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PRIMAL-DUAL BLOCK-PROXIMAL SPLITTING
FOR A CLASS OF NON-CONVEX PROBLEMS∗

STANISLAV MAZURENKO†, JYRKI JAUHIAINEN‡, AND TUOMO VALKONEN§

Abstract. We develop block structure-adapted primal-dual algorithms for non-convex non-smooth optimisation
problems, whose objectives can be written as compositions G(x) +F (K(x)) of non-smooth block-separable convex
functionsG and F with a nonlinear Lipschitz-differentiable operatorK. Our methods are refinements of the nonlinear
primal-dual proximal splitting method for such problems without the block structure, which itself is based on the
primal-dual proximal splitting method of Chambolle and Pock for convex problems. We propose individual step
length parameters and acceleration rules for each of the primal and dual blocks of the problem. This allows them to
convergence faster by adapting to the structure of the problem. For the squared distance of the iterates to a critical
point, we show local O(1/N), O(1/N2), and linear rates under varying conditions and choices of the step length
parameters. Finally, we demonstrate the performance of the methods for the practical inverse problems of diffusion
tensor imaging and electrical impedance tomography.
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1. Introduction. We want to solve in Hilbert spaces X and Y the problem

(P0) min
x∈X

G(x) + F (K(x)),

where G : X → R and F : Y → R are convex, proper, and lower semicontinuous functions
but K ∈ C1(X;Y ) is a possibly nonlinear operator. The linear case has been considered
frequently in the literature, while in our earlier work [9, 11, 33] we have developed first-order
primal-dual methods for the generally non-convex problem with a nonlinear K. We refer
to [36] for a simplified overview of such methods. In the present work, still with a nonlinear
K, we consider problems of the more specific form

(P) min
x∈X

m∑
j=1

Gj(Pjx) +

n∑
`=1

F`(Q`K(x)),

where, for all j = 1, . . . ,m and ` = 1, . . . , n, the functions Gj : X → R and F` : Y → R
are convex, proper, and lower semicontinuous, and P1, . . . , Pm ∈ L(X;X) as well as
Q1, . . . , Qn ∈ L(Y ;Y ) are mutually orthogonal families of linear projection operators. In
other words, G and F are block-separable. More specifically, we develop spatially adaptive
and block-stochastic optimisation methods for the solution of (P).

As observed in [35] for linear K, the adaptation of step lengths to individual blocks j
and ` can speed up the convergence of optimisation methods due to blockwise Lipschitz or
strong convexity factors being better suited than a global factor. Moreover, as now extensively
studied, randomly sampling the blocks to be updated in each step can also improve convergence
for very large-scale problems, in part due to the spatial adaptation and in part due to being
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able to avoid communication in a cluster implementation of the algorithm. For more on
stochastic block coordinate descent-type methods, we refer to the review [42] and, among
others, the original articles [2, 13, 16, 23, 25, 28, 29, 31, 46] on forward-backward type
methods, [4, 6, 8, 12, 15, 32, 35, 45] on primal-dual methods, and [26, 27] on second-order
methods, all in the convex case. For the non-convex case we point to [43, 44]. Compared
to the latter, we work in the primal-dual setting and aim for spatial adaptation also in the
deterministic setting. We also aim to prove convergence rates.

Several works consider, instead of a random selection of blocks, a random selection
of terms of a sum of functions. In the non-convex case, recent mathematical works in this
area include [14, 22], aside from more applied works in the area of neural networks. In our
block-stochastic approach, for non-convex C1-functions J` (` = 1, . . . , n), we can write with
K(x) := (J1(x), . . . , Jn(x)) and F (z) :=

∑n
`=1 z`,

(1.1) min
x
G(x) +

n∑
`=1

J`(x) = min
x
G(x) + F (K(x)).

To start describing our approach, using the conjugates F ∗` of the convex, proper, lower
semicontinuous functions F`, we reformulate (P) as the minmax problem

(S) min
x∈X

max
y∈Y

m∑
j=1

Gj(Pjx) + 〈K(x), y〉 −
n∑
`=1

F ∗` (Q`y).

If K is linear and the number of blocks is n = m = 1, then a popular algorithm for solving
this formulation is the primal-dual proximal splitting (PDPS) of Chambolle and Pock [7]. It
consists of alternating proximal steps with respect to the dual and primal variables with the
other variable fixed and an over-relaxation step that ensures convergence. Its extension to
nonlinear K (but still without blockwise structure) is the iteration [9, 33]

xi+1 := proxτiG(xi − τi∇K(xi)∗yi),

sxi+1 := xi+1 + ωi(x
i+1 − xi),

yi+1 := proxσi+1F∗(y
i + σi+1K(sxi+1))

for some step length and over-relaxation parameters τi, σi+1, ωi and the proximal operator
proxτiG(x) := (I + τi∂G)−1(x). Our purpose in this work is to randomise and adapt the
method to the multi-block structure of (S): firstly, in each step, we will only update random
subsets of either or both primal and dual blocks, and, secondly, even when we deterministically
update every block in each step, we adapt the step lengths to the local structure of the problem
in each block.

We organise our work as follows: first, in Section 2, we introduce the general notation,
concepts, and the rough structure of the algorithm. In Section 3 we start the convergence proof
by deriving several technical estimates. In Section 4 we then use these estimates to derive
convergence rates of more specific algorithms when only the primal updates are randomised.
Likewise, in Section 5 we study the case when only the dual updates are randomised. We
finish our work in Section 6 with numerical experience in diffusion tensor imaging (DTI) and
electrical impedance tomography (EIT).

2. Notation, rough algorithm, and its testing. Throughout this paper, we denote by
L(X;Y ) the space of bounded linear operators between Hilbert spaces X and Y , I is the
identity operator, and 〈x, x′〉 is the inner product in the corresponding space. We write PA
for the power set of a set A and χA(a) for the indicator function that equals 1 if a ∈ A and 0
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otherwise. We set 〈x, x′〉T := 〈Tx, x′〉 and ‖x‖T :=
√
〈x, x〉T , where in the latter we require

T ≥ 0. For T, S ∈ L(X;Y ), the inequality T ≥ S means that T − S is positive semidefinite.
If H is a set-valued operator X ⇒ X , then inequalities such as 〈H(x), x′〉 ≥ 0 mean that
〈w, x′〉 ≥ 0 for every w ∈ H(x).

We write (Ω,O,P) for the probability space consisting of a sample set Ω, a σ-algebra O
on Ω, and a probability measure P. We writeR(O;V ) for the space of V -valuedO-measurable
random variables. R(O;U ⇒ U) is therefore the space of O-measurable random variables,
whose values are set-valued operators U ⇒ U . Due to the iterative nature of optimisation
algorithms, we introduce a sequence of σ-algebras {Oi}i∈N such thatOi ⊆ Oi+1 andOi ⊆ O
for any i ∈ N. We use Oi to collect all the information available before the (i+ 1)st iteration.
We write Ei[ · ] := E[ · | Oi] for the corresponding conditional expectation.

Many conditions that we impose in the following sections only apply to the subspace on
which the operator K from the introduction acts nonlinearly. Correspondingly, we introduce

YL := {y ∈ Y | the map x 7→ 〈y,K(x)〉 is linear} and YNL := Y ⊥L ,

as well as the orthogonal projection PNL to YNL. See Section 6 for how such subspaces
practically come about in applications. We also use the short-hand notation

xj := Pjx and y` := Q`y.

2.1. Abstract structure of the algorithm. We generally use the symbol x for primal
variables (elements of X) and the symbol y for dual variables (elements of Y ). We group
these variables together into u = (x, y) ∈ X × Y . This applies to indexed variables,
ui := (xi, yi), critical points û = (x̂, ŷ), etc., without an explicit introduction of the primal
and dual components in each case. We define the set-valued operator H : X × Y ⇒ X × Y
for u = (x, y) as

H(u) :=

[
∂G(x) +∇K(x)∗y
∂F ∗(y)−K(x)

]
with G(x) :=

m∑
j=1

Gj(Pjx) and F ∗(y) :=

n∑
`=1

F ∗` (Q`y).

(2.1)

Then 0 ∈ H(û) encodes the critical point conditions for (S). These will also become the
first-order necessary optimality conditions under a constraint qualification, e.g., when G is C1

and either the null space of∇K(x)∗ is trivial or domF = X [30, Example 10.8].
Following the “testing” approach to the convergence analysis from [34], we introduce the

primal-dual step length, testing, and preconditioning operators

Wi+1 :=

[
Ti 0
0 Σi+1

]
, Zi+1 :=

[
Φi 0
0 Ψi+1

]
, and

Mi+1 :=

[
I −Φ−1

i Λ∗i
−Ψ−1

i+1Λi I

]
.

(2.2)

Here, Ti,Φi and Σi+1,Ψi+1 are the respective primal and dual step length and testing oper-
ators, and Λi is a term that we will develop to suitably decouple the updates of the primal
and dual variables. In the deterministic case, Ti,Φi ∈ L(X;X), and Σi+1,Ψi+1 ∈ L(Y ;Y ),
as well as Λi ∈ L(X;Y ). We assume Φi and Ψi+1 to be self-adjoint. This implies that also
Zi+1Mi+1 is self-adjoint. For the stochastic setting we will impose our formal assumptions
later in (3.14). We will in particular require the tests Φi and Ψi+1 to be already known before
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the start of the ith iteration (calculating ui), whereas the step lengths themselves will have to
be known before the (i+ 1)st iteration (calculating ui+1).

Finally, we write our proposed algorithm in the implicit form

(PP) 0 ∈Wi+1H̃i+1(ui+1) +Mi+1(ui+1 − ui)

for

H̃i+1(ui+1) :=H(ui+1)

+

[
[∇K(xi)−∇K(xi+1)]∗yi+1

K(xi+1)−K(xi+1 + Ωi(xi+1 − xi)) +∇K(xi)Ωi(xi+1 − xi)

](2.3)

and some over-relaxation operator Ωi, which in the deterministic setting is in L(X;X). Here
H̃i+1(u) is a partial linearization of H(u) similar to [33]. It simplifies to H(u) for a linear K.
In the following, by specifying the testing, step length, preconditioning, and over-relaxation
operator, we develop more explicit methods from this implicit formulation, which itself is
more amenable to a convergence analysis.

2.2. Testing for convergence. The proximal point method iteratively solves ui+1 from

(2.4) 0 ∈ H(ui+1) + τ−1(ui+1 − ui)

given a step length parameter τ > 0. If H is a γ-strongly monotone operator and û ∈ H−1(0),
then 〈H(ui+1), ui+1− û〉 ≥ γ‖ui+1− û‖2. This suggest “testing” (2.4) by the application of
〈 · , ui+1 − û〉. Subsequently to this testing, the strong monotonicity and Pythagoras’s identity,

〈ui+1 − ui, ui+1 − û〉 =
1

2
‖ui+1 − ui‖2 − 1

2
‖ui − û‖2 +

1

2
‖ui+1 − û‖2,

applied to 0 ∈ 〈H(ui+1) + τ−1(ui+1 − ui), ui+1 − û〉 yield

1 + 2γτ

2
‖ui+1 − û‖2 +

1

2
‖ui+1 − ui‖2 ≤ 1

2
‖ui − û‖2.

By telescoping this inequality, it is clear that uN → û at the linear rateO(1/(1+2γτ)N ). The
next theorem from [34] generalises these simple arguments to the more general algorithm (PP)
in the stochastic setting.

THEOREM 2.1 ([34, Corollary 3.1]). On a Hilbert space U and a probability space
(Ω,O), let H̃i+1 : R(O;U ⇒ U) and Mi+1, Zi+1 ∈ R(O;L(U ;U)) for i ∈ N. Suppose
that (PP) is solvable for {ui+1}i∈N ⊂ R(O;U). If for all i ∈ N and almost all random events
ω ∈ Ω, (Zi+1Mi+1)(ω) is self-adjoint and the expected fundamental condition

(2.5) E[〈Wi+1H̃i+1(ui+1), ui+1 − û〉Zi+1
]

≥ E
[

1

2
‖ui+1 − û‖2Zi+2Mi+2−Zi+1Mi+1

− 1

2
‖ui+1 − ui‖2Zi+1Mi+1

]
holds, then so does the expected descent inequality

(2.6) E
[

1

2
‖uN − û‖2ZN+1MN+1

]
≤ E

[
1

2
‖u0 − û‖2Z1M1

]
(N ≥ 1).

Condition (2.5) is simply a relaxation of the strong monotonicity we assumed above. It
also includes the term 1

2‖u
i+1 − ui‖Zi+1Mi+1

intended to be used with forward steps. In
application to (2.4), we have Mi+1 = I , and we can take as the testing operator Zi+1 = φiI
with φi+1 = (1 + 2γτ)φi and φ0 = 1. Thus, ZN+1MN+1 in (2.6) forms a local metric that
measures rates of convergence. If we can ensure Zi+1Mi+1 ≥ µiI for some deterministic
µi ↗ ∞, then (2.6) reveals that E[‖uN − û‖2] converges to zero at the rate O(1/µN ). We
will develop lower bounds of this kind in Section 3.
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2.3. Blockwise algorithm structure. We now develop a more blockwise-refined struc-
ture of our proposed algorithm. Inserting (2.2), we can expand (PP) as the pair of implicit
updates (compare [35, §2.3])

(2.7)



xi+1 = (I + Ti∂G)−1

(
xi + Φ−1

i [Λ∗i − ΦiTi∇K(xi)∗](yi+1 − yi)

− Ti∇K(xi)∗yi
)
,

yi+1 = (I + Σi+1∂F
∗)−1

(
yi + Ψ−1

i+1[Λi −Ψi+1Σi+1∇K(xi)Ωi](xi+1 − xi)

+ Σi+1K(xi+1 + Ωi(xi+1 − xi))
)
.

Due to the block-separable structure of G and F ∗ in (2.1), we take for all i ∈ N,

Ti :=
∑
j∈S(i)

τ ijPj , Σi+1 :=
∑

`∈V (i+1)

σi+1
` Q`, Ωi :=

∑
j∈S(i)

ωijPj ,(2.8a)

Φi :=

m∑
j=1

φijPj , Ψi+1 :=

n∑
`=1

ψi+1
` Q`, Λi :=

m∑
j=1

n∑
`=1

λi`,jQ`∇K(xi)Pj ,(2.8b)

for some (random) subsets of indices S(i) ⊆ {1, . . . ,m} and V (i + 1) ⊆ {1, . . . , n} and
(random) parameters τ ij , φ

i
j , σ

i+1
` , ψi+1

` > 0, and ωij , λ
i
j,` ∈ R. We wait until (3.14) to

specify the exact probabilistic setup, which we do not need before that. Due to the block-
separable structures of G and F ∗, the operators (I +Ti∂G)−1 and (I + Σi+1∂F

∗)−1 are also
block-separable.

We also pick further subsets of indices S̊(i) ⊆ S(i) and V̊ (i+ 1) ⊂ V (i+ 1); the rough
idea is that xi+1

j for j ∈ S̊(i) is updated within each step of the algorithm independently of
yi+1. In the linear-K case of [35], also yi+1

` for ` ∈ V̊ (i+ 1) would be updated independently
of xi+1, but presently we are not able to ensure that. However, we show at the end of
this section that the primal blocks xi+1

j for j ∈ S(i) \ S̊(i) still depend on yi+1
` only for

` ∈ V̊ (i + 1), as is the case for a linear K in [35]. Moreover, we require the “nesting
conditions”

χS̊(i)(j)(1− χV (i+1)(`)) = 0, (1− χS(i)(j))χV̊ (i+1)(`) = 0,(2.9a)

χS̊(i)(j)χV̊ (i+1)(`) = 0, and χS(i)\S̊(i)(j)χV (i+1)\V̊ (i+1)(`) = 0,(2.9b)

when

(2.9c) ` ∈ Vij := {` ∈ {1, . . . , n} | Q`∇K(xi)Pj 6= 0}.

These conditions force those dual blocks that are “connected” by K to the “independently
updated” primal blocks S̊(i) to also be (“dependently”) updated and vice versa. They
also disallow connections between independently updated blocks and dependently updated
blocks. Note that the last three equations in (2.9) are tantamount to the single equality
χV (i+1)(`)χS(i)/S̊(i)(j) = χV̊ (i+1)(`): they follow by multiplying the latter by 1 − χS(i),
χS̊(i)(j), and χS(i)/S̊(i)(j), respectively, and vice versa,

χV̊ (i+1)(`) = χV̊ (i+1)(`)χS(i)(j) = χV̊ (i+1)(`)χS(i)/S̊(i)(j) = χV (i+1)(`)χS(i)/S̊(i)(j).
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EXAMPLE 2.2. We can trivially satisfy (2.9) by taking either V (i + 1) = {1, . . . , n},
V̊ (i+ 1) = ∅, and S̊(i) = S(i) or S(i) = {1, . . . ,m}, S̊(i) = ∅, and V̊ (i+ 1) = V (i+ 1).
We will consider these two cases in the respective Section 4 (full dual update methods) and
Section 5 (full primal update methods). We may also alternate iterations between these two
choices.

Following the notations for the subsets and their complements, we also write

P̊i :=
∑
j∈S̊(i)

Pj , P̆i :=
∑

j∈S(i)\S̊(i)

Pj ,

Q̊i+1 :=
∑

`∈V̊ (i+1)

Q`, Q̆i+1 :=
∑

`∈V (i+1)\V̊ (i+1)

Q`.

In (2.7), for the subsets S(i) and V (i + 1) to have the intended meaning that only the
corresponding blocks are updated, we need to ensure that Pjxi+1 = Pjx

i for j 6∈ S(i) and
Q`y

i+1 = Q`y
i for ` 6∈ V (i+1). This holds if PjΛ∗iQ` = 0 whenever j /∈ S(i), ` ∈ V (i+1)

or j ∈ S(i), ` /∈ V (i+ 1) or j /∈ S(i), ` /∈ V (i+ 1). Similarly, for S̊(i) to have the intended
meaning that xi+1

j for j ∈ S̊(i) does not depend on yi+1, studying (2.7), we are also led to
require

P̊i[Λ
∗
i − ΦiTi∇K(xi)∗]Q` = 0 for any ` ∈ V (i+ 1).

Finally, since P̆ixi+1 in (2.7) may depend on yi+1, we require yi+1 to not depend on P̆ixi+1:

[Λi −Ψi+1Σi+1∇K(xi)Ωi]P̆i = 0 and [I + Ωi]P̆i = 0.

