: Comparisons of excess mass (EMs) and mass volume (MVs) scores for three different anomaly detection
methods based on either the VAE or the CL-VAE latent space using the trading data. The results indicate that
OCSVM performs best for VAE while Isolation Forest performs best for the CL-VAE. We note that all algorithms
performed better on the latent space of the CL-VAE giving merit to our proposed method.

LS/Algo. EMs (e−3) MVs

VAE
IF

LOF
OCSVM

4.648
3.587
5.903

1.362
1.736
1.053

CL-VAE
IF

LOF
OCSVM

16.33
13.48
12.43

0.5168
0.5509
0.567

As can be seen in Table 3 we see that, on this dataset, the CL-VAE latent space outperforms the VAE
latent space on the EM-MV measure for all algorithms tried. One big difference here is that the clusters
that was formed with CL-VAE are placed much further apart than the clusters in MNIST as can be seen
in Figure 6. This is likely contributing to the higher EM-MV score as it seems easier for the anomaly
detection algorithms to contrast normal from anomalous points in such a latent space.

Figure 6: Comparing the two different latent spaces of the VAE (top) and the CL-VAE (bottom). The color coding
corresponds to the best performing anomaly detection algorithm on each latent space.
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4.4 Using Misclassification for Anomaly Detection
We now explore an alternative way toward anomaly detection. If a cluster is found in latent space where
one most frequent class can be identified, then the points inside this cluster which do not belong to the
most frequent class can be considered anomalies. To identify these points however can be tricky. These
are points that in some sense behave more like the predicted class than its own class in the conditioned
space, meaning that they should be classified as anomalies.

We will employ the V-score which is related to the Precision-Recall curves and the F1-score de-
scribed in Section 4.1 to assist us in scoring and detecting these anomalies. As we showed in Table 1,
the CL-VAE has a much better V-score than the VAE. In the case of the MNIST data this means that
numbers which are classified to belong to a cluster will be moer likely to have the same label (homo-
geneity) and all of the members of that class are assigned to the same cluster (completeness).

We provide a representative sample of anomaly misclassification based on both the VAE and CL VAE
latent spaces in Figure 7. As can be seen in that figure some of the handwritten numbers which were
classified as ’anomalies’ using the VAE latent space are rather easy to identify. Some would probably
be considered anomalies but certainly not most. This is not the case for the CL-VAE where many of the
found anomalies are in fact unintelligible.

Figure 7: A sample of misclassified numbers for each latent space. For the VAE many normal looking numbers
were given the wrong label. Note also that mostly 3s, 7s and 9s were misclassified. Meanwhile, the misclassifica-
tions of the CL-VAE are much closer to the predicted label. Furthermore all labels are now included.

One of the big points about the CL-VAE is that points that end up on the tails of their respective
prior distributions should be ’more anomalous’. There’s no such guarantee with the VAE, because it
only has one prior distribution. Instead, giving each class their own prior distribution should mean that
the classes don’t have to fight over placement in the latent space. To illustrate this further, we coloured
the latent spaces according to the average deviation for each point compared with the respective mean
of each class in Figure 8.
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Figure 8: The latent space of the VAE (top) and the CL-VAE (bottom) colored with the RMSE of the numbers with
respect to their means.

What this means is that points that are closer to the mean of each class also end up closer to their
respective means in the latent space of the CL-VAE. If we compare it with the VAE, we see that the
middle of the prior distribution actually tends to have a higher error than on some pockets on the tail of
the distribution. Ultimately, what this means is that the latent space of the VAE can’t be interpreted as
samples from a Gaussian Normal distribution. Because there is no clear structure of where the points
should end up based on their ’degree of abnormality’. This is in contrast with the CL-VAE, where the
points can be interpreted as being sampled from a GMM prior. Consequently, points that either end up
on the tail of their respective prior or end up in the wrong cluster, can in fact be called anomalies.

5 Discussion
In this article we explore classification of labeled data by conditioning in latent space. Conditioning
allows us to use information within the data to improve clustering. We subsequently use these clusters
to identify anomalies in the data. To showcase our findings we used the MNIST data set as well as actual
trades from traders in a Swedish bank.