Combining the above conditions for Λi and Ωi, we arrive at

(2.10)


PjΛ

∗
iQ` = 0

whenever either j 6∈ S(i) or
` 6∈ V (i+ 1) or both,

P̊i[Λ
∗
i − ΦiTi∇K(xi)∗]Q` = 0 for ` ∈ V (i+ 1),

[Λi + Ψi+1Σi+1∇K(xi)]P̆i = 0, and (Ωi + I)P̆i = 0.

Substituting (2.10) into the identity

Λi =
∑

`∈V (i+1)

Q`ΛiP̊i +
∑

` 6∈V (i+1)

Q`ΛiP̊i + ΛiP̆i +
∑
j 6∈S(i)

n∑
`=1

Q`ΛiPj ,

we are led to take

(2.11) Λi :=
∑

`∈V (i+1)

Q`∇K(xi)T ∗i Φ∗i P̊i −Ψi+1Σi+1∇K(xi)P̆i,

which in terms of the components λi`,j reads

(2.12) λi`,j :=


τ ijφ

i
j ` ∈ V (i+ 1), j ∈ S̊(i),

−σi+1
` ψi+1

` ` ∈ V (i+ 1), j ∈ S(i) \ S̊(i),
0 otherwise.

Using the coupling conditions (2.9) between S̊(i) and V̊ (i+ 1) in (2.11), we deduce

Λi = ∇K(xi)T ∗i Φ∗i P̊i − Q̊i+1Ψi+1Σi+1∇K(xi).
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Plugging Λi into (2.7), we get two cases for the primal variable. If j ∈ S̊(i), then we have

P̊ix
i+1 = (I + T̊i∂G)−1(P̊ix

i − T̊i∇K(xi)∗yi), where T̊i := P̊iTi.

If j ∈ S(i) \ S̊(i), given that ΩiP̆i = −P̆i due to the last equality of (2.10) and taking
T̆i := P̆iTi, we have

P̆ix
i+1 = (I + T̆i∂G)−1

(
P̆ix

i − T̆i∇K(xi)∗Q̊i+1y
i+1

− P̆iΦ−1
i ∇K(xi)∗Σ∗i+1Ψ∗i+1Q̊i+1(yi+1 − yi)

)
.

Also xi+1 = P̊ix
i+1+P̆ix

i+1+(I−P̊i−P̆i)xi+1, therefore, for sxi+1 = xi+1+Ωi(xi+1−xi),
we can expand

xi+1 = P̊ix
i+1 −ΩiP̆ix

i+1 + (I − P̊i − P̆i)xi = P̊ix
i+1 + (I − P̊i)xi −ΩiP̆i(x

i+1 − xi).

Consequently, the implicitly defined algorithm in (2.7) expands to the following explicit
successive updates for each of the involved projections:

(2.13)



P̊ix
i+1 := (I + T̊i∂G)−1(P̊ix

i − T̊i∇K(xi)∗yi),

sxi+1 := (I − P̊i)xi + P̊ix
i+1 + P̊iΩiP̊i(x

i+1 − xi),

yi+1 := (I + Σi+1∂F
∗)−1

(
yi + Σi+1K(sxi+1)

+ Q̆i+1Ψ−1
i+1[∇K(xi)T ∗i Φ∗i−Ψi+1Σi+1∇K(xi)Ωi]P̊i(x

i+1−xi)
)
,

P̆ix
i+1 := (I + T̆i∂G)−1

(
P̆ix

i − T̆i∇K(xi)∗Q̊i+1y
i+1

− P̆iΦ−1
i ∇K(xi)∗Σ∗i+1Ψ∗i+1Q̊i+1(yi+1 − yi)

)
,

Pjx
i+1 := Pjx

i for j /∈ S(i).

In the following sections we will further develop and simplify this algorithm by imposing
additional conditions for the step length and testing parameters through a convergence analysis.

3. General estimates. With the estimate (2.6) in mind, our main task in this section is to
prove (2.5). After introducing the assumptions that we need for this work in Section 3.1, and
bounding Zi+1Mi+1 from below in Section 3.2, we carry out the first stage of this estimation
in Section 3.3 still deterministically. Then in Section 3.4 we refine these estimates by taking the
expectation. Finally, in Section 3.5 we combine the various estimates and state a self-contained
result for the validity of (2.6).

3.1. Assumptions. We will need K to be sufficiently smooth and to satisfy a somewhat
technical “three-point” version of standard second-order growth conditions:

ASSUMPTION 3.1 (Lipschitz ∇K(x)). For some L ≥ 0 and a neighbourhood XK 3 x̂,

‖∇K(x)−∇K(x′)‖ ≤ L‖x− x′‖ (x, x′ ∈ XK).

Using the equality

K(x′) = K(x) +∇K(x)(x′ − x) +

∫ 1

0

(∇K(x+ s(x′ − x))−∇K(x))(x′ − x)ds,
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we obtain for any x, x′ ∈ XK and y ∈ domF ∗ as a direct consequence of Assumption 3.1
that

(3.1) 〈K(x′)−K(x)−∇K(x)(x′ − x), y〉 ≤ L

2
‖x− x′‖2‖y‖PNL .

The norm of y only needs to be evaluated within YNL because x 7→ (I − PNL)K(x) is linear,
so the corresponding inner product with the integral term is zero.

ASSUMPTION 3.2 (three-point condition on K). For a neighbourhood XK of x̂,
some ΓK =

∑m
j=1 γK,jPj ∈ L(X;X) with γK,j ∈ R, L3 ≥ 0, and p ∈ [1, 2], for any

A =
∑m
j=1 ajPj ≥ 0 and some θA ≥ 0, the following holds

〈[∇K(x)−∇K(x̂)]∗ŷ, x′ − x̂〉A
≥ ‖x′ − x̂‖2AΓK + θA‖K(x̂)−K(x)−∇K(x)(x̂− x)‖p

− L3

2
‖x′ − x‖2A, (x, x′ ∈ XK).

(3.2)

This assumption is trivially satisfied for γK,j = L3 = 0 and any θA > 0 whenever
x 7→ 〈K(x), ŷ〉 is linear. In Appendix A we also provide the constants ensuring this as-
sumption, e.g., whenever the latter is block-separable and strongly-convex. For a less straight-
forward example in the single-block case, we refer to [9]. There we verified the assumption for
the reconstruction of the phase and amplitude of a complex number from noisy measurements.
That example evidently applies to the present setting in the single-block case or as a separable
block of x 7→ 〈K(x), ŷ〉.

We also need pointwise monotonicity of ∂G and ∂F ∗ at a root û ∈ H−1(0):
DEFINITION 3.3. Let U be a Hilbert space, and Γ ∈ L(U ;U), Γ ≥ 0. We say that

the set-valued map H : U ⇒ U is Γ-strongly monotone at û for ŵ ∈ H(û) if there exists a
neighbourhood U 3 û such that for any u ∈ U and w ∈ H(u),

〈w − ŵ, u− û〉 ≥ ‖u− û‖2Γ.

If Γ = 0, then we say that H is monotone at û for ŵ.
ASSUMPTION 3.4. For any ŵ = (ν̂, ξ̂) ∈ H(û), the set-valued map ∂G is

∑m
j=1 γG,jPj-

strongly monotone at x̂ for ν̂ −∇K(x̂)∗ŷ in the neighbourhood XG, and the set-valued map
∂F ∗ is

∑n
`=1 γF∗,`Q`-strongly monotone at ŷ for ξ̂+K(x̂) in the neighbourhood YF∗ , where

the constants satisfy γG,j , γF∗,` ≥ 0, for all j = 1, . . . ,m and ` = 1, . . . , n.

3.2. A lower bound on the local metric. To estimate Zi+1Mi+1 from below, we for-
mulate a block-adapted version of the basic step length condition τσ‖K‖2 < 1 from [7]. The
assumptions of the following lemma replace the more abstract constructions of [35, Defini-
tion 2.2 and Examples 2.3 and 2.4]. We recall from (2.9c) the “set of connections” Vij and also
introduce the set of “simultaneous connections”, filtered by λik,j , as

(3.3) sVij(`) := {k ∈ {1, . . . , n} | Q`∇K(xi)Pj∇K(xi)∗Qk 6= 0, λik,j 6= 0}.

LEMMA 3.5. Let i ∈ N and 0 ≤ δ ≤ κ < 1. For some weights wij,`,k = 1/wij,k,` > 0
(`, k = 1, . . . , n, j = 1, . . . ,m), define

wij,` := χVij (`)
∑

k∈sVij(`)

wij,`,k,(3.4)
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and suppose that

(1− κ)ψi+1
` ≥

∥∥∥∥∥
m∑
j=1

|λi`,j |
√
wij,`/φ

i
jQ`∇K(xi)Pj

∥∥∥∥∥
2

(` = 1, . . . , n).(3.5)

Then

(3.6) Zi+1Mi+1 ≥
[
δΦi 0
0 κ−δ

1−δΨi+1

]
.

Proof. Setting ζ`,j := (φij)
−1(λi`,j)

2/(1− κ), we use (3.5) and the orthogonality of the
projections {Pj}mj=1 to obtain for any y ∈ Y that

n∑
`=1

ψi+1
` ‖Q`y‖

2 ≥
n∑
`=1

∥∥∥∥∥∥
m∑
j=1

√
ζ`,jwij,`Q`∇K(xi)Pj

∥∥∥∥∥∥
2

‖Q`y‖2

≥
n∑
`=1

∥∥∥∥∥∥
m∑
j=1

√
ζ`,jwij,`Pj∇K(xi)∗Q`y

∥∥∥∥∥∥
2

=

n∑
`=1

m∑
j=1

ζ`,jw
i
j,`‖Pj∇K(xi)∗Q`y‖2

≥
m∑
j=1

∑
`∈Vij

( ∑
k∈sVij(`)

wij,`,k

)
ζ`,j‖Pj∇K(xi)∗Q`y‖2.

Since wij,k,` = 1/wij,`,k, we continue to estimate by Young’s inequality

n∑
`=1

ψi+1
` ‖Q`y‖

2 ≥
m∑
j=1

n∑
k,`=1

ζ
1/2
`,j ζ

1/2
k,j 〈Pj∇K(xi)∗Q`y,∇K(xi)∗Qky〉.

Here we also used (3.3) to convert the second sum to run over all k, ` = 1, . . . , n. As y ∈ Y
was arbitrary, inserting ζk,j and the structure (2.8) of Ψi+1, Φi, and Λi, we deduce that
(1− κ)Ψi+1 ≥ ΛiΦ

−1
i Λ∗i .

On the other hand, applying Young’s inequality with the factor (1− δ), we deduce that

Zi+1Mi+1 =

[
Φi −Λ∗i
−Λi Ψi+1

]
≥
[
δΦi 0
0 Ψi+1 − 1

1−δΛiΦ
−1
i Λ∗i

]
.

Thus, (3.6) holds.
The next example demonstrates a simple choice of the weights wj,k,` that is likely to work

if all the dual blocks ` have similar roles in the problem. In Section 6 we will also consider
other options when some dual blocks have different roles.

EXAMPLE 3.6 (Equal weighting). Suppose Vij ⊂ Vj and sVij(`) ⊂ sVj(`), where Vj and
sVj(`) do not depend on the iteration. If we take wij,`,k ≡ 1, then wj,` = χVj (`)#

sVj(`) counts
the dual blocks “simultaneously connected” with ` via the primal block j as defined by (3.3).

To provide further intuition of the result, let wj,` be as in Theorem 3.6. With only one pri-
mal block (j,m = 1) and assuming full connectedness (w1,` = n for all ` = 1, . . . , n),
Theorem 3.5 requires ψ` ≥ ζ1,`n‖Q`∇K(xi)‖2. Let a := 1

n

∑n
`=1 ‖Q`∇K(xi)‖2 =
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1
n‖∇K(xi)‖2. After plugging in λi`,j from (2.12) into (3.5), the lemma then says that the step
length parameters can be proportionally larger compared to the single dual block case (n = 1)
when ‖Q`∇K(xi)‖2 < a and have to be proportionally smaller when ‖Q`∇K(xi)‖2 > a. In
Section 4 and Section 5, we further transform (3.5) to obtain explicit step-length conditions.
But now, for the remainder of Section 3, we assume that (3.6) holds, and we derive sufficient
conditions for being able to apply Theorem 2.1.

3.3. Initial non-stochastic estimates. The next lemma starts the verification of (2.5).
LEMMA 3.7. Suppose that Assumptions 3.1 and 3.4 hold together with (3.6) for some

L ≥ 0, γG,j , γF∗,` ≥ 0 (j = 1, . . . ,m, ` = 1, . . . , n), and 0 ≤ δ ≤ κ < 1. Then, with H̃i+1

given by (2.3) and Mi+1 given by (2.2), we have

1

2
‖ui+1 − ui‖2Zi+1Mi+1

+
1

2
‖ui+1 − û‖2Zi+1Mi+1−Zi+2Mi+2

+ 〈H̃i+1(ui+1), ui+1 − û〉Wi+1Zi+1

≥ 1

2
‖xi+1 − xi‖2Rx +

1

2

κ− δ
1− δ

‖yi+1 − yi‖2Ψi+1

+
1

2
‖ui+1 − û‖2R′ +DK

i +DΛ
i ,

(3.7)

where for an arbitrary ΓK :=
∑m
j=1 γK,jPj ∈ L(X;X) for γK,j ∈ R we set

Rx := δΦi − L‖Ωi + I‖2‖Ψ∗i+1Σ∗i+1(yi+1 − ŷ)‖PNLI,(3.8a)
R′ :=(3.8b) [

Φi−Φi+1+2
∑
j∈S(i) φ

i
jτ
i
j (γG,j+γK,j)Pj 0

0 Ψi+1−Ψi+2+2
∑
`∈V (i+1) ψ

i+1
` σi+1

` γF∗,`Q`

]
,

DΛ
i := 〈[Λi+1 − Λi](x

i+1 − x̂), yi+1 − ŷ〉(3.8c)

+ 〈∇K(xi)∗(yi+1 − ŷ), xi+1 − x̂〉ΦiTi−Σ∗i+1Ψ∗i+1
,

DK
i := 〈[∇K(xi)−∇K(x̂)]∗ŷ, xi+1 − x̂〉ΦiTi − ‖xi+1 − x̂‖2ΦiTiΓK(3.8d)

+ 〈K(x̂)−K(xi)−∇K(xi)(x̂− xi), yi+1 − ŷ〉Ψi+1Σi+1
.

Proof. We bound from below all the terms on the left-hand side of (3.7). For the first term,
we have from (3.6) that

(3.9) Zi+1Mi+1 ≥
[
δΦi 0
0 κ−δ

1−δΨi+1

]
.

For the second term we use the expansion

(3.10) Zi+1Mi+1 − Zi+2Mi+2 =

[
Φi − Φi+1 Λ∗i+1 − Λ∗i
Λi+1 − Λi Ψi+1 −Ψi+2

]
.

We need to work more to estimate the third term on the left-hand side of (3.7). Since
0 ∈ H(û), we have ∂G(x̂) 3 zG := −∇K(x̂)∗ŷ, and ∂F ∗(ŷ) 3 zF∗ := K(x̂). We can
therefore recall the definition of H(u) from (2.1) and rewrite

〈H(u), u− û〉Wi+1Zi+1

= 〈∂G(x)− zG, x− x̂〉ΦiTi + 〈∂F ∗(y)− zF∗ , y − ŷ〉Ψi+1Σi+1

+ 〈∇K(x)∗y −∇K(x̂)∗ŷ, x− x̂〉ΦiTi + 〈K(x̂)−K(x), y − ŷ〉Ψi+1Σi+1
.
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Recalling the definition of H̃i+1(ui+1) in (2.3), we therefore expand the third term of (3.7) as

〈H̃i+1(ui+1), ui+1 − û〉Wi+1Zi+1

= 〈∂G(xi+1)− zG, xi+1 − x̂〉ΦiTi + 〈∂F ∗(yi+1)− zF∗ , yi+1 − ŷ〉Ψi+1Σi+1

+ 〈∇K(xi+1)∗yi+1 −∇K(x̂)∗ŷ, xi+1 − x̂〉ΦiTi
+ 〈K(x̂)−K(xi+1), yi+1 − ŷ〉Ψi+1Σi+1

+ 〈[∇K(xi)−∇K(xi+1)]∗yi+1, xi+1 − x̂〉ΦiTi
+ 〈K(xi+1)−K(xi+1 + Ωi(xi+1 − xi))
+∇K(xi)Ωi(xi+1 − xi), yi+1 − ŷ〉Ψi+1Σi+1

.

Due to Assumption 3.4 and (3.1), we have

DΓ
i := 〈∂G(xi+1)− zG, xi+1 − x̂〉ΦiTi + ‖xi+1 − x̂‖2ΦiTiΓK(3.11)

+ 〈∂F ∗(yi+1)− zF∗ , yi+1 − ŷ〉Ψi+1Σi+1

≥
∑
j∈S(i)

φijτ
i
j‖xi+1 − x̂‖2PjΓGPj + ‖xi+1 − x̂‖2ΦiTiΓK

+
∑

`∈V (i+1)

ψi+1
` σi+1

` ‖y
i+1 − ŷ‖2Q`ΓF∗Q` ,

and

DΩ
i :=

〈
K(xi)−K(xi+1 + Ωi(xi+1 − xi))(3.12)

+∇K(xi)(Ωi + I)(xi+1 − xi), yi+1 − ŷ
〉

Ψi+1Σi+1

≥ −L
2
‖Ωi + I‖2‖Ψ∗i+1Σ∗i+1(yi+1 − ŷ)‖PNL‖xi+1 − xi‖2.