Our overall strategy for classification and anomaly detection involves a number of methodologies.
We begin with automatic formation of clusters in latent space. These clusters are found and shaped
according to optimal recommendations from our CL-VAE. In that respect we fit different Gaussians
around each cluster via the EM clustering method. This improved clustering description allows us to
apply a number of methods for detecting anomalies. Anomaly detection for us relies on detecting outliers
in the latent space of the autoencoder. We compare among the k-means, the p-percentile, one-class SVM
and LOF in order to identify the outliers for each of those clusters. Finally we apply multiple isolation
forest (an isolation forest per cluster) in order to single out these anomalies.

We also note that neither of the datasets used was labeled in terms of whether a given point is an
anomaly or not. This led us to propose methodologies which while unsupervised can indicate whether a
given trade is typical or anomalous. The proposed EM-MV measure is able to detect anomaly candidates
and the one-class SVM can indicate their severity. Furthermore the proposed methodology works with
data of categorical nature (non-continuous) in order to find meaningful latent representations - both of
which are not possible for classic PCA methods [23].

The proposed CL-VAE makes the latent space easier to understand while clustering data and per-
forming anomaly detection. The question of how much of the proposed methodology is truly unsu-
pervised should also be addressed. Clearly we are using labeling in the data to help us in the initial
classification. So this is not an entirely unsupervised method. The data is forced into Gaussians based
on that information. For the MNIST data for instance that corresponds to 10 clusters. However the
methodology proposed is not completely supervised either since after the conditioning is performed the
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method performs all actions in an unsupervised way based on a newly formed latent space. We do
not supervise the algorithm in terms of how to find the anomalies after that. So this is still a form of
unsupervised learning [3, 8].

We have shown that a weight adjusted CL-VAE can be a successful pre-processing procedure for
clustering and eventual anomaly detection. It strongly outperformed the VAE on the clustering task for
instance. While the VAE gets good EM-MV scores on the MNIST dataset, it does so while overestimat-
ing some classes and underestimating others. This problem is decreased when using the CL-VAE. Also,
the anomalies that gets the worst possible scores with the CL-VAE do look much more unintelligible
than the ones found for the VAE. Meanwhile, using the trading dataset, the CL-VAE obtained better
EM-MV scores than the VAE.

The proposed CL-VAE attempts to make the latent space more understandable and suitable for anal-
ysis with established methods. It seems to succeed in this regard, as it both divides the latent space up
in accordance with class labels and ensures that points that are improbable do in fact end up on the tail
of their respective prior distributions or in other clusters.

It would be interesting to study the generative aspects of the CL-VAE as well in the future. In
particular, it would be interesting to compare it with a CVAE, as they both have the functionality of
generating samples from a given class, something that the VAE does not.

Appendix A. Background on Autoencoders
An autoencoder is a neural network capable of performing unsupervised dimensionality reduction. As a
result it is able to discover a lower-level representation of a higher dimensional data space.

An autoencoder is typically constructed of two neural networks: an encoder and a decoder. An
idealized autonencoder representation is given in Figure 9 where we reduce a 3 dimensional input to a 2
dimensional latent space.

x̂1

x̂2

x̂3

x1

x2

x3

z1

z2

Figure 9: An idealization of an autoencoder. Here xi is the input, zi the hidden representation with 2 latent
dimensions and x̂i the reconstruction of the input xi.

In general autoencoder applications both the encoder and the decoder networks are densely con-
nected.

Definition 1 Autoencoder. Given an input x ∈ Rd we assume that there is a mapping E to z ∈ Rp s.t.
E : x→ z. This mapping is called the encoder and can be defined with an activation function σ, a weight
matrix W and a bias term b as,

z = σ(Wx+b).