Hence, recalling DK
i from (3.8d), we deduce

(3.13) 〈H̃i+1(ui+1), ui+1 − û〉Wi+1Zi+1

= 〈[∇K(xi)−∇K(x̂)]∗ŷ, xi+1 − x̂〉ΦiTi − ‖xi+1 − x̂‖2ΦiTiΓK
+ 〈K(x̂)−K(xi)−∇K(xi)(x̂− xi), yi+1 − ŷ〉Ψi+1Σi+1

+ 〈∂G(xi+1)− zG, xi+1 − x̂〉ΦiTi + ‖xi+1 − x̂‖2ΦiTiΓK
+ 〈∂F ∗(yi+1)− zF∗ , yi+1 − ŷ〉Ψi+1Σi+1

+ 〈K(xi)−K(xi+1 + Ωi(xi+1 − xi))
+∇K(xi)(Ωi + I)(xi+1 − xi), yi+1 − ŷ〉Ψi+1Σi+1

+ 〈∇K(xi)∗(yi+1 − ŷ), xi+1 − x̂〉ΦiTi
− 〈∇K(xi)(xi+1 − x̂), yi+1 − ŷ〉Ψi+1Σi+1

= DK
i +DΓ

i +DΩ
i + 〈∇K(xi)∗(yi+1 − ŷ), xi+1 − x̂〉ΦiTi−Σ∗i+1Ψ∗i+1

.
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Inserting the lower bounds from (3.9), (3.11), and (3.12) into (3.13) and using (3.8d) and
(3.10), we obtain

1

2
‖ui+1 − ui‖2Zi+1Mi+1

+
1

2
‖ui+1 − û‖2Zi+1Mi+1−Zi+2Mi+2

+ 〈H̃i+1(ui+1), ui+1 − û〉Wi+1Zi+1

≥ 1

2
‖xi+1 − xi‖2δΦi +

1

2

κ− δ
1− δ

‖yi+1 − yi‖2Ψi+1
+

1

2
‖ui+1 − û‖2R′ +DΛ

i +DK
i

− L

2
‖Ωi + I‖2‖Ψ∗i+1Σ∗i+1(yi+1 − ŷ)‖PNL‖xi+1 − xi‖2

for DΛ
i as in (3.8c). Finally, using the definitions of Rx in (3.8), we observe

1

2
‖xi+1 − xi‖2δΦi − L‖Ω

i + I‖2‖Ψ∗i+1Σ∗i+1(yi+1 − ŷ)‖PNL‖xi+1 − xi‖2

= ‖xi+1 − xi‖2Rx .

This yields the claim.

3.4. Expectation estimates. To further estimate DK
i and DΛ

i , we have to take the ex-
pectation with respect to Oi−1. We will use a split definition of the step lengths, writing

τ ij =

{
τ̊ ij , j ∈ S̊(i),

τ̆ ij , j ∈ S(i) \ S̊(i),
and σi+1

` =

{
σ̊i+1
` , ` ∈ V̊ (i+ 1),

σ̆i+1
` , ` ∈ V (i+ 1) \ V̊ (i+ 1),

where we make for all i ∈ N the conditionality assumptions

(3.14)
φij , ψ

i+1
` ∈ R(Oi−1; (0,∞)), τ̊ ij , τ̆

i
j , σ̊

i+1
` , σ̆i+1

` ∈ R(Oi−1; (0,∞)),

S(i), S̊(i) ∈ R(Oi;P{1, . . . ,m}), V (i+ 1), V̊ (i+ 1) ∈ R(Oi;P{1, . . . , n}).

Thus, τ̊ ij always refers to what τ ij would be if j ∈ S̊(i), and similarly for the other variables.
Moreover, these step lengths are already known at iteration i− 1, prior to their use. The only
part that is not known about Ti and Σi+1 before commencing iteration i are the subsets of
blocks to be updated. Observe that (3.14) and (2.13) imply

(3.15) xi+1 ∈ R(Oi;X) and yi+1 ∈ R(Oi;Y ) (i ∈ N).

Also, for brevity, we write

πij := P[j ∈ S(i) | Oi−1], π̊ij := P[j ∈ S̊(i) | Oi−1],

νi+1
` := P[` ∈ V (i+ 1) | Oi−1], ν̊i+1

` := P[` ∈ V̊ (i+ 1) | Oi−1].

LEMMA 3.8. Suppose that Assumption 3.2 and (3.14) hold for some L3 ≥ 0, p ∈ [1, 2],
and θA ≥ 0. For some ρ` > 0, assume that

(3.16) 1 = P[‖yi+1
` − ŷ`‖PNL ≤ ρ` | Oi−1] (` = 1, . . . ,m).

Then DK
i defined in (3.8c) satisfies for any ζ` > 0 with

n∑
`=1

νi+1
` ψi+1

` σi+1
` ζ1−p

` ρ2−p
` ≤ ppEi−1[θΦiTi ]
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the lower bound

Ei−1[DK
i ] ≥ −L3

2
Ei−1[‖xi+1 − xi‖2ΦiTi ]

−
n∑
`=1

Ei−1

[
ψi+1
` σi+1

` (p− 1)ζ`‖yi+1
` − ŷ`‖2PNL

]
.

(3.17)

Proof. Setting A = ΦiTi in Assumption 3.2, we obtain

〈[∇K(xi)−∇K(x̂)]∗ŷ, xi+1 − x̂〉ΦiTi
≥ ‖xi+1 − x̂‖2ΦiTiΓK + θΦiTi‖K(x̂)−K(xi)−∇K(xi)(x̂− xi)‖p

− L3

2
‖xi+1 − xi‖2ΦiTi .

Therefore, recalling the definition of DK
k in (3.8d) and using (3.15),

(3.18) Ei−1[DK
i ] ≥ Ei−1[θΦiTi ]‖K(x̂)−K(xi)−∇K(xi)(x̂− xi)‖p

− L3

2
Ei−1

[
‖xi+1 − xi‖2ΦiTi

]
+ 〈K(x̂)−K(xi)−∇K(xi)(x̂− xi),Ei−1[Σ∗i+1Ψ∗i+1(yi+1 − ŷ)]〉.

By Young’s inequality and (3.16) as in [9, (3.16) and (3.17)], for any ζ` > 0,

〈K(x̂)−K(xi)−∇K(xi)(x̂− xi),Σ∗i+1Ψ∗i+1(yi+1 − ŷ)〉

≥ −
∑

`∈V (i+1)

ψi+1
` σi+1

` ‖y
i+1
` − ŷ`‖PNL · ‖K(x̂)−K(xi)−∇K(xi)(x̂− xi)‖

≥ −
∑

`∈V (i+1)

ψi+1
` σi+1

` (p− 1)ζ`‖yi+1
` − ŷ`‖2PNL

−
n∑
i=1

χV (i+1)(`)ψ
i+1
` σi+1

` ‖y
i+1
` − ŷ`‖2−pPNL

ppζp−1
`

· ‖K(x̂)−K(xi)−∇K(xi)(x̂− xi)‖p.

Taking the expectation Ei−1, applying the assumed bound
n∑
`=1

νi+1
` ψi+1

` σi+1
` ζ1−p

` ρ2−p
` ≤ ppEi−1[θΦiTi ],

and inserting the result in (3.18), we obtain the claim (3.17).
LEMMA 3.9. Suppose that Assumption 3.1 and (3.14) are satisfied for some L ≥ 0,

and the nesting conditions (2.9) hold for any j and ` in both iterations i and i+ 1. For some
ηi+1 > 0 assume that

π̊i+1
j φi+1

j τ̊ i+1
j = ηi+1 − χS(i)\S̊(i)(j)φ

i
j τ̆
i
j ,(3.19a)

ν̊i+2
` ψi+2

` σ̊i+2
` = ηi+1 − χV (i+1)\V̊ (i+1)(`)ψ

i+1
` σ̆i+1

` .(3.19b)

Then DΛ
i defined in (3.8c) satisfies for any given αx, αy > 0 the lower bound

(3.20) Ei[DΛ
i ] +

di+1

2
‖xi+1 − xi‖2

≥ −αx
m∑
j=1

χS(i)\S̊(i)(j)φ
i
j τ̆
i
j‖xi+1

j − x̂j‖2

− αy
n∑
`=1

χV (i+1)\V̊ (i+1)(`)ψ
i+1
` σ̆i+1

` ‖y
i+1
` − ŷ`‖2PNL

,
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where

di+1 :=
L2

2αx

 ∑
j∈S(i)\S̊(i)

φij τ̆
i
j

 ‖yi+1 − ŷ‖2PNL

+
L2

2αy

 ∑
`∈V (i+1)\V̊ (i+1)

ψi+1
` σ̆i+1

`

 ‖xi+1 − x̂‖2.

Moreover, if

P[‖xi+1 − x̂‖ ≤ ρx, ‖Q`(yi+1 − ŷ)‖PNL ≤ ρ`, (` = 1, . . . , n) | Oi−1] = 1,(3.21)

then

Ei−1[di+1‖xi+1 − xi‖2] ≤ Ei−1[ci∗‖xi+1 − xi‖2](3.22)

for

ci∗ :=
L2

2αxαy

(
αy

n∑
`=1

ρ2
`#(S(i) \ S̊(i)) max

j=1,...,m
φij τ̆

i
j

+ αxρ
2
x#(V (i+ 1) \ V̊ (i+ 1)) max

`=1,...,n
ψi+1
` σ̆i+1

`

)
.

(3.23)

Proof. We recall from (3.8c) that

DΛ
i := 〈∇K(xi)∗(yi+1 − ŷ), xi+1 − x̂〉ΦiTi−Σ∗i+1Ψ∗i+1

+

〈[ ∑
`∈V (i+2)

Q`∇K(xi+1)T ∗i+1Φ∗i+1P̊i+1

−Ψi+2Σi+2∇K(xi+1)P̆i+1

]
(xi+1 − x̂), yi+1 − ŷ

〉

−

〈[ ∑
`∈V (i+1)

Q`∇K(xi)T ∗i Φ∗i P̊i −Ψi+1Σi+1∇K(xi)P̆i

]
(xi+1 − x̂), yi+1 − ŷ

〉
.

Defining for brevity

k`,j := 〈∇K(xi)∗(yi+1
` − ŷ`), xi+1

j − x̂j〉 and

k+
`,j := 〈∇K(xi+1)∗(yi+1

` − ŷ`), xi+1
j − x̂j〉

and using (3.14), which implies φijτ
i
j , ψ

i+1
` σi+1

` ∈ R(Oi; (0,∞)), we expand

Ei[DΛ
i ] =

n∑
`=1

m∑
j=1

[
(χS(i)(j)φ

i
jτ
i
j − χV (i+1)(`)ψ

i+1
` σi+1

` )k`,j

+ Ei[χV (i+2)(`)(χS̊(i+1)(j)φ
i+1
j τ̊ i+1

j − χS(i+1)\S̊(i+1)(j)ψ
i+2
` σi+2

` )k+
`,j ]

− χV (i+1)(`)(χS̊(i)(j)φ
i
j τ̊
i
j − χS(i)\S̊(i)(j)ψ

i+1
` σi+1

` )k`,j

]
.
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Writing in the first term χS(i)(j)φ
i
jτ
i
j = χS̊(i)(j)φ

i
j τ̊
i
j + χS(i)\S̊(i)(j)φ

i
j τ̆
i
j , this rearranges as

Ei[DΛ
i ] =

n∑
`=1

m∑
j=1

([
χS(i)\S̊(i)(j)φ

i
j τ̆
i
j + (1− χV (i+1)(`))χS̊(i)(j)φ

i
j τ̊
i
j

+ χV (i+1)(`)(χS(i)\S̊(i)(j)− 1)ψi+1
` σi+1

`

]
k`,j

+ Ei
[
χV (i+2)(`)χS̊(i+1)(j)φ

i+1
j τ̊ i+1

j

− χV (i+2)(`)χS(i+1)\S̊(i+1)(j)ψ
i+2
` σi+2

`

]
k+
`,j

)
.

Using (2.9), we continue

Ei[DΛ
i ] =

n∑
`=1

m∑
j=1

(
[χS(i)\S̊(i)(j)φ

i
j τ̆
i
j − χV (i+1)\V̊ (i+1)(`)ψ

i+1
` σ̆i+1

` ]k`,j

+ Ei[χS̊(i+1)(j)φ
i+1
j τ̊ i+1

j − χV̊ (i+2)(`)ψ
i+2
` σ̊i+2

` ]k+
`,j

)
,

after which a use of (3.19) rearranges this as

Ei[DΛ
i ] =

n∑
`=1

m∑
j=1

(̊πi+1
j φi+1

j τ̊ i+1
j − ν̊i+2

` ψi+2
` σ̊i+2

` )(k+
`,j − k`,j)

=

n∑
`=1

m∑
j=1

(χS(i)\S̊(i)(j)φ
i
j τ̆
i
j − χV (i+1)\V̊ (i+1)(`)ψ

i+1
` σ̆i+1

` )(k`,j − k+
`,j).

Expanding k`,j − k+
`,j , using Assumption 3.1, and continuing with Young’s inequality yields

for any αx, αy > 0,

Ei[DΛ
i ] =

n∑
`=1

m∑
j=1

[
(χS(i)\S̊(i)(j)φ

i
j τ̆
i
j − χV (i+1)\V̊ (i+1)(`)ψ

i+1
` σ̆i+1

` )

· 〈yi+1
` − ŷ`, [∇K(xi)−∇K(xi+1)](xi+1

j − x̂j)〉
]

≥ −
m∑
j=1

χS(i)\S̊(i)(j)φ
i
j τ̆
i
j · ‖yi+1 − ŷ‖PNLL‖xi+1 − xi‖‖xi+1

j − x̂j‖

−
n∑
`=1

χV (i+1)\V̊ (i+1)(`)ψ
i+1
` σ̆i+1

` · ‖yi+1
` − ŷ`‖PNLL‖xi+1 − xi‖‖xi+1 − x̂‖

≥ −
m∑
j=1

χS(i)\S̊(i)(j)φ
i
j τ̆
i
j

(
αx‖xi+1

j − x̂j‖2 +
L2

4αx
‖yi+1 − ŷ‖2PNL

‖xi+1 − xi‖2
)

−
n∑
`=1

χV (i+1)\V̊ (i+1)(`)ψ
i+1
` σ̆i+1

`

(
αy‖yi+1

` − ŷ`‖2PNL

+
L2

4αy
‖xi+1 − xi‖2‖xi+1 − x̂‖2

)
.

This rearranges as (3.20). By (3.21), P[di+1 ≤ ci∗ | Oi−1] = 1. Hence, (3.22) follows.
REMARK 3.10. For slightly stronger results, it would, in (3.21) and throughout the rest

of the manuscript, be possible to take ρx = ρi+1
x and ρ` = ρi+1

` dependent on the iteration.
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3.5. Putting it all together. We are now ready to state our main generic result providing
the tool to estimate convergence rates based on growth rates of φij and ψi+1

` .
THEOREM 3.11. Suppose that Assumptions 3.1, 3.2, and 3.4 hold for some 0 < δ ≤ κ < 1,

γG,j , γF∗,` ≥ 0, γK,j ∈ R (j = 1, . . . ,m, ` = 1, . . . , n), L,L3 ≥ 0, p ∈ [1, 2], θA ≥ 0
together with the nesting conditions (2.9), the lower bound (3.6) for the local metric, and the
conditionality assumptions (3.14), for all i ≤ N − 1. For some sequence of ηi+1 > 0 assume
the coupling conditions

π̊i+1
j φi+1

j τ̊ i+1
j + χS(i)\S̊(i)(j)φ

i
j τ̆
i
j = ηi+1 (j = 1, . . . ,m) and(3.24a)

ν̊i+2
` ψi+2

` σ̊i+2
` + χV (i+1)\V̊ (i+1)(`)ψ

i+1
` σ̆i+1

` = ηi+1 (` = 1, . . . , n).(3.24b)

Also assume for some ρx, ρ` ≥ 0 and ζ` ≥ 0,

1 = P[‖xi+1 − x̂‖ ≤ ρx, ‖Q`(yi+1 − ŷ)‖PNL ≤ ρ`, (` = 1, . . . , n) | Oi−1] and(3.25a)

Ei−1[θΦiTi ] ≥ p−p
∑n
`=1 ν

i+1
` ψi+1

` σi+1
` ζ1−p

` ρ2−p
` (` = 1, . . . , n).(3.25b)

Finally, for ci∗ defined in (3.23) for some αx, αy > 0, let

Lij := L3 + (L‖Ωi + I‖2
∑m
`=1 ψ

i+1
` σi+1

` ρ` + ci∗)/φ
i
jτ
i
j ,(3.26)

sγiGK,j := γG,j + γK,j − χS(i)\S̊(i)(j)αx,(3.27)

sγi+1
F∗,` :=

{
γF∗,`, Q`PNL = 0,

γF∗,` − (p− 1)ζ` − χV (i+1)\V̊ (i+1)(`)αy, Q`PNL 6= 0.
(3.28)

Then

(3.29) δ

m∑
j=1

E
[
φij‖Pj(xN − x̂)‖2

]
+
κ− δ
1− δ

n∑
`=1

E
[
ψi+1
` ‖Q`(y

N − ŷ)‖2
]

≤ E[‖uN − û‖2ZN+1MN+1
] ≤ E[‖u0 − û‖2Z1M1

]

holds provided that for every i ≤ N − 1 both (i) and (ii) are true:
(i) Either of the primal test update conditions holds for every j = 1, . . . ,m:

(a) both φi+1
j ≤ (1 + 2χS(i)(j)τ

i
jsγiGK,j)φ

i
j and δ ≥ χS(i)(j)L

i
jτ
i
j ; or

(b) for some γ̃iG,j ∈ R(Oi−1,R), τ̃ ij := (̊πij τ̊
i
j + (πij − π̊ij)τ̆ ij)/πij ,

φi+1
j = (1 + 2τ̃ ij γ̃

i
G,j)φ

i
j , τ̃

i
j γ̃
i
G,j < Ei−1[χS(i)(j)τ

i
jsγiGK,j ], and(3.30a)

δ ≥ χS(i)(j)L
i
jτ
i
j(3.30b)

+ χS(i)(j)
2(τ ij sγiGK,j−Ei−1[χS(i)(j)τ

i
j sγiGK,j ])(τ

i
j sγiGK,j−τ̃

i
j γ̃
i
G,j)

Ei−1[χS(i)(j)τ
i
j sγiGK,j ]−τ̃ ij γ̃iG,j

.

(ii) Either of the dual test update conditions holds for every ` = 1, . . . , n:

(a) ψi+1
` ≤ (1 + 2χV (i+1)(`)σ

i+1
` sγi+1

F∗,`)ψ
i+1
` ; or

(b) for some γ̃i+1
F∗,`∈R(Oi−1,R), σ̃i+1

` :=(̊νi+1
` σ̊i+1

` + (νi+1
` − ν̊i+1

` )σ̆i+1
` )/νi+1

` :
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ψi+2
` = (1 + 2σ̃i+1

` γ̃i+1
F∗,`)ψ

i+1
` ,(3.31a)

σ̃i+1
` γ̃i+1

F∗,` < Ei−1[χV (i+1)(`)σ
i+1
` sγi+1

F∗,`],(3.31b)

κ− δ
1− δ

≥ 2(σi+1
` sγi+1

F∗,` − Ei−1[χV (i+1)(`)σ
i+1
` sγi+1

F∗,`])(3.31c)

·
χV (i+1)(`)(σ

i+1
` sγi+1

F∗,` − σ̃
i+1
` γ̃i+1

F∗,`)

Ei−1[χV (i+1)(`)σ
i+1
` sγi+1

F∗,`]− σ̃
i+1
` γ̃i+1

F∗,`

.

Proof. We first apply Theorem 3.7. Recalling R′ from (3.8b), let us set
(3.32)

R′′ := R′

− 2
[∑m

j=1 τ
i
jφ
i
jχS(i)\S̊(i)(j)αxPj 0

0
∑n
`=1 σ

i+1
` ψi+1

` (χV (i+1)(`)(p−1)ζ`+χV (i+1)\V̊ (i+1)(`)αy)Q`PNL

]
=

[
Φi−Φi+1+2

∑
j∈S(i) φ

i
jτ
i
j sγGK,jPj 0

0 Ψi+1−Ψi+2+2
∑
`∈V (i+1) ψ

i+1
` σi+1

` sγF∗,`Q`

]
=

[∑m
j=1 q

i
jPj 0

0
∑n
`=1 h

i+1
` Q`

]
for

qij := (1 + 2χS(i)(j)τ
i
jsγiGK,j)φ

i
j − φi+1

j and

hi+1
` := (1 + 2χV (i+1)(`)σ

i+1
` sγi+1

F∗,`)ψ
i+1
` − ψi+2

` .

Thus,

Ei−1[‖ui+1 − û‖2R′′ ]

=

m∑
j=1

Ei−1[qij‖Pj(xi+1 − x̂)‖2] +

n∑
`=1

Ei−1[hi+1
` ‖Q`(y

i+1 − ŷ)‖2].
(3.33)

Estimation of qij . Suppose that j ∈ {1, . . . ,m} satisfies (i)(a). Then qij ≥ 0 and
δ ≥ χS(i)(j)L

i
jτ
i
j , so we immediately estimate

(3.34) Ei−1

[
qij‖Pj(xi+1 − x̂)‖2

]
≥ −Ei−1

[
χS(i)(j)(δφ

i
j − Lijφijτ ij)‖Pj(xi+1 − xi)‖2

]
.

Otherwise, if j ∈ {1, . . . ,m} satisfies (i)(b), using (3.15) and that qij = Ei[qij ] due to (3.14)
and (3.27), we decompose

Ei−1

[
qij‖Pj(xi+1 − x̂)‖2

]
= Ei−1

[
qij‖Pj(xi+1 − xi)‖2 + Ei−1[qij ]‖Pj(xi − x̂)‖2

+ 2qij〈Pj(xi+1 − xi), xi − x̂〉
]
.

Using (1 − χS(i)(j))Pj(x
i+1 − xi) = 0 and Young’s inequality with the factor α > 0, we

obtain

(3.35) Ei−1

[
qij‖Pj(xi+1 − x̂)‖2]

≥ Ei−1

[
χS(i)(j)(q

i
j − α|qij |)‖Pj(xi+1 − xi)‖2

+ (Ei−1[qij ]− χS(i)(j)α
−1|qij |)‖Pj(xi − x̂)‖2

]
.
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Since φi+1
j = (1 + 2τ̃ ij γ̃

i
G,j)φ

i
j with γ̃iG,j ∈ R(Oi−1;R), we have from (3.30a)

Ei−1[qij ] = (1 + 2Ei−1[χS(i)(j)τ
i
jsγiGK,j ])φ

i
j − Ei−1[φi+1

j ]

= 2φij(E[χS(i)(j)τ
i
jsγiGK,j ]− τ̃ ij γ̃iG,j) > 0,

and rearranging (3.30b) for j ∈ S(i) yields

qij = 2φij(χS(i)(j)τ
i
jsγiGK,j − τ̃ ij γ̃iG,j) ≥ (Ei−1[qij ])

−1|qij |2 − δφij + Lijφ
i
jτ
i
j .

Therefore, taking α := (Ei−1[qij ])
−1|qij | for j ∈ S(i) in (3.35), we verify (3.34) for the case

(i)(b) as well.

Estimation of hi+1
` . Similarly, if ` ∈ {1, . . . , n} satisfies (ii)(a), then we have hi+1

` ≥ 0,
hence

(3.36) Ei−1[hi+1
` ‖Q`(y

i+1 − ŷ)‖2] ≥ −Ei−1

[
χV (i+1)(`)

κ− δ
1− δ

ψi+1
` ‖Q`(y

i+1 − yi)‖2
]
.

Otherwise, when ` ∈ {1, . . . , n} satisfies (ii)(b), using (3.15) and that hi+1
` = Ei[hi+1

` ] due
to (3.14) and (3.28), we estimate for arbitrary α > 0 that

(3.37) Ei−1[hi+1
` ‖Q`(y

i+1 − ŷ)‖2]

≥ Ei−1

[
χV (i+1)(`)(h

i+1
` − α|hi+1

` |)‖Q`(y
i+1 − yi)‖2

+
(
Ei−1[hi+1

` ]− χV (i+1)(`)α
−1|hi+1

` |
)
‖Q`(yi − ŷ)‖2

]
.

Since ψi+2
` = (1 + 2σ̃i+1

` γ̃i+1
F∗,`)ψ

i+1
` with γ̃i+1

F∗,` ∈ R(Oi−1;R), from (3.31b) we have

Ei−1[hi+1
` ] = (1 + 2Ei−1[χV (i+1)(`)σ

i+1
` sγi+1

F∗,`])ψ
i+1
` − Ei−1[ψi+2

` ] > 0,

and rearranging (3.31c) for ` ∈ V (i+ 1) yields

hi+1
` ≥ (Ei−1[hi+1

` ])−1|hi+1
` |

2 − κ− δ
1− δ

ψi+1
` .

Consequently, taking α := (Ei−1[hi+1
` ])−1|hi+1

` | for ` ∈ V (i+ 1) in (3.37), we obtain (3.36)
for the case (ii)(b) as well.

Combining the estimates. Since (3.34) and (3.36) hold for all j = 1, . . . ,m and
` = 1, . . . , n, respectively, continuing from (3.33), we get

Ei−1[‖ui+1 − û‖2R′′ ] ≥ −Ei−1

[ m∑
j=1

(χS(i)(j)(δφ
i
j − Lijφijτ ij)‖Pj(xi+1 − xi)‖2

+

n∑
`=1

(
χV (i+1)(`)

κ− δ
1− δ

ψi+1
` ‖Q`(y

i+1 − yi)‖2
)]
.
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Plugging in Lij from (3.26) gives

Ei−1[‖ui+1 − û‖2R′′ ]

≥ −Ei−1

[
n∑
`=1

(
χV (i+1)(`)

κ− δ
1− δ

ψi+1
` ‖Q`(y

i+1 − yi)‖2
)

+

m∑
j=1

χS(i)(j)

(
δφij − L‖Ωi + I‖2

m∑
`=1

ψi+1
` σi+1

` ρ`

)
‖Pj(xi+1 − xi)‖2

−
m∑
j=1

(χS(i)(j)(L3φ
i
jτ
i
j + ci∗)‖Pj(xi+1 − xi)‖2

]
.

By the definitions of Rx in (3.8) and ρ` in (3.25a), we continue with

(3.38) Ei−1[‖ui+1 − û‖2R′′ ] ≥ −Ei−1

[
‖xi+1 − xi‖2Rx +

κ− δ
1− δ

‖yi+1 − yi‖2Ψi+1

−
m∑
j=1

χS(i)(j)(L3φ
i
jτ
i
j + ci∗)‖Pj(xi+1 − xi)‖2

]
.

On the other hand, by the definition of R′′ in (3.32),

Ei−1[‖ui+1 − û‖2R′′ ]

= Ei−1

[
‖ui+1 − û‖2R′ − 2αx

m∑
j=1

τ ijφ
i
jχS(i)\S̊(i)(j)‖Pj(x

i+1 − x̂)‖2

− 2

n∑
`=1

(χV (i+1)(`)(p− 1)ζ` + χV (i+1)\V̊ (i+1)(`)αy)σi+1
` ψi+1

` ‖Q`(y
i+1 − ŷ)‖2PNL

]
.

Combining with (3.38) and rearranging the terms, we therefore have

(3.39) Ei−1[‖ui+1 − û‖2R′ + ‖xi+1 − xi‖2Rx +
κ− δ
1− δ

‖yi+1 − yi‖2Ψi+1
] ≥ Ei−1[b1 + b2]

for

b1 :=

n∑
j=1

χS(i)(j)L3φ
i
jτ
i
j‖Pj(xi+1 − xi)‖2

+ 2

n∑
`=1

σi+1
` ψi+1

` χV (i+1)(`)(p− 1)ζ`‖Q`(yi+1 − ŷ)‖2PNL

and

b2 := 2αx

m∑
j=1

τ ijφ
i
jχS(i)\S̊(i)(j)‖Pj(x

i+1 − x̂)‖2

+ 2αy

n∑
`=1

σi+1
` ψi+1

` χV (i+1)\V̊ (i+1)(`)‖Q`(y
i+1 − ŷ)‖2PNL

+

n∑
j=1

χS(i)(j)c
i
∗‖Pj(xi+1 − xi)‖2.
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Our conditions (3.25) and δ ≥ χS(i)(j)L
i
jτ
i
j ensure the conditions of Theorems 3.8 and 3.9.

By Theorem 3.8, Ei−1[b1 + 2DK
i ] ≥ 0, while using both (3.20) and (3.22) of Theorem 3.9

establishes Ei−1[b2 + 2DΛ
i ] = Ei−1[b2 + 2Ei[DΛ

i ]] ≥ 0. Consequently, (3.39) yields

Ei−1[‖ui+1 − û‖2R′ + ‖xi+1 − xi‖2Rx +
κ− δ
1− δ

‖yi+1 − yi‖2Ψi+1
+ 2DΛ

i + 2DK
i ] ≥ 0.

We now use Theorem 3.7 to verify (2.5). Minding that each Zi+1Mi+1 is self-adjoint by
Theorem 3.5, a referral to Theorem 2.1 establishes (2.6). Using (3.6) as well as the properties
φNj , ψ

N+1
` ∈ R(ON−1; (0,∞)) and uN ∈ R(ON−1;X × Y ) that follow from (3.14), we

estimate

E[‖uN − û‖2ZN+1MN+1
| ON−1] = ‖uN − û‖2E[ZN+1MN+1|ON−1]

≥ δ
m∑
j=1

φNj ‖Pj(xN − x̂)‖2 +
κ− δ
1− δ

n∑
`=1

ψN+1
` ‖Q`(yN − ŷ)‖2.

Taking the full expectation and using (2.6) establishes the claim.
REMARK 3.12. The conditions (i)(a) and (ii)(a) differ from (i)(b) and (ii)(b) by the

larger factors sγiGK,j and sγiF∗,` and by updating φi+1
j and ψi+2

` ∈ R(Oi;R) potentially
non-deterministically.

In Section 4 we have π̊ij = πij , τ
i
j = τ̊ ij , ν̊

i+1
` = 0, and σi+1

` = σ̆i+1
` . In Section 5 we

take π̊ij = 0, τ ij = τ̆ ij , ν̊
i+1
` = νi+1

` , and σi+1
` = σ̊i+1

` . Also (i)(b) and (ii)(b) then simplify,
for γ̃iG,j < πijsγ

i
GK,j , to

φi+1
j = (1 + 2τ ij γ̃

i
G,j)φ

i
j ,

δ ≥ χS(i)(j)τ
i
j

(
Lij + 2(1− πij)sγiGK,j

sγiGK,j − γ̃iG,j
πijsγ

i
GK,j − γ̃iG,j

)
(3.40a)

and, respectively, for γ̃i+1
F∗,` < νi+1

` sγi+1
F∗,`, to

ψi+2
` = (1 + 2σi+1

` γ̃i+1
F∗,`)ψ

i+1
` and(3.40b)

κ− δ
1− δ

≥ 2χV (i+1)(`)(1− νi+1
` )σi+1

` sγi+1
F∗,`

sγi+1
F∗,` − γ̃

i+1
F∗,`

νi+1
` sγi+1

F∗,` − γ̃
i+1
F∗,`

.

REMARK 3.13. Another quite restrictive requirement that we will need in the next
sections is the almost sure boundedness of the iterates in (3.25a). We already had this
requirement in the deterministic single-block algorithm in [9, Section 4.3] and [10, Section 5].
We have verified in [9, Proposition 4.8.] that this requirement can be restated in terms of a
sufficiently close initialisation of the iterations to the critical point, which is often required in
non-convex optimisation.

In this work, the rates for convergence are in expectation, hence, the required boundedness
is stated in almost sure terms. Moreover, in order to be able to update only some primal blocks
in each iteration, (3.25a) now also requires the primal variable to be bounded. Through the
simplified algorithms of Sections 4 and 5, treating respective non-randomised dual updates
and non-randomised primal updates, we will somewhat relax these restrictions:

– Algorithm 4.2 of Section 4 will not require the dual variable to be bounded if
Assumption 3.2 holds with p = 2; see Theorems 4.6 and 4.8.

– In Section 5, we will not require any bound for the primal variable.
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In some cases, boundedness can, moreover, be verified analytically based on the explicit
formula for F . For example, for F (x) = |〈a, x〉| or F (x) = ‖ax‖, the support of F ∗(y) is
bounded by ‖a‖. Hence the range of the corresponding proximal operator is also bounded.
In particular, if F is of such a form, then the boundedness assumptions of Section 5 are
automatically satisfied.

4. Methods with full dual updates. We now develop more specific methods based
on (2.13) and study their convergence based on Theorem 3.11. In this section we take
V̊ (i + 1) = ∅, V (i + 1) = {1, . . . , n}, and S̊(i) = S(i) for all iterations i. The nesting
conditions (2.9) of Theorem 3.11 then hold, and the coupling conditions (3.24) become

(4.1) π̊i+1
j φi+1

j τ̊ i+1
j = ηi+1 = ψi+1

` σ̆i+1
` .

The dual update of (2.13) involves Ψ−1
i+1[∇K(xi)T ∗i Φ∗i − Ψi+1Σi+1∇K(xi)Ωi] in scalar

form,

φij τ̊
i
j − ωij σ̆

i+1
` ψi+1

`

ψi+1
`

= σ̆i+1
`

(
ηi

π̊ijη
i+1
− ωij

)
= σ̆i+1

`

(
sωi

π̊ij
− ωij

)
for sωi :=

ηi

ηi+1
.

Therefore, with ωij = sωi

π̊ij
, the updates (2.13) simplify to those of Algorithm 4.1. Moreover,

(2.12) reduces to λij,` = φijτ
i
jχS̊(i)(j). We thus verify (3.6) via the following lemma:

LEMMA 4.1. Suppose that V̊ (i+1) = ∅, V (i+1) = {1, . . . , n}, S̊(i) = S(i) for i ∈ N,
the coupling condition (4.1) holds, and sωi ≤ 1. Moroever, suppose that for all ` = 1, . . . , n
and j = 1, . . . ,m,

(4.2) sωiσ̆i+1
` τ̊ ij ≤ σ̆0

` τ̊
0
j and 1− κ ≥

∥∥∥∥∥ ∑
j∈S̊(i)

√
wij,`σ̆

0
` τ̊

0
j

π̊ij
Q`∇K(xi)Pj

∥∥∥∥∥
2

for some 0 ≤ κ ≤ 1 and wj,`,k = 1/wj,k,` > 0 such that

wij,` := χVij (`)
∑

k∈sVij(`)

wj,`,k(4.3a)

with

sVij(`) = {k ∈ {1, . . . , n} | Q`∇K(xi)Pj∇K(xi)∗Qk 6= 0, j ∈ S̊(i)}.(4.3b)

Then the lower bound (3.6) holds.
Proof. By the first part of (4.2), (4.1), and λij,` = φijτ

i
jχS̊(i)(j), we have

σ̆0
` τ̊

0
j ≥

ηiσ̆i+1
` τ̊ ij
ηi+1

=
π̊ijφ

i
j (̊τ

i
j)

2

ψi+1
`

=
π̊ij(λ

i
j,`)

2

ψi+1
` φij

(j ∈ S̊(i)).

By the orthogonality of the projections Pj , we may insert this estimation into the second part
of (4.2), obtaining (3.5); compare the proof of Theorem 3.5. The definition of sVij(`) in (3.3)
also reduces to that in (4.3b), while the definition of wij,` in (4.3a) is exactly that in (3.4). We
finish by applying Theorem 3.5 to verify (3.6).

REMARK 4.2. The first part of (4.2) relaxes the property τ iσi = τ0σ0 of the basic
PDPS [7].

REMARK 4.3. With deterministic updates (̊πij ≡ 1), (4.1) couples τ̊ ijφ
i
j = σ̆i`ψ

i
`. With

ψi` ≡ ψ0
` , (4.2) therefore becomes a block-coupled variant of the condition τiσi‖K‖2 < 1

from [7].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

530 S. MAZURENKO, J. JAUHIAINEN, AND T. VALKONEN

Algorithm 4.1 Full dual updates #1.
Assume the problem structure (P), equivalently (S). For each iteration i ∈ N,
choose a sampling pattern for generating the random set of updated primal
blocks S(i) ∈ R(Oi;P{1, . . . ,m}) with corresponding blockwise probabilities
π̊ij := P[j ∈ S(i) | Oi−1] > 0. Also choose a rule for the iteration and block-dependent
step length parameters τ̊ ij , σ̆

i
`, sωi > 0 from one of the Theorems 4.5, 4.4, or 4.7. Pick an initial

iterate (x0, y0), and in each iteration i ∈ N, update all blocks xi+1
j = Pjx

i+1 (j = 1, . . . ,m)
and yi+1

` = Q`y
i+1 (` = 1, . . . , n) of xi+1 and yi+1 as:

xi+1
j :=

{
(I + τ̊ ijPj∂GjPj)

−1(xij − τ̊ ijPj∇K(xi)∗yi), j ∈ S(i),

xij , j /∈ S(i),

sxi+1
j :=

{
xi+1
j + sωi(xi+1

j − xij)/π̊ij , j ∈ S(i),

xij , j /∈ S(i),

yi+1
` := (I + σ̆i+1

` Q`∂F
∗
` Q`)

−1(yi` + σ̆i+1
` Q`K(sxi+1)).

Finally, we also remind that for this section, (3.27) and (3.28) simplify to

sγiGK,j ≡ sγGK,j := γG,j + γK,j , and(4.4a)

sγi+1
F∗,` ≡ sγF∗,` :=

{
γF∗,`, Q`PNL = 0,

γF∗,` − (p− 1)ζ` − αy, Q`PNL 6= 0.
(4.4b)

4.1. Accelerated rates. We start with simple step length rules for O(1/N)-rates for the
blocks admitting second-order growth (γG,j + γK,j > 0 for primal blocks j or γF∗,` > 0
for dual blocks `). Throughout, for simplicity, we assume iteration-independent probabilities,
π̊ij = πij ≡ π̊j for all i ∈ N.

THEOREM 4.4. Suppose that Assumptions 3.1, 3.2, and 3.4 hold with L,L3 ≥ 0,
p ∈ [1, 2], γG,j+γK,j ≥ 0 (j = 1, . . . ,m), and sγF∗,` ≥ 0 (` = 1, . . . , n), for some αy, ζ` ≥ 0
as defined in (4.4). Let the iterates {ui = (xi, yi)}i∈N be generated by Algorithm 4.1 with
iteration-independent probabilities π̊ij ≡ π̊j and step length parameters

σ̆i+1
` :=

σ̆i`
1 + 2σ̆i`sγF∗,`

, sωi ≡ 1, and τ̊ i+1
j :=

τ̊ ij
1 + 2τ̊ ij γ̃G,j

,(4.5a)

with either 0 ≤ γ̃G,j < π̊j(γG,j + γK,j) or γ̃G,j = γG,j + γK,j = 0, for each j = 1, . . . ,m.
Moreover, let the initial τ̊0

j , σ̆
0
` > 0 satisfy, for some 0 < δ < κ < 1, ρx, ρ` ≥ 0 (` = 1, . . . , n)

and with wij,` as in (4.3), the bounds

1− κ ≥

∥∥∥∥∥∥
∑
j∈S̊(i)

√
wij,`σ̆

0
` τ̊

0
j

π̊j
Q`∇K(xi)Pj

∥∥∥∥∥∥
2

(4.6a)

and

δ ≥ τ̊0
j

sL+ τ̊0
j ·

{
2(1− π̊j)(γG,j + γK,j)

γG,j+γK,j−γ̃G,j
π̊j(γG,j+γK,j)−γ̃G,j if γG,j + γK,j > 0,

0 if γG,j + γK,j = 0,
(4.6b)
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with

sL := L3 + L
(

max
j=1,...,m

( 1

π̊j
+ 1
)2∑n

`=1 ρ` + nL
2αy

ρ2
x

)
(i ∈ N; j = 1, . . . ,m).(4.6c)

Assume for A :=
∑
j∈S(i)(̊πj)

−1Pj that

Ei−1[θA] ≥ p−p
∑n
`=1 ζ

1−p
` ρ2−p

` and(4.7a)

1 = P[‖xi+1 − x̂‖ ≤ ρx, ‖Q`(yi+1 − ŷ)‖PNL ≤ ρ`, (` = 1, . . . , n) | Oi−1].(4.7b)

Then E[‖Pj(xN − x̂)‖2] → 0 at the rate O(1/N) for all j such that γ̃G,j > 0 and
E[‖Q`(yN − ŷ)‖2]→ 0 at the rate O(1/N) for all ` such that sγF∗,` > 0.

Proof. We use Theorem 3.11 whose conditions we need to verify. We have already verified
the nesting condition (2.9) for V̊ (i + 1) = ∅, V (i + 1) = {1, . . . , n}, and S̊(i) = S(i) in
Algorithm 4.1. The coupling condition (3.24), we have reduced to (4.1), which we now verify.
For some η0 > 0 we set ηi ≡ η0, φ0

j := η0(̊πj τ̊
0
j )−1, and ψ0

` := η0/σ̆0
` . Then we update

(4.8) φi+1
j = (1 + 2τ̊ ij γ̃G,j)φ

i
j , ψi+2

` = (1 + 2σ̆i+1
` sγF∗,`)ψ

i+1
` .

By (4.5), consequently, σ̆i+1
` ψi+1

` = ηi+1 = π̊jφ
i+1
j τ̊ i+1

j for all ` and j. Consequently, (4.1)
holds. Clearly, so does (3.14) due to the deterministic step length and testing parameter updates.
The conditions (3.25) follow from (4.7) given that θΦiTi = ηiθA = ηi+1θA = σ̆i+1

` ψi+1
` θA.

The step length parameters τ̊ ij and σ̆i+1
` are non-increasing in i by the defining identi-

ties (4.5). Also using (4.6a), we thus verify (4.2). Now Theorem 4.1 verifies (3.6).
We still need to verify Theorem 3.11 (i) and (ii). Regarding the latter, the inequality

ψi+2
` ≤ (1 + 2σ̆i+1

` sγi+1
F∗,`)ψ

i+1
` holds trivially as long as sγi+1

F∗,` ≥ 0, which follows from
the assumptions on γF∗,`. Therefore, Theorem 3.11 (ii) option (a) holds. Regarding Theo-
rem 3.11 (i), we first of all observe that (3.23) reduces to ci∗ = nL2ηi+1ρ2

x/(2αy). Moreover,
in Algorithm 4.1 we took ωij := sωi/π̊j = 1/π̊j by (4.5). Consequently, (3.26) becomes

Lij := L3 +
(
L max
j∈S(i)

(ωij + 1)2∑m
`=1 ψ

i+1
` σ̆i+1

` ρ` +
nL2ηi+1ρ2

x

2αy

)
1

φij τ̊
i
j

= L3 + Lπ̊j

(
max
j∈S(i)

(1/π̊j + 1)2∑n
`=1 ρ` + nL

2αy
ρ2
x

)
ηi+1

ηi ≤ sL.
(4.9)

We now consider two cases for satisfying Theorem 3.11 (i) option (a) or (b):
(A) If γG,j + γK,j = 0, then γ̃G,j = 0 and φi+1

j = φij by (4.8), so option (a) holds.
(B) If γG,j + γK,j > 0, then (4.6b), (4.9), and τ̊ ij ≤ τ̊0

j show (3.40a), hence (b) holds.
We can now apply Theorem 3.11 to obtain (3.29). From (4.8) we have

φi+1
j = φij + 2γ̃G,jη

i/π̊j = φij + 2γ̃G,jη
1/π̊j = . . . = φ1

j + 2iγ̃G,jη
1/π̊j and

ψi+2
` = ψi+1

` + 2sγF∗,`η
i+1 = ψi+1

` + 2sγF∗,`η
1 = . . . = ψ1

` + 2(i+ 1)sγF∗,`η
1.

Therefore, for any j such that γ̃G,j > 0 and ` such that sγF∗,` > 0, φNj and ψN+1
` grow as

Ω(N). This together with (3.29) yields the claim.
We can improve the convergence to O(1/N2) in the primal variable if all the primal

blocks exhibit second-order growth. This is achieved by making the dual step lengths grow as
in the basic single-block convex case of [7].
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THEOREM 4.5. Suppose that Assumption 3.1, 3.2, and 3.4 hold with L,L3 ≥ 0,
p ∈ [1, 2], γG,j+γK,j > 0 (j = 1, . . . ,m), and sγF∗,` ≥ 0 (` = 1, . . . , n), for some αy, ζ` ≥ 0
as defined in (4.4). Let the iterates {ui = (xi, yi)}i∈N be generated by Algorithm 4.1 with
iteration-independent probabilities π̊ij ≡ π̊j and step length parameters

σ̆i+1
` :=

σ̆i`
sωi
, τ̊ i+1

j :=
1

1 + 2τ̊ ij γ̃G,j

τ̊ ij
sωi
, and sωi := max

j=1,...,m

1√
1 + 2τ̊ ij γ̃G,j

(4.10)

with 0 < γ̃G,j < π̊j(γG,j + γK,j). Moreover, let the initial τ̊0
j , σ̆

0
` > 0 satisfy, for some

0 < δ ≤ κ < 1, ρx, ρ` ≥ 0 (` = 1, . . . , n) and with wij,` as in (4.3), the bounds

1− κ ≥

∥∥∥∥∥∥
∑
j∈S̊(i)

√
wij,`σ̆

0
` τ̊

0
j

π̊j
Q`∇K(xi)Pj

∥∥∥∥∥∥
2

(i ∈ N) and(4.11a)

δ ≥ τ̊0
j

(
sL+ 2(1− π̊j)(γG,j + γK,j)

γG,j + γK,j − γ̃G,j
π̊j(γG,j + γK,j)− γ̃G,j

)
with(4.11b)

sL := L3 +
L

sω0

(
max

j=1,...,m

( 1

π̊j
+ 1
)2∑n

`=1 ρ` + nL
2αy

ρ2
x

)
.(4.11c)

Assume for A :=
∑
j∈S(i)(̊πj)

−1Pj that

Ei−1[θA] ≥ p−p
∑n
`=1 ζ

1−p
` ρ2−p

` /sω0 and(4.12a)

1 = P[‖xi+1 − x̂‖ ≤ ρx, ‖Q`(yi+1 − ŷ)‖PNL ≤ ρ`, (` = 1, . . . , n) | Oi−1].(4.12b)

Then E[‖Pj(xN − x̂)‖2]→ 0 at the rate O(1/N2) for all j.
Proof. We use Theorem 3.11 whose conditions we need to verify. We have already

verified the nesting conditions (2.9) for the choices V̊ (i+ 1) = ∅, V (i+ 1) = {1, . . . , n}, and
S̊(i) = S(i) in Algorithm 4.1. The coupling condition (3.24) we have reduced to (4.1). To
verify (4.1), we initialise φ0

j := η0(̊π0
j τ̊

0
j )−1 and ψ0

` := η0/σ̆0
` for some η0 > 0 and update

(4.13) φi+1
j := (1 + 2τ̊ ij γ̃G,j)φ

i
j , ψi+1

` := ψi`, and ηi+1 := ηi/sωi.

Then from (4.10), ψi+1
` σ̆i+1

` = ψi`σ̆
i
`/sωi and φi+1

j τ̊ i+1
j = φij τ̊

i
j/sωi. Therefore, (4.1) holds by

induction. Clearly, also (3.14) holds due to the step length and testing parameters being updated
deterministically. Conditions (3.25) follow from (4.12) and (4.1) given that τ̊ ij decreases, so
sωi ≥ sω0 and θΦiTi = ηiθA = ηi+1

sωiθA.
We now verify (3.6). By (4.10) and (4.13), we get φi+1

j (̊τ i+1
j )2 ≤ φij (̊τ ij)2. This and (4.1)

yield

sωiσ̆i+1
` τ̊ ij =

ηiτ̊ ij

ψi+1
`

=
φij (̊τ

i
j)

2

ψi+1
` π̊j

≤
φ0
j (̊τ

0
j )2

ψi+1
` π̊j

=
η0τ̊0

j

ψ0
`

= σ̆0
` τ̊

0
j .

Combining this estimate with (4.11a), we verify (4.2). Thus, Theorem 4.1 establishes (3.6).
We still need to verify Theorem 3.11 (i) and (ii). Regarding the dual test, the bound

ψi+2
` = ψi+1

` ≤ (1 + 2σ̆i+1
` sγi+1

F∗,`)ψ
i+1
` holds trivially as long as sγi+1

F∗,` ≥ 0, which follows
from the assumptions on γF∗,`. Therefore, Theorem 3.11 (ii) option (a) holds. As far as
Theorem 3.11 (i) is concerned, we observe that (3.23) reduces to ci∗ = nL2ηi+1ρ2

x/(2αy).
Consequently, (3.26) becomes

(4.14) Lij := L3 + Lπ̊j( max
j∈S(i)

(ωij + 1)2∑n
`=1 ρ` + nL

2αy
ρ2
x)ηi+1/ηi ≤ sL
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Algorithm 4.2 Full dual updates #2.
Assume the problem structure (P), equivalently (S). For each iteration i ∈ N,
choose a sampling pattern for generating the random set of updated dual blocks
V (i + 1) ∈ R(Oi;P{1, . . . , n}) with the corresponding blockwise probabilities
π̊ij := P[j ∈ S(i) | Oi−1] > 0. Choose a rule for the iteration and block-dependent
step length parameters τ̊ ij , σ̆

i+1
` , sωi > 0 based on one of the Theorems 4.5, 4.4, or 4.7. Pick

an initial iterate (x0, y0), and in each iteration i ∈ N, update all blocks xi+1
j = Pjx

i+1

(j = 1, . . . ,m) and yi+1
` = Q`y

i+1 (` = 1, . . . , n) of xi+1 and yi+1 as:

xi+1
j :=

{
(I + τ̊ ijPj∂GjPj)

−1(xij − τ̊ ijPj∇K(xi)∗yi), j ∈ S(i),

xij , j /∈ S(i),

yi+1
` := (I + σ̆i+1

` Q`∂F
∗
` Q`)

−1

(
yi` + σ̆i+1

` Q`K(xi)

+ σ̆i+1
`

∑
j∈S(i)

(
sωi

π̊ij
+ 1

)
Q`∇K(xi)(xi+1

j − xij)
)
.

thanks to ωij := sωi/π̊j ≤ 1/π̊j and sωi ≥ sω0. Also, with γ̃iG,j < (̊πjγG,j + γK,j), (4.11b),
(4.14), and τ̊ ij ≤ τ̊0

j show (3.40a), hence, (3.30). Therefore, Theorem 3.11(i) option (b) holds
for every j = 1, . . . ,m.

We can thus apply Theorem 3.11 to obtain (3.29). Multiplying the τ -update of (4.10) by
2γ̃G,j , plugging in sωi, and taking the inverse, we have

(2τ̊ i+1
j γ̃G,j)

−1 =
1 + 2τ̊ ij γ̃G,j

2τ̊ ij γ̃G,j

√
1 + minj=1,...,m(2τ̊ ij γ̃G,j)

=
1 + (2τ̊ ij γ̃G,j)

−1√
1 + (maxj=1,...,m(2τ̊ ij γ̃G,j)

−1)−1
.

We now apply Theorem B.1 with zij = (2τ̊ ij γ̃G,j)
−1 to get

max
j=1,...,m

(2τ̊Nj γ̃G,j)
−1 ≤ sz0 +N/2

with sz0 > 0. Then from (4.13), we have

φN+1
j ≥ (1 + min

j=1,...,m
(2τ̊ ij γ̃G,j))φ

N
j ≥

(
1 +

1

sz0 +N/2

)
φNj =

2sz0 +N + 2

2sz0 +N
φNj

=
2sz0 +N + 2

2sz0 +N

2sz0 +N + 1

2sz0 +N − 1
φN−1
j = . . . =

(2sz0 +N + 2)(2sz0 +N + 1)

2sz0(2sz0 + 1)
φ0
j .

Therefore, φNj grows as Ω(N2), so we obtain the claimed convergence rates from (3.29).
In Algorithm 4.1, we chose ωij to eliminate the∇K(xi)-term from the dual step. Selecting

ωij = −1 keeps this term but eliminates the necessity to have a finite ρ` as long as p = 2, as
(3.26) and (3.25b) will no longer depend on it. This yields Algorithm 4.2 and the following
corollary:
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COROLLARY 4.6. Theorems 4.4 and 4.5 apply to Algorithm 4.2 if Assumption 3.2 holds
with p = 2, and instead of (4.6c), (4.11c), (4.7b), and (4.12b), we assume

sL := L3 + nL2ρ2
x/(2αy) and P[‖xi+1 − x̂‖ ≤ ρx | Oi−1] = 1.

Proof. The proof remains exactly the same as those of Theorems 4.4 and 4.5. Inserting
ωij = −1, then (4.9) and (4.14) as well as (4.7a) and (4.12a) loose their dependency on ρ`.
Hence, ρ` can be taken infinitely large.

4.2. Linear convergence. If all the primal and dual blocks exhibit second-order growth,
i.e., sγF∗,` > 0 and γG,j + γK,j > 0, then we obtain linear convergence:

THEOREM 4.7. Suppose that Assumptions 3.1, 3.2, and 3.4 hold with L,L3 ≥ 0,
p ∈ [1, 2], γG,j+γK,j > 0 (j = 1, . . . ,m), and sγF∗,` > 0 (` = 1, . . . , n), for some αy, ζ` ≥ 0
as defined in (4.4). Let the iterates {ui = (xi, yi)}i∈N be generated by Algorithm 4.1 with
iteration-independent probabilities π̊ij ≡ π̊j and step length parameters

τ̊ i+1
j :=

τ̊ ij
(1 + 2τ̊ ij γ̃G,j)sω

, σ̆i+1
` :=

σ̆i`
(1 + 2σ̆i`sγF∗,`)sω

, and(4.15a)

sωi ≡ sω := max

{
max

j=1,...,m

1

1 + 2τ̊0
j γ̃G,j

, max
`=1,...,n

1

1 + 2σ̆0
`sγF∗,`

}
(4.15b)

with 0 < γ̃G,j < π̊j(γG,j + γK,j). Moreover, let the initial τ̊0
j , σ̆

0
` > 0 satisfy, for some

0 < δ < κ < 1, ρx, ρ` ≥ 0, (` = 1, . . . , n) and with wij,` as in (4.3), the bounds

1− κ ≥

∥∥∥∥∥∥
∑
j∈S̊(i)

√
wij,`σ̆

0
` τ̊

0
j

π̊j
Q`∇K(xi)Pj

∥∥∥∥∥∥
2

and

(4.16a)

δ ≥ τ̊0
j

(
sL+ 2(1− π̊j)(γG,j + γK,j)

γG,j + γK,j − γ̃G,j
π̊j(γG,j + γK,j)− γ̃G,j

)
with(4.16b)

sL := L3 +
L

sω

(
max

j=1,...,m

(
sω

π̊j
+ 1

)2∑n
`=1 ρ` + nL

2αy
ρ2
x

)
(i ∈ N, j ∈ S(i)).(4.16c)

Further assume for A :=
∑
j∈S(i)(̊πj)

−1Pj that

Ei−1[θA] ≥ p−p
∑n
`=1 ζ

1−p
` ρ2−p

` /sω and(4.17a)

1 = P[‖xi+1 − x̂‖ ≤ ρx, ‖Q`(yi+1 − ŷ)‖PNL ≤ ρ`, (` = 1, . . . , n) | Oi−1].(4.17b)

Then E[‖Pj(xN− x̂)‖2] and E[‖Q`(yN− ŷ)‖2] converge to zero at the linear rateO((1/sω)N )
for all j ∈ {1, . . . ,m} and ` ∈ {1, . . . , n}.

Proof. We use Theorem 3.11 whose conditions we need to verify. We have already
verified the nesting condition (2.9) for the choices V̊ (i+ 1) = ∅, V (i+ 1) = {1, . . . , n}, and
S̊(i) = S(i) in Algorithm 4.1. The coupling condition (3.24) we have reduced to (4.1). To
verify (4.1), we initialise φ0

j := η0(̊π0
j τ̊

0
j )−1 and ψ0

` := η0/σ̆0
` for some η0 > 0 and update

(4.18) φi+1
j := (1 + 2τ̊ ij γ̃G,j)φ

i
j , ψi+1

` := (1 + 2σ̆i`sγF∗,`)ψ
i
`, and ηi+1 := ηi/sω.

Then from (4.15), ψi+1
` σ̆i+1

` = ψi`σ̆
i
`/sω and φi+1

j τ̊ i+1
j = φij τ̊

i
j/sω. Therefore, (4.1) holds by

induction. Clearly, also (3.14) holds as the step length and testing parameters are updated deter-
ministically. The conditions (3.25) follow from (4.17) given that θΦiTi = ηiθA = sωηi+1θA.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

NON-CONVEX PRIMAL-DUAL BLOCK-PROXIMAL SPLITTING 535

We now prove (3.6). We start by proving by induction that

(4.19) sω = max

{
max

j=1,...,m

1

1 + 2τ̊ ij γ̃G,j
, max
`=1,...,n

1

1 + 2σ̆i`sγF∗,`

}
,

in other words, sω−1 = 1 + min
{

minj=1,...,m 2τ̊ ij γ̃G,j ,min`=1,...,n 2σ̆i`sγF∗,`

}
. The inductive

base for i = 0 is clear from (4.15b). Using (4.15a), we obtain

min

{
min

j=1,...,m
2τ̊ i+1
j γ̃G,j , min

`=1,...,n
2σ̆i+1

` sγF∗,`

}
=

1

sω
min

{
min

j=1,...,m

1

1 + (2τ̊ ij γ̃G,j)
−1
, min
`=1,...,n

1

1 + (2σ̆i`sγF∗,`)
−1

}
=

1

sω

1

1 + min−1
{

minj=1,...,m 2τ̊ ij γ̃G,j ,min`=1,...,n 2σ̆i`sγF∗,`

}
= min

{
min

j=1,...,m
2τ̊ ij γ̃G,j , min

`=1,...,n
2σ̆i`sγF∗,`

}
.

This establishes the inductive step, hence (4.19). By (4.19) and (4.15a), τ̊ i+1
j and σ̆i+1

` are
non-increasing in i. Also using (4.16a), this verifies (4.2). Thus, Theorem 4.1 verifies (3.6).

We need to verify Theorem 3.11 (i) and (ii). Option (a) of the latter is trivially satisfied
for every ` = 1, . . . , n based on (4.18). Regarding Theorem 3.11 (i), we first of all observe
that (3.23) reduces to ci∗ = nL2ηi+1ρ2

x/(2αy). Consequently, (3.26) becomes

(4.20) Lij := L3 + Lπ̊j( max
j∈S(i)

(ωij + 1)2∑n
`=1 ρ` + nL

2αy
ρ2
x)ηi+1/ηi ≤ sL

for ωij := sωi/π̊j as in Algorithm 4.1. And with γ̃G,j < π̊j(γG,j + γK,j), the inequalities
(4.16b), (4.20), and τ̊ i+1

j ≤ τ̊0
j show (3.40a). Therefore, Theorem 3.11(i) option (b) holds for

every j = 1, . . . ,m.
We can now apply Theorem 3.11 to obtain (3.29). By (4.18) and (4.19) we have

φN+1
j = (1 + 2τ̊Nj γ̃G,j)φ

N
j ≥ φNj /sω ≥ . . . ≥ φ0

j/sωN+1 and

ψN+1
` = (1 + 2σ̆N` sγF∗,`)ψ

N
` ≥ ψN` /sω ≥ . . . ≥ ψ0

`/sωN+1.

Applying these estimates in (3.29) establishes the claimed linear convergence rates.
Similarly to Algorithm 4.2, we could, in the derivation of Algorithm 4.1, set ωij = −1 to

remove any dependencies on ρ` from (4.16c) and (4.17a). This yields Algorithm 4.2 and the
following result:

COROLLARY 4.8. Theorem 4.7 applies to Algorithm 4.2 if Assumption 3.2 holds with
p = 2 and (4.16c) and (4.17b) are replaced with

sL ≥ L3 + nL2ρ2
x/(2αysω) and P[‖xi+1 − x̂‖ ≤ ρx | Oi−1] = 1.

Proof. The proof remains exactly the same as in Theorem 4.7 given all ωij = −1 in (4.20)
and (4.17a) no longer depend on ρ`, hence ρ` can be taken infinitely large.

REMARK 4.9 (Stochastic block-coordinate forward-backward splitting). Let F (z) := z
for z ∈ R and K ∈ C1(X). Then F ∗(y) = δ{1}(y). Taking n = 1 and Q1 = I results in
(I + σ̆i+1

1 Q1∂F
∗Q1)−1 ≡ 1. Consequently yi ≡ 1 in all iterations, so that the updates of

Algorithms 4.1 and 4.2 reduce to

(4.21) xi+1
j :=

{
(I + τ̊ ijPj∂GjPj)

−1(xij − τ̊ ijPj∇K(x)), j ∈ S(i),

xij , j /∈ S(i),
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In the step length conditions of Theorems 4.4, 4.5, and 4.7, we can moreover take ρ1 = 0
and let γF∗,1 ↗ ∞, consequently ay ↗ ∞. In particular, in all the theorems, sL = L3, so
that when π̊j = 1, the upper bounds for the primal step lengths reduce to δ ≥ τ̊0

j L3 for some
δ ∈ (0, 1) similarly to the standard condition in forward-backward splitting-type methods.
Moreover, by (A.1), γK,1 is simply a (reduced) factor of strong monotonicity of K at x̂
as defined in Assumption 3.4. Finally, since we can take σ̆0

1 > 0 arbitrarily small without
affecting the updates (4.21), the conditions in the theorems corresponding to (3.5) become
irrelevant.

5. Methods with full primal updates. We continue with developing more specific
methods and their convergence results based on the updates of (2.13) and the conditions of
Theorem 3.11. We now take S̊(i) = ∅, S(i) = {1, . . . ,m}, and V̊ (i + 1) = V (i + 1) for
all iterations i. Then the nesting condition (2.9) of Theorem 3.11 holds, and the coupling
condition (3.24) becomes

(5.1) φij τ̆
i
j = ηi+1 = ν̊i+2

` ψi+2
` σ̊i+2

` .

Taking Ωi = −I , the updates of (2.13) simplify to those of Algorithm 5.1 since for the last
two terms in the primal update we have

τ̆ ijy
i+1
` +

ψi+1
` σi+1

`

φij
(yi+1
` − yi`) = τ̆ ij

(
yi+1
` +

sωi

ν̊i+1
`

(yi+1
` − yi`)

)
for sωi :=

ηi

ηi+1
.

Moreover, (2.12) reduces to λij,` = −σi+1
` ψi+1

` . We thus verify (3.6) via the following lemma:
LEMMA 5.1. Suppose that S̊(i) = ∅, S(i) = {1, . . . ,m}, and V̊ (i + 1) = V (i + 1)

for i ∈ N, the coupling condition (5.1) holds, and sωi ≤ 1. Moreover, suppose that for all
` = 1, . . . , n, j = 1, . . . ,m,

(5.2) σ̊i+1
` τ̆ ij ≤ σ̊1

` τ̆
0
j , and 1− κ ≥

∥∥∥∥∥∥
m∑
j=1

√
wij,`σ̊

1
` τ̆

0
j

ν̊i+1
`

Q`∇K(xi)Pj

∥∥∥∥∥∥
2

for some 0 ≤ κ ≤ 1 and wj,`,k = 1/wj,k,` > 0 such that

wij,` := χVij (`)
∑

k∈sVij(`)

wj,`,k(5.3a)

with

sVij(`) = {k ∈ {1, . . . , n} | Q`∇K(xi)Pj∇K(xi)∗Qk 6= 0, ` ∈ V̊ (i+ 1)}.(5.3b)

Then the lower bound (3.6) holds.
Proof. By the first part of (5.2), (5.1), and λij,` = −σi+1

` ψi+1
` = −σ̊i+1

` ψi+1
` , we have

σ̊1
` τ̆

0
j ≥ σ̊i+1

` τ̆ ij =
(̊σi+1
` ψi+1

` )2τ̆ ij

σ̊i+1
` (ψi+1

` )2
=

(λij,`)
2ν̊i+1
`

ψi+1
` φij

(j = 1, . . . ,m).

By the orthogonality of the projections Pj , we may insert this estimate into the second part
of (5.2), obtaining (3.5); compare the proof of Theorem 3.5. The definition of sVij(`) in (3.3)
also reduces to that in (5.3b), while the definition of wij,` in (5.3a) is exactly that in (3.4). We
finish by applying Theorem 3.5 to verify (3.6).

REMARK 5.2. The first part of (5.2) is a relaxation of the property τ iσi+1 = τ0σ1 that
would be satisfied by a dual-first variant of the basic PDPS; compare Theorem 4.2.
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Algorithm 5.1 Full primal updates.
Assume the problem structure (P), equivalently (S). For each iteration i ∈ N,
choose a sampling pattern for generating the random set of updated dual blocks
V (i + 1) ∈ R(Oi;P{1, . . . , n}) with the corresponding blockwise probabilities
ν̊i+1
` := P[` ∈ V (i + 1) | Oi−1] > 0. Also choose a rule for the iteration and block-

dependent step length parameters σ̊i+1
` , τ̆ ij , sωi > 0 from one of the Theorems 5.3, 5.4, or 5.5.

Pick an initial iterate (x0, y0), and in each iteration i ∈ N, update all blocks xi+1
j = Pjx

i+1

(j = 1, . . . ,m) and yi+1
` = Q`y

i+1 (` = 1, . . . , n) of xi+1 and yi+1 as:

yi+1
` :=

{
(I + σ̊i+1

` Q`∂F
∗
` Q`)

−1(yi` + σ̊i+1
` Q`K(xi)), ` ∈ V (i+ 1),

yi`, ` /∈ V (i+ 1),

xi+1
j := (I + τ̆ ijPj∂GjPj)

−1Pj

(
xij − τ̆ ij∇K(xi)∗

∑
`∈V (i+1)

(
yi+1
` +

sωi

ν̊i+1
`

(yi+1
` − yi`)

))
.

Finally, we also remind that for this section, (3.27) and (3.28) simplify to

sγiGK,j ≡ γG,j + γK,j − αx,(5.4a)

and

sγi+1
F∗,` ≡ sγF∗,` :=

{
γF∗,`, Q`PNL = 0,

γF∗,` − (p− 1)ζ`, Q`PNL 6= 0.
(5.4b)

5.1. Accelerated rates. As in Section 4, we start with simple step length rules that yield
O(1/N)-convergence rates for those blocks that exhibit second-order growth.

THEOREM 5.3. Suppose that Assumption 3.1, 3.2, and 3.4 hold with L,L3 ≥ 0,
p ∈ [1, 2], γG,j + γK,j > 0 (j = 1, . . . ,m), and γF∗,` ≥ (p − 1)ζ`, for some ζ` ≥ 0 when
Q`PNL 6= 0 (` = 1, . . . , n). Let the iterates {ui = (xi, yi)}i∈N be generated by Algorithm 5.1
with iteration-independent probabilities ν̊i` ≡ ν̊` and step lengths

(5.5) σ̊i+1
` :=

σ̊i`
1 + 2σ̊i`γ̃F∗,`

, sωi ≡ 1, and τ̆ i+1
j :=

τ̆ ij
1 + 2τ̆ ij γ̃G,j

with 0 ≤ γ̃G,j < γG,j + γK,j (j = 1, . . . ,m) and either 0 ≤ γ̃F∗,` < ν̊`sγF∗,` or
γ̃F∗,` = sγF∗,` = 0 for each ` = 1, . . . , n, and sγF∗,` defined in (5.4). Moreover, sup-
pose that the initial τ̆0

j , σ̊
1
` > 0 satisfy, for some ρ` ≥ 0 (` = 1, . . . , n), 0 < δ < κ < 1 and

with wij,` as in (5.3), the bounds

1− κ ≥

∥∥∥∥∥∥
m∑
j=1

√
wij,`σ̊

1
` τ̆

0
j

ν̊`
Q`∇K(xi)Pj

∥∥∥∥∥∥
2

,(5.6a)

δ ≥ τ̆0
j

(
L3 +

mL2

2 minj=1,...,m(γG,j + γK,j − γ̃G,j)

n∑
`=1

ρ2
`

)
, and(5.6b)

κ− δ
1− δ

≥ 2χV (i+1)(`)(1− ν̊`)sγF∗,`σ̊
1
`

sγF∗,` − γ̃F∗,`
ν̊`sγF∗,` − γ̃F∗,`

(i ∈ N; j = 1, . . . ,m).(5.6c)
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Assume that

θI ≥ p−p
∑n
`=1(̊ν`)

2ζ1−p
` ρ2−p

` and(5.7a)

1 = P[‖Q`(yi+1 − ŷ)‖PNL ≤ ρ`, (` = 1, . . . , n) | Oi−1].(5.7b)

Then E[‖Pj(xN − x̂)‖2] → 0 at the rate O(1/N) for all j such that γ̃G,j > 0 and
E[‖Q`(yN − ŷ)‖2]→ 0 at the rate O(1/N) for all ` such that γ̃F∗,` > 0.

Proof. We will use Theorem 3.11, whose conditions we need to verify. With the choice of
S̊(i) = ∅, S(i) = {1, . . . ,m}, and V̊ (i+ 1) = V (i+ 1) in Algorithm 5.1, we have already
verified the nesting conditions (2.9) and reduced the coupling conditions (3.24) to (5.1). To
verify (5.1), we set φ0

j = η1/τ̆0
j , ψ2

` = η1/(̊σ2
` ν̊`) for some η1 > 0 and update

(5.8) φi+1
j = (1 + 2τ̆ ij γ̃G,j)φ

i
j , ψi+2

` = (1 + 2σ̊i+1
` γ̃F∗,`)ψ

i+1
` , and ηi+1 := ηi.

Then ν̊`σ̊i+2
` ψi+2

` = ηi+1 = φij τ̆
i
j due to (5.5) for all ` and j, and (5.1) follows. Clearly,

also (3.14) holds because the step length and testing parameters are updated deterministi-
cally. The conditions (3.25) follow from (5.7) given that in Assumption 3.2 we can take
θΦiTi = ηi+1θI = ηiθI = ψi+1

` σ̆i+1
` θI/ν̊` and ρx can be taken infinitely large.

The step length parameters σ̊i+1 and τ̆ ij are non-increasing in i by the defining identi-
ties (5.5). Also using (5.6a), we thus verify (5.2). Hence Theorem 5.1 establishes (3.6).

We still need to verify Theorem 3.11 (i) and (ii). As far as the former is concerned,
φi+1
j ≤ (1 + 2τ̆ ij γ̃G,j)φ

i
j follows from (5.8). Moreover, after applying (5.1), the identities

(3.23) and (3.26) reduce to

ci∗ =
mL2ηi+1

2αx

n∑
`=1

ρ2
` and Lij = L3 +

mL2

2αx

n∑
`=1

ρ2
` .

Thus, by setting αx = minj=1,...,m(γG,j + γK,j − γ̃G,j) > 0, Theorem 3.11 (i) option (a)
follows for every j from (5.6b) and τ̆ i+1

j being non-increasing. Regarding the dual test, we
have ψi+2

` ≤ (1 + 2σ̊i+1
` γ̃i+1

F∗,`)ψ
i+1
` , which together with (5.6c) leads to (3.40b). Therefore,

Theorem 3.11 (ii) option (b) holds for every `.
We can now apply Theorem 3.11 to obtain (3.29). From (5.8) we have

φi+1
j = φij + 2γ̃G,jη

i+1 = φij + 2γ̃G,jη
1 = . . . = φ0

j + 2iγ̃G,jη
1 and

ψi+2
` = ψi+1

` + 2γ̃F∗,`η
i/ν̊` = ψi+1

` + 2γ̃F∗,`η
1/ν̊` = . . . = ψ1

` + 2(i+ 1)γ̃F∗,`η
1/ν̊`.

Therefore, for any primal block j with γ̃G,j > 0 and dual block ` with γ̃F∗,` > 0, φNj and
ψN+1
` grow as Ω(N), respectively. This together with (3.29) gives the claim.

We get improved O(1/N2)-rates if all primal blocks exhibit second-order growth:
THEOREM 5.4. Suppose that Assumption 3.1, 3.2, and 3.4 hold with L,L3 ≥ 0,

p ∈ [1, 2], γG,j + γK,j > 0 (j = 1, . . . ,m) and γF∗,` ≥ (p − 1)ζ`, for some ζ` when
Q`PNL 6= 0 (` = 1, . . . , n). Let the iterates {ui = (xi, yi)}i∈N be generated by Algorithm 5.1
with iteration-independent probabilities ν̊i` ≡ ν̊` and step length parameters
(5.9)

σ̊i+2
` =

σ̊i+1
`

sωi
, τ̆ i+1

j =
1

1 + 2τ̆ ij γ̃G,j

τ̆ ij
sωi+1

, and sωi+1 := max
j=1,...,m

1√
1 + 2τ̆ ij γ̃G,j

,

with 0 < γ̃G,j < γG,j + γK,j (j = 1, . . . ,m). Moreover, suppose that the initial sω0 = 1, τ̆0
j

and σ̊1
` satisfy, for some ρ` ≥ 0 (` = 1, . . . , n), 0 < δ ≤ κ < 1 and with wij,` as in (5.3), the
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bounds

1− κ ≥

∥∥∥∥∥∥
m∑
j=1

√
wij,`σ̊

1
` τ̆

0
j

ν̊`
Q`∇K(xi)Pj

∥∥∥∥∥∥
2

and(5.10a)

δ ≥ τ̆0
j

(
L3 +

mL2

2 minj=1,...,m(γG,j + γK,j − γ̃G,j)

n∑
`=1

ρ2
`

)
(5.10b)

(i ∈ N; j = 1, . . . ,m).

Also assume

θI ≥ p−p
∑n
`=1(̊ν`)

2ζ1−p
` ρ2−p

` and(5.11a)

1 = P[‖Q`(yi+1 − ŷ)‖PNL ≤ ρ`, (` = 1, . . . , n) | Oi−1].(5.11b)

Then E[‖Pj(xN − x̂)‖2]→ 0 at the rate O(1/N2) for all j.
Proof. We will use Theorem 3.11 whose conditions we need to verify. With the choice of

S̊(i) = ∅, S(i) = {1, . . . ,m}, and V̊ (i+ 1) = V (i+ 1) in Algorithm 5.1, we have already
verified the nesting conditions (2.9) and reduced the coupling conditions (3.24) to (5.1). To
verify (5.1), we set φ0

j = η1/τ̆0
j an ψ2

` := η1/(̊ν`σ̊
2
` ) for some η1 > 0 and update

(5.12) φi+1
j := (1 + 2τ̆ ij γ̃G,j)φ

i
j , ψi+1

` := ψi`, and ηi+1 = ηi/sωi.

Then from (5.9), we inductively get ν̊`ψi+2
` σ̊i+2

` = ν̊`ψ
i+1
` σ̊i+1

` /sωi = ηi+1 for all `.
From (5.9), we also have inductively for all j that φi+1

j τ̆ i+1
j = φij τ̆

i
j/sωi+1 = ηi+2. There-

fore, (5.1) holds. Then, conditions (3.25) follow from (5.11) given that sωi ≤ 1 and in
Assumption 3.2 we can take θΦiTi = ηi+1θI = ηiθI/sωi = ψi+1

` σi+1
` θI/(̊ν`sω

i) and ρx
can be taken infinitely large. Clearly, also (3.14) holds because the step length and testing
parameters are updated deterministically.

We now verify (3.6). From (5.9) we obtain

σ̊i+2
` τ̆ i+1

j =
σ̊i+1
` τ̆ ij

sωisωi+1(1 + 2γ̃G,j τ̆ ij)
≤ σ̊i+1

` τ̆ ij

√
1 + 2γ̃G,j τ̆

i−1
j

1 + 2γ̃G,j τ̆ ij

≤ . . . ≤ σ̊2
` τ̆

1
j

√
1 + 2γ̃G,j τ̆0

j

1 + 2γ̃G,j τ̆ ij

= σ̊1
` τ̆

0
j

1

sω1
√

1 + 2γ̃G,j τ̆0
j

1

1 + 2γ̃G,j τ̆ ij
≤ σ̊1

` τ̆
0
j .

This and (5.10) verify (5.2). Thus, Theorem 5.1 establishes (3.6).
We still need to verify Theorem 3.11 (i) and (ii). Regarding the former, the inequality

φi+1
j ≤ (1 + 2τ̆ ij γ̃G,j)φ

i
j follows from (5.12). Moreover, after applying (5.1), equalities (3.23)

and (3.26) reduce to

ci∗ =
mL2ηi+1

2αx

n∑
`=1

ρ2
` and Lij = L3 +

mL2

2αx

n∑
`=1

ρ2
` .

Thus, by setting αx = minj=1,...,m(γG,j + γK,j − γ̃G,j) > 0, Theorem 3.11 (i) option (a)
follows for every j from the second inequality in (5.10) and τ̆ i+1

j being decreasing. As for
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Theorem 3.11 (ii), ψi+1
` = ψi+2

` ≤ (1 + 2χV (i+1)(`)σ
i+1
` sγi+1

F∗,`)ψ
i+1
` holds trivially as we

have assumed sγi+1
F∗,` ≥ 0. Thus, Theorem 3.11 (ii) option (a) holds for every `.

We can now use Theorem 3.11 to verify (3.29). Multiplying the τ -update of (5.9) by
2γ̃G,j , plugging in sωi+1, and taking the inverse, we get

(2τ̆ i+1
j γ̃G,j)

−1 =
1 + 2τ̆ ij γ̃G,j

2τ̆ ij γ̃G,j

√
1 + minj=1,...,m(2τ̆ ij γ̃G,j)

=
1 + (2τ̆ ij γ̃G,j)

−1√
1 + (maxj=1,...,m(2τ̆ ij γ̃G,j)

−1)−1
.

We then apply Theorem B.1 with zij = (2τ̆ ij γ̃G,j)
−1 to obtain

max
j=1,...,m

(2τ̆Nj γ̃G,j)
−1 ≤ sz0 +N/2

with sz0 > 0. Then, from (5.12), we have

φN+1
j ≥ (1 + min

j=1,...,m
(2τ̆ ij γ̃G,j))φ

N
j ≥

(
1 +

1

sz0 +N/2

)
φNj =

2sz0 +N + 2

2sz0 +N
φNj

=
2sz0 +N + 2

2sz0 +N

2sz0 +N + 1

2sz0 +N − 1
φN−1
j = . . . =

(2sz0 +N + 2)(2sz0 +N + 1)

2sz0(2sz0 + 1)
φ0
j .

Therefore, φNj grows as Ω(N2). We obtain the claimed convergence rates from (3.29).

5.2. Linear convergence. If all the primal and dual blocks exhibit second-order growth,
i.e., sγF∗,` > 0 and γG,j + γK,j > 0, then we obtain linear convergence:

THEOREM 5.5. Suppose that Assumptions 3.1, 3.2, and 3.4 hold with L,L3 ≥ 0,
p ∈ [1, 2], γG,j + γK,j > 0 (j = 1, . . . ,m). Let the iterates {ui = (xi, yi)}i∈N be generated
by Algorithm 5.1 with iteration-independent ν̊i` ≡ ν̊` and step lengths

τ̆ i+1
j :=

τ̆ ij
(1 + 2τ̆ ij γ̃G,j)sω

, σ̊i+2
` :=

σ̊i+1
`

(1 + 2σ̊i+1
` γ̃F∗,`)sω

, and(5.13a)

sωi ≡ sω := max

{
max

j=1,...,m

1

1 + 2τ̆0
j γ̃G,j

, max
`=1,...,n

1

1 + 2σ̊1
` γ̃F∗,`

}
(5.13b)

with 0 < γ̃G,j < γG,j + γK,j (j = 1, . . . ,m) and 0 < γ̃F∗,` < ν̊`sγF∗,` (` = 1, . . . , n), and
sγF∗,` defined in (5.4). Moreover, let the initial τ̆0

j , σ̊
1
` > 0 satisfy, for some 0 < δ < κ < 1,

ρ` ≥ 0 (` = 1, . . . , n) and with wij,` as in (5.3), the bounds

1− κ ≥

∥∥∥∥∥∥
m∑
j=1

√
wij,`σ̊

1
` τ̆

0
j

ν̊`
Q`∇K(xi)Pj

∥∥∥∥∥∥
2

,(5.14a)

δ ≥ τ̆0
j

(
L3 +

mL2

2 minj=1,...,m(γG,j + γK,j − γ̃G,j)

n∑
`=1

ρ2
`

)
, and(5.14b)

κ− δ
1− δ

≥ 2(1− ν̊`)sγF∗,`σ̊
1
`

sγF∗,` − γ̃F∗,`
ν̊`sγF∗,` − γ̃F∗,`

(5.14c)

(` ∈ V (i+ 1); j = 1, . . . ,m; i ∈ N).
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Further assume that

θI ≥ p−psω
∑n
`=1(̊ν`)

2ζ1−p
` ρ2−p

` and(5.15a)

1 = P[‖Q`(yi+1 − ŷ)‖PNL ≤ ρ`, (` = 1, . . . , n) | Oi−1].(5.15b)

Then E[‖Pj(xN − x̂)‖2]→ 0 and E[‖Q`(yN − ŷ)‖2]→ 0 at the linear rate O((1/sω)N ) for
all j ∈ {1, . . . ,m} and ` ∈ {1, . . . , n}.

Proof. We will use Theorem 3.11, whose conditions we need to verify. With the choice of
S̊(i) = ∅, S(i) = {1, . . . ,m}, and V̊ (i+ 1) = V (i+ 1) in Algorithm 5.1, we have already
verified the nesting conditions (2.9) and reduced the coupling conditions (3.24) to (5.1). To
verify (5.1), we set φ0

j = η1/τ̆0
j and ψ2

` := η1/(̊ν`σ̊
2
` ) for some η1 > 0 and update

(5.16) φi+1
j := (1 + 2τ̆ ij γ̃G,j)φ

i
j , ψi+1

` := (1 + 2σ̊i`γ̃F∗,`)ψ
i
`, and ηi+1 = ηi/sω.

Then from (5.13), we inductively get ν̊`ψi+2
` σ̊i+2

` = ν̊`ψ
i+1
` σ̊i+1

` /sω = ηi+1 for all ` and
φi+1
j τ̆ i+1

j = φij τ̆
i
j/sω = ηi+2 for all j. Therefore, (5.1) holds. Then, conditions (3.25) follow

from (5.15) given that in Assumption 3.2 we can take

θΦiTi = ηi+1θI = ηiθI/sω = ψi+1
` σi+1

` θI/(̊ν`sω)

and ρx can be taken infinitely large. Clearly, also (3.14) holds because the step length and
testing parameters are updated deterministically.

We now verify (3.6). We start by proving by induction that

(5.17) sω = max

{
max

j=1,...,m

1

1 + 2τ̆ ij γ̃G,j
, max
`=1,...,n

1

1 + 2σ̊i+1
` γ̃F∗,`

}
,

in other words,

sω−1 = 1 + min

{
min

j=1,...,m
2τ̆ ij γ̃G,j , min

`=1,...,n
2σ̊i+1

` γ̃F∗,`

}
.

The inductive base for i = 0 holds by (5.13b). Using (5.13a) yields

min

{
min

j=1,...,m
2τ̆ i+1
j γ̃G,j , min

`=1,...,n
2σ̊i+2

` γ̃F∗,`

}
=

1

sω
min

{
min

j=1,...,m

1

1 + (2τ̆ ij γ̃G,j)
−1
, min
`=1,...,n

1

1 + (2σ̊i+1
` γ̃F∗,`)−1

}
=

1

sω

1

1 + min−1
{

minj=1,...,m 2τ̆ ij γ̃G,j ,min`=1,...,n 2σ̊i+1
` γ̃F∗,`

}
= min

{
min

j=1,...,m
2τ̆ ij γ̃G,j , min

`=1,...,n
2σ̊i+1

` γ̃F∗,`

}
.

This establishes the inductive step, hence (5.17), which in turn shows that τ̆ ij and σ̊i+1
` as

updated according to (5.13a) are non-increasing in i. Also using (5.14) proves (5.2). Thus,
Theorem 5.1 verifies (3.6).

We need to verify Theorem 3.11 (i) and (ii). As for the former, (3.23) and (3.26) reduce to

ci∗ =
mL2

2αx

n∑
`=1

ρ2
`η
i+1 and Lij = L3 +

mL2

2αx

n∑
`=1

ρ2
` ,
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so (5.14) together with the non-increasing τ̆ ij and the update rule for φi+1
j in (5.16) verify

Theorem 3.11 (i) option (a) for every j and αx = minj=1,...,m(γG,j+γK,j− γ̃G,j). Regarding
the latter, since we take γ̃F∗,` < ν̊`sγF∗,`, we obtain (3.40b) using the last inequality of (5.14)
and that σ̊i+1

` is non-increasing by definition in (5.13). Hence, Theorem 3.11 (ii) option (b)
holds for every `.

Therefore, we can apply Theorem 3.11 to obtain (3.29). By (5.16) and (5.17),

φN+1
j = (1 + 2τ̆Nj γ̃G,j)φ

N
j ≥ φNj /sω ≥ . . . ≥ φ0

j/sωN+1 and

ψN+1
` = (1 + 2σ̊N` γ̃F∗,`)ψ

N
` ≥ ψN` /sω ≥ . . . ≥ ψ1

`/sωN .

Applying these estimates in (3.29) establishes the claimed linear convergence rates.
REMARK 5.6 (Stochastic sum-sampling forward-backward splitting). Consider the prob-

lem (1.1) with F ∗(y) = δ{~1} for ~1 := (1, . . . , 1) ∈ Rn and ∇K(x)∗y =
∑n
`=1∇J`(x)y(`)

with y = (y(1), . . . , y(n)). Taking Q`y := (0, . . . , 0, y(`), 0, . . . , 0), it follows that

(I + σ̆i+1
` Q`∂F

∗
` Q`)

−1 ≡ (0, . . . , 0, 1, 0, . . . , 0).

Consequently yi ≡ ~1 in all iterations, so that with just a single primal block with corresponding
step length τ̆ i = τ̆ i1, Algorithm 5.1 reduces to

xi+1 := (I + τ̆ i∂G)−1

(
xi − τ̆ i

∑
`∈V (i+1)

∇J`(xi)
)
.

With random V (i+ 1), this is a forward-backward splitting method that stochastically samples∑
` J` in (1.1). We can take any γF∗,` ∈ (0,∞), which in Theorems 5.3–5.5 also allows us to

take ζ` arbitrarily large and σ̊i` > 0 arbitrarily small. Consequently, the systems of step length
bounds (5.6) and (5.14) reduce to their second part (with first and third part unnecessary), and
(5.10) reduces to its second part. In other words, we only need to choose τ̆0 sufficiently small.

6. Numerical experience. We will now study the performance of our proposed methods
for two application problems: diffusion tensor imaging (DTI), which is a form of magnetic
resonance imaging (MRI), and electrical impedance tomography (EIT).

6.1. Diffusion tensor imaging. Diffusion tensor imaging is covered by the Stejskal–
Tanner equation: given a tensor field x : Ω → Sym2(R3) associating each point on the
domain Ω ⊂ R3 with a symmetric 2-tensor (presentable as a symmetric 3× 3 matrix) and a
non-diffusion-weighted image s0 : Ω→ R, then the diffusion-weighted image sk : Ω→ R
corresponding to a diffusion-sensitising gradient bk ∈ R3 is given by

(6.1) sk(ξ) = s0(ξ)e−〈x(ξ)bk,bk〉 (ξ ∈ Ω).

At each spatial point ξ, the tensor x(ξ) models the covariance of a Gaussian probability
distribution for the spatial directions of the diffusion of water at that point. Models more
advanced than DTI, such as HARDI, consider composite probability distributions at each ξ.
For our purposes, a simplified DTI model will be sufficient. One can measure sk and s0 by
suitable MRI pulse sequences, the inversion of a Fourier transform, and taking the absolute
value of a complex number; for details we refer to [1, 19] among others. We recommend [24]
as an introduction to MRI.

We want to determine x from noisy measurements of s0 and sk (k = 1, . . . , N ).
Clearly, (6.1) can be converted into an invertible system of linear equations with respect
to x if N ≥ 6 and the tensors bk ⊗ bk are linearly independent. With noise involved, to get a
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(a) Original helix. (b) Least squares reconstruction. (c) Regularised reconstruction.

FIG. 6.1. Visualisation of original helix data (a) and the reconstruction from noisy diffusion-weighted measure-
ments. The reference least-squares reconstruction in (b) is based on linearising (6.1) with respect to x by taking the
logarithm. The regularised reconstruction (c) is the numerical solution of (6.2) for α = 0.005 with the variant (d2)
of our method after 10000 iterations. The visualisation, generated with Teem [40], displays the tensor at each voxel
of the 3D volume as a cuboid oriented along the eigenvectors of the tensor with the size of each side proportional to
the corresponding eigenvalue. The cuboids are also colour-coded based on the principal eigenvector. Tensors with
too small eigenvalues are suppressed; in essence this suppresses the background outside the helix, letting the latter to
be inspected unobstructedly.

good-quality image, we want to obtain a regularised solution. We therefore consider a problem
of the form (P0), where G is a data term modelling (6.1) along with any noise and F ◦K is
the regulariser. Ideally, our data term would model the Rician noise distribution, which is the
distribution of the absolute value of a complex number when the latter has Gaussian noise
distribution. However, the numerical treatment of the Rician distribution is quite involved—we
refer to [17, 20] for some variational approaches—and instead of modelling it directly, a more
fruitful approach may be to work with complex data directly, even incorporating the Fourier
transform into our model. For the purposes of the present work, since we only use synthetic
data, we will therefore assume that the noise in sk is Gaussian. We note that (6.2) in infinite
dimensions requires the use of the Banach space of functions of bounded deformation, so, since
our algorithms require Hilbert spaces, only discretised versions of the model can be considered.
Consequently, taking the discretised domain Ωd := {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3}
and incorporating total deformation regularisation with parameter α > 0, we seek to solve

min
x:Ωd→Sym2(R3)

1

2
‖T (x)‖2 + α‖Edx‖F,1, where(6.2)

[T (x)]k := sk(ξ)− s0(ξ)e−〈x(ξ)bk,bk〉 (k = 1, . . . , N).

Here [Edx](ξ) ∈ Sym3(R3) is a forward–differences discretisation of the symmetrised gra-
dient, a symmetric third-order tensor. The F, 1-norm is based on taking pointwisely the
Frobenius norm of [Edx](ξ) and an integration over the space variable (1-norm). This model
is sightly simplified from our previous work in [37, 38, 39], where second-order total gener-
alised variation regularisation was considered, and we included a positivity semi-definiteness
constraint on x(ξ).

To write (6.2) in the form (S), we take with y = (µ, λ) the functions

G(x) := 0, K(x) := (Edx, T (x)), F ∗(y) := F ∗µ(µ) + F ∗λ (λ),

F ∗µ(µ) := δαB(µ), F ∗λ (λ) :=
1

2
‖λ‖2.
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(a) Multiple step length parametrisations of the non-
block-adapted reference algorithm (d1) to justify the
choice τ = 1/R.
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(d2)
(d3)
(d4)

(b) Comparison of the algorithm variants (d1)–(d4).
The dotted lines show the effect of accelerating the
dual blocks in (d3) and (d4) following Theorem 4.4.

FIG. 6.2. Reference algorithm step length justification (a) and algorithm performance (b) for the DTI problem.
Function values are on the vertical axis, and iteration counts are on the horizontal axis. Based on (a), we take
τ = 1/R in (b); τ = 5/R appears to have convergence issues, and τ = 0.5/R yields slower convergence.

Here B is the product of the voxelwise unit balls of Sym3(R3) over Ωd. To better satisfy the
conditions of our convergence theorems, we replace F ∗µ by F ∗µ,γ(µ) := δαB(µ) + γα−1‖µ‖2
with γ = 10−9. This is the same as applying Moreau–Yosida regularisation to ‖ · ‖F,1 in (6.2).

We generated our test data, a simple helix depicted in Figure 6.1, with the Teem toolkit [40].
The dimensions are n1 × n2 × n3 = 38× 39× 40. In the background, outside the helix, the
tensors are fully isotropic with the eigenvalues having a magnitude of 10% of the maximal
eigenvalue of the tensors within the helix. The exact generation details can be deciphered from
our codes [21] written in Julia [3]. After generating the helix data, we took s0(ξ) = ‖x(ξ)‖F .
Then we generated sk (k = 1, . . . , 6) from the Stejskal–Tanner equation (6.1) with the
diffusion-sensitising gradients b1 = (1, 0, 0), b2 = (0, 1, 0), b3 = (0, 0, 1), b4 = (

√
2,
√

2, 0),
b5 = (

√
2, 0,
√

2), and b6 = (0,
√

2,
√

2). To these diffusion-weighted images we added
synthetic Gaussian noise of standard deviation 30% of the mean magnitude of s0. As the
regularisation parameter in the model (6.2), we took α = 0.005.

We only consider deterministic updates. We develop step length rules for Algorithm 4.1
based on Theorem 4.4, however, although F ∗λ is strongly convex and the Moreau–Yosida
regularisation makes also F ∗µ,γ strongly convex, we generally do not employ acceleration and
instead keep the step length parameters fixed throughout the iterations. Therefore the theorem
does not generally provide any convergence claims.

For convenience, we will identify the linear primal indices j and dual indices ` (used for
arbitrary blocks) with symbolic indices corresponding to the different variables x, µ, λ and
their sub-blocks (used for specific blocks). The primal variable will be just a single block “x”
or be divided into voxelwise blocks “xξ” for ξ ∈ Ωd. The dual variable will consist of just a
single block “y”, the two blocks corresponding to the variables “µ” and “λ”, or “µ”, and the
sub-blocks “λk,ξ” over k = 1, . . . , N and ξ ∈ Ωd.

Of the conditions of Theorem 4.4, we will not seek to satisfy the boundedness (4.7);
following Theorem 3.13 this seems likely to hold if we initialise close enough to a solution
and take the primal step length parameters τ̊0

j small enough. However, we do not know,
how small and how close they are required theoretically. Likewise, (4.6b), which with
deterministic updates simplifies to δ ≥ τ̊0

j
sL, is satisfied by taking τ̊0

j small enough. To do
this exactly, we would need to calculate the constant L that satisfies the Lipschitz requirement
of Assumption 3.1. Theorem 3.4 readily holds (with the Moreau–Yosida regularisation, as
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discussed above) with γG,x = 0 and any 0 ≤ γF∗,µ ≤ γα−1 and 0 ≤ γF∗,λ ≤ 1. We take the
latter as well as αy and ζ` such that (4.4) yields sγF∗,` ≡ 0 for all `. Theorem 3.2 we do not
hope to verify in the confines of the present manuscript. With (4.6b) out of the way, for the
calculation of the step lengths, it would only be needed for the constants γK,j . We simply
make the reasonable assumption that we start close enough to a local minimiser satisfying the
“second-order necessary condition” γG,j + γK,j ≥ 0, i.e., γK,j ≥ 0. Then we may simply
assume γK,j = 0 and are justified in taking γ̃G,j = 0.

It remains to satisfy the relationship (4.6a) between the primal and dual step lengths.
Taking the weights wj,`,k = wij,`,k and the set of connections sVij(`) = sVj(`) given in (4.3b)
independent of the iteration and inserting wj,k from (4.3a) into (4.6a), the latter holds if

(6.3) 1− κ ≥

∥∥∥∥∥∥
m∑
j=1

√
σ̆0
` τ̊

0
j χVij (`)

∑
`′∈sVij(`)

wj,`,`′Q`∇K(xi)Pj

∥∥∥∥∥∥
2

.

In particular, with just a single primal block x, we then satisfy (6.3) by taking

(6.4) σ̆0
` =

1− κ
τ̊0
x

∑
`′∈sVj(`) wx,`,`′R

2
`

, where we need the estimate R` ≥ ‖Q`∇K(xi)‖.

Similarly to [5] we estimate ‖Ed‖ ≤ RE :=
√

12. Assuming that each xi(ξ) for ξ ∈ Ωd is
positive semi-definite, we also estimate with rk,ξ := |s0(ξ)|‖bk‖22 that

‖∇T (xi)‖ ≤ RT :=

√√√√ N∑
k=1

∑
ξ∈Ωd

r2
k,ξ and ‖∇K(xi)‖ ≤ R :=

√
R2
E +R2

T .

We obtain R` for (6.4) from the same constituents rk,ξ and RE depending on the exact block
structure.

It then remains to choose the primal step lengths and the weights wj,k,`. We consider the
following four block structures and choices of weights:

(d1) As our reference case, corresponding to earlier non-block-adapted works [9, 33], a
single primal block x (m = 1) and a single dual block y (n = 1). Based on the rough
optimisation of the step length parameters illustrated in Figure 6.2a for a range of
τ = τ̊0

x with σ̆0
y = σ := (1− κ)/(τR2) with κ = 0.05, we take τ := 1/R.

(d2) A single primal block x (m = 1) and the two dual blocks µ and λ (n = 2).
We take τ = τ̊0

1 as in (d1) and with wx,λ,µ := RE/(R − RE) calculate from
(6.4) the dual step length parameters as σ̆0

µ = (1 − κ)/(τ(1 + w−1
x,λ,µ)R2

E) and
σ̆0
λ = (1− κ)/(τ(1 + wx,λ,µ)R2

T ). Thus σ̆0
µRE equals σR of (d1).

(d3) A single primal block x (m = 1) and in addition to the dual block µ, we split λ into
voxelwise and bk-wise blocks λk,ξ (n = 1 + Nn1n2n3) indexed by
k = 1, . . . , N and ξ ∈ Ωd. We still take τ = τ̊0

1 as in (d1) and with the setting
wx,λ(k,ξ),µ :=

∑
k′,ξ′ rk′,ξ′RE/((R − RE)rk,ξ) and wx,λ(k,ξ),λ(k′,ξ′) ≡ 1 calculate

from (6.4) the dual step length parameters σ̆0
µ := (1−κ)/(τ(1+

∑
k,ξ w

−1
x,λ(k,ξ),µ

)R2
E)

and σ̆0
λk,ξ

:= (1− κ)/(τ(N + wx,λ(k,ξ),µ)r2
k,ξ). This also keeps σ̆0

µRE equal to σR
of (d1).

(d4) Voxelwise primal blocks xξ for ξ ∈ Ω (n = n1n2n3) in addition to dual blocks
as in (d3). We take the blockwise primal step length parameters according to
τ̊0
ξ = τξ := Rτ/(1 +N maxk=1,...,N rk,ξ) for ξ ∈ Ωd, where τ is as in (d1). Then

we take wxξ,λ(k,ξ),µ := rk,ξ and wxξ,λ(k,ξ),λ(k′,ξ′) = 1. Observe that by the definition
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of the connection set sVj(`) in (4.3b), the dual block (k, ξ) is not connected by K
to (k′, ξ′) for ξ′ 6= ξ. By taking σ̆0

µ = (1 − κ)/(maxξ∈Ωd τξ(1 +
∑N
k=1 rk,ξ)R

2
E)

and σ̆0
λk,ξ

= (1− κ)/(τξ(N + r−1
k,ξ)r

2
k,ξ), we therefore satisfy (6.3). The maximum

comes from estimating the norm in (6.3).
We report in Figure 6.2b for the first 10000 iterations the function value achieved by each

algorithm variant. For (d3) and (d4) we also display the effect of the O(1/N)-acceleration of
Theorem 4.4; in (d1) and (d2) this has no notable effect.

On a mid-2014 MacBook Pro with a 2.8GHz Intel Core i5 processor and 16GB RAM
running Julia 1.1.0, each iteration of (d1)–(d3) takes roughly 0.048 seconds. For (d4) this
is roughly 0.062 seconds due to a more complicated primal update.1 However, in terms
of computational times, (d4) is clearly much faster than the other variants: 0.77s against
14.7–19.2s for (d1) and 13.6–18.1s for (d2) and (d3) to reach a function value 50. The time
ranges account for us sampling the function values only every 100 iterations after the first
100. The visual character of the approximate solution provided by (d4) is on closer inspection
slightly smoothed out compared to the other variants. This may be due to a non-optimal α in
the model (6.2) or due to a different local solution.

6.2. Electrical impedance tomography. In this problem, we want to solve

(6.5) min
x∈V

N∑
k=1

1

2
‖Ak(x)‖2 + α‖∇x‖2,1

on a finite-dimensional subspace V ⊂ L2(Ω) with Ω ⊂ R2 and each Ak : V → RN a
nonlinear operator corresponding to the fit of the solution of a partial differential equation
controlled by x to the measured data. We specifically use the complete electrode model of
EIT [41]. Our implementation of the model will be described in detail in [18]. The rough
idea is that N electrodes are placed on the boundary of the domain Ω inside which we want
to reconstruct an unknown conductivity x; see Figure 6.3, which presents a synthetic 2D
slice model of an object in a cylindrical water tank. As our data, we only have N boundary
measurements corresponding to exciting in turn each of the electrodes k = 1, . . . , N with a
positive electric potential. In each of these excitations, the remaining electrodes are grounded,
and the electric current generated by these excitations is measured at each electrode, yielding
N measurements. The operators Ak correspond to each such excitation setup. In the example
of Figure 6.3, the number of electrodes N = 16.

We can again write this problem in the form (S) with

G(x) := 0, K(x) := (∇x,A1(x), . . . , AN (x)), and F ∗(y) = δαB(µ) +

N∑
k=1

‖λk‖22,

where y = (µ, λ1, . . . , λN ) and B is the product of the pointwise Euclidean unit balls of R2

over Ω.
As a first case of the dual blocks, we take y0 corresponding to the total variation term,

and the full measurement vectors yk corresponding to each excitation k = 1, . . . , N . We
estimate ‖∇‖ ≤ R∇ for R∇ being the largest singular value of∇ on V . We do not have exact

1In the Julia code [21], we update xi+1(ξ) := xi(ξ) − τξ∆x
i(ξ) and λi+1(k, ξ) := (λi(k, ξ) +

σk,ξ∆λ
i(k, ξ))/(1 + σk,ξ) for some temporary ∆xi and ∆λi and all ξ ∈ Ωd and k = 1, . . . , N . The lat-

ter does not appear to cause a notable performance penalty compared to a spatially constant σ while the former does.
However, each xi+1(ξ) is a tensor consisting of multiple floating point numbers while λi+1(k, ξ) is a single floating
point number. Our guess is that, due to uneven memory indexing when τ is spatially varying, the tensor update cannot
make as good use of the processor SIMD instructions.
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(a) Synthetic conductivity. (b) Reconstructed conductivity. (c) Finite element mesh.

FIG. 6.3. Synthetic true conductivity and reconstructed conductivity for the EIT example. The reconstruction is
the one obtained with the block structure and dual step length setup of (e3) with τ = 500/R after 15000 iterations.
The blue patches on the boundary of the domain indicate the electrodes. We display in (c) the finite element mesh used
to represent the conductivity.

estimates for the norm of ∇Ak(xi). Therefore, we take a dynamic norm estimate rk = rk(i)
over the last 100 iterations,

‖∇Ak(xi)‖ ≤ rk := 1.05 max
max{i−99,0}≤ι≤i

‖∇Ak(xι)‖ (k = 1, . . . , N).

We may then estimate ‖∇K(xi)‖ ≤ R :=
√
R2
∇ + r2

1 + · · ·+ r2
N . As a second case, we

further split each yk into sub-blocks yk,j ∈ R corresponding to each individual electrode
j = 1, . . . , N being measured. We then take norm estimates rk,j = rk,j(i) over the last 100
iterations,

|[∇Ak(xi)]j | ≤ rk,j := 1.05 max
max{i−99,0}≤ι≤i

|[∇Ak(xι)]j | (k, j = 1, . . . , N).

We work in the setting of Section 5. Note that unlike Algorithm 4.1 in the DTI experiments
of Section 6.1, Algorithm 5.1 allows partial calculation of K in both the primal and dual
updates, which should in principle be beneficial in stochastic methods. We develop step length
rules for Algorithm 5.1 based on Theorem 5.3. Similarly to (6.4), with wj,`,k = wij,`,k and
sVij(`) = sVj(`) independent of the iteration, for non-stochastic methods with a single primal
block x, (5.6a) in particular holds by taking

(6.6) σ̊1
` =

1− κ
τ̆0
x

∑
`′∈sVj(`) wx,`,`′R

2
`

, where we estimate R` ≥ ‖Q`∇K(xi)‖.

Again, for convenience, we identify the linear primal indices j and dual indices ` and `′ with
symbolic indices x, µ, and λk. It then remains to choose τ̆0

x and the weights wx,`,`′ . For this
we consider four different block and weight setups:

(e1) Again, as our reference case, corresponding to earlier non-block-adapted works
[9, 33], a single primal block x (m = 1) and a single dual block y (n = 1). Based
on rough optimisation of the step length parameters, illustrated in Figure 6.4a for a
range of τ = τ̆0

x with σ̊1
y = (1− κ)/(τR2) with κ = 0.05, we take τ := 5/R for R

computed using just the initial iterate x0 as explained above.
(e2) A single primal block x (m = 1) and the dual blocks µ, λ1, . . . , λN . We take τ = τ̆0

x

as in (e1) and with wx,λp,µ :=
∑
k rkR∇/((R − R∇)rp) and wx,λp,λk := 1 for

p, k = 1, . . . , N , solve from (6.6) that σ̊1
µ := (1− κ)/(τ(1 +

∑
k w
−1
x,λk,µ

)R2
∇) and
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(a) Reference algorithm (e1), multiple step lengths.
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(b) Comparison of algorithm variants (e1)–(e4).
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(e1) τ = 10/R

(e4) τ = 10/R

(e4) τ = 50/R

(e4) τ = 500/R

(c) Blocked algorithm (e4), multiple step lengths.

FIG. 6.4. EIT reconstruction performance: iteration counts are on the x axis and primal objective function
values (6.5) are on the y axis. We start with step length justification for the non-blocked reference algorithm (e1) in
(a). Based on this we use a step length τ = 10/R for the reference algorithm as higher step lengths become unstable.
Comparison of the different blocked algorithm variants is given in (b) for τ = 500/R: with lower parameters the
differences are less noticeable, and with higher parameters insignificant improvement is obtained. Based on this, in
(c) we represent the performance of (e4) for multiple step lengths.

σ̊1
λp

:= (1−κ)/(τ(N +wx,λp,µ)r2
p) for p = 1, . . . , N . This case and the step length

rules are analogous to (d3) for DTI.
(e3) As (e2) but split each λp into further measurement-wise dual blocks yp,j

(p, j = 1, . . . , N ), replacing in the expressions of (e2) the indices p and k by (p, j)
and (k, j′) with j, j′ ∈ {1, . . . , N}. Thus rk becomes rk,j′ , etc.

(e4) Measurement-wise dual blocks as in (e3) but wx,λ(p,j),µ := r−1
p,j .

The performance of the algorithm variants (e1)–(e4) is depicted in Figure 6.4 with a
sample reconstruction in Figure 6.3b. Observe how the block-adapted algorithms allow in
practise larger τ than the reference algorithm without block-adaptation. This has significant
performance benefits: To reach and stay below the objective function value of the order 10−7,
(e4) with τ = 500/R requires 208 iterations while (e1) with τ = 10/R requires 906 iterations.
(With τ = 500/R the latter requires 3544 iterations, no longer converging well with high τ .)
We also tested stochastic variants of the algorithms for the EIT problem, updating in each
iteration only a random subset of the dual blocks. This did not, however, offer any performance
benefits over the block-adapted variants, neither in terms of epoch count (iteration count scaled
by the fraction of updated blocks) nor actual computational time.
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7. Conclusion. In this paper, we studied block-proximal primal-dual splitting methods
for non-convex non-smooth optimisation. From an abstract starting point—also able to model
doubly-stochastic methods—we derived explicit algorithms and step-length bounds for two
particular cases: methods with full dual updates and methods with full primal updates. For
both cases, we derived rules ensuring local O(1/N), O(1/N2), and linear rates under varying
conditions and choices of the step lengths parameters.

We demonstrated the performance of the methods on practical inverse problems. Based on
our experience with both the DTI and EIT examples, the block-adaptation provides significant
performance benefits. Random updates, by contrast, did not offer benefits in our sample
problems. We suspect that they might be more beneficial for very large scale problems that
do not share work between the blocks, yet where the blocks have overlapping information, or
where communication delays within a computing cluster become significant. This may be one
of the possible directions for further research on the presented methods and their application.
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Appendix A. Satisfaction of the three-point condition.
The following lemma provides simplified conditions under which Assumption 3.2 holds,

e.g., whenever x 7→ 〈K(x), ŷ〉 is block-separable and strongly-convex.
LEMMA A.1. Suppose that Assumption 3.1 holds and the following is true for the given

neighbourhood XK of x̂, ΓK =
∑m
j=1 γK,jPj ∈ L(X;X), γK,j ∈ R, some γx > 0:

〈[∇K(x′)−∇K(x̂)]∗ŷ, x′ − x̂〉 ≥ ‖x′ − x̂‖2ΓK + γx‖x′ − x̂‖2,(A.1a)

〈[Pj∇K(x′)− Pj∇K(x̂)]∗ŷ, x′j − x̂j〉 ≥ γK,j‖x′j − x̂j‖2 (j = 1, . . . ,m).(A.1b)

Let β1, β2 > 0, A =
∑m
j=1 ajPj , and a := minj aj . Then Assumption 3.2 holds for p = 1

when

LθA ≤ a(γx − β1)− β2 max
j

(aj − a) and

L3 ≥ L2‖PNLŷ‖(β−1
1 + (β2a)−1∑m

j=1(aj − a))/2 + 2LθA.

Proof. We need to study (3.2). We have

RK := 〈[∇K(x)−∇K(x̂)]∗ŷ, x′ − x̂〉A − ‖x′ − x̂‖2AΓK

= a(〈[∇K(x)−∇K(x̂)]∗ŷ, x′ − x̂〉 − ‖x′ − x̂‖2ΓK )

+
∑m
j=1(aj − a)(〈[∇K(x)−∇K(x̂)]∗ŷ, x′j − x̂j〉 − γK,j‖x′j − x̂j‖2).
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We now apply (A.1a), Young’s inequality with the factor β1 > 0, and Assumption 3.1 to
bound

〈[∇K(x)−∇K(x̂)]∗ŷ, x′ − x̂〉 − ‖x′ − x̂‖2ΓK
= 〈[∇K(x′)−∇K(x̂)]∗ŷ, x′ − x̂〉 − ‖x′ − x̂‖2ΓK

+ 〈[∇K(x)−∇K(x′)]∗ŷ, x′ − x̂〉
≥ (γx − β1)‖x′ − x̂‖2 − L2‖PNLŷ‖2(4β1)−1‖x′ − x‖2.

Similarly