Conversely, we assume that there is a mapping D s.t. D : z→ x which is called the decoder and can be
defined in a similar way to the encoder with the corresponding terms σ̂, Ŵ and b̂ as,

x̂ = σ̂(Ŵ z+ b̂).
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x̂DecoderzEncoderx

Figure 10: A flow chart of the autoencoder. Here the white circles represent input or output data and the grey
rectangles represent neural networks.

According to this definition therefore the autoencoder’s job is to estimate a non-linear transformation
from x to z and its inverse from z to x̂. In order for this autoencoder to compute these transformations it
minimizes the reconstruction error of x,

L(x, x̂) = ||x− x̂||2 = ||x− σ̂(Ŵ z+ b̂)||2 = ||x− σ̂(Ŵ (σ(Wx+b))+ b̂)||2.

In general however autoencoders produce latent spaces which are not useful for analysis [3]. This is one
of the main reasons that variational autoencoders have gained such popularity.

Appendix B. Variational autoencoders and Bayes rule
Variational autoencoders (VAEs) are able to discover the distributions responsible for the provided data.
A VAE therefore solves the problem of probability density estimation and is a true generative model.
This practically means that you can generate new samples from an unknown distribution [16]. Applica-
tions in image processing for example use VAEs to generate new images which retain some of the main
features of the original data set [35].

If we have some set of locally observed variables x and we assume that they follow some unknown
stochastic process X that we want to sample from, we can use some prior z that we assume to be
Gaussian. By then taking the expectation of the conditional distribution of x given z, under z, we get the
distribution for x from,

pθ(x) = Ez

[
pθ(x|z)

]
=

∫
pθ(x|z)pθ(z)dz. (9)

Note however that the integral above is intractable [14]. This is where Bayes rule can help.
We assume that the density functions p(x) and p(y) for stochastic variables x and y are known.

If the conditional density function p(x|y) is given then the conditional density function p(y|x) can be
computed from,

p(y|x) = p(x|y)p(y)
p(x)

. (10)

Bayer rule will be useful in terms of computing the posterior pθ(z|x),

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
. (11)

However pθ(x) above is not possible to compute in general. Instead we estimate the posterior distribution
pθ(z|x) using some other distribution qφ(z|x) where φ contains estimates of the model parameters.

Appendix C. Kullbag-Leibler divergence
The KL-divergence has a number of imporant properties which we outline below. First we provide some
definitions from information theory.

Given two probability distributions Q and P the entropy of P is defined from,

H(P) = Ex∼P[− logP(x)], (12)

and the cross-entropy of Q and P is given by,

H(P,Q) = Ex∼P[− logQ(x)]. (13)
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Given two probability distributions Q and P we define the Kullback-Leibler divergence by taking the
cross-entropy minus the entropy,

DKL(P||Q) = H(P,Q)−H(P) = Ex∼P

[
log

P(x)
Q(x)

]
. (14)

The Kullback-Leibler divergence measures how well Q approximates P.

Property 1 Properties of KL-divergence [6].

1. if P = Q then DKL(P||Q) = 0,

2. if P 6= Q then DKL(P||Q)> 0.

Property 2 Solution to DKL(q(x)||p(x)) in the normal Gaussian case [14]. Let’s assume that x is some
random variable in q(x)∼ N(µ,σ) and p(x)∼ N(0, I)

DKL(q(x)||p(x)) = Ez∼qφ(z)

[
log

q(x)
p(x)

]
==

∫
log

q(x)
p(x)

q(x)dx ==
∫
(logq(x)− log p(x))q(x)dx.

This can now be evaluated as two different integrals. The first being∫
q(x) logq(x)dx ==

∫
N(x;µ,σ2) logN(x;µ,σ2)dx ==

J
2

log(2π)+
1
2

J

∑
j=1

(1+ logσ
2
j),

and the second,∫
q(x) log p(x)dx ==

∫
N(x;µ,σ2) logN(x;0, I)dx ==

J
2

log(2π)+
1
2

J

∑
j=1

(µ2
j +σ

2
j),

giving us the closed form solution,

DKL(q(x)||p(x)) ==−1
2

J

∑
j=1

1+ logσ
2
j −µ2

j −σ
2
j .
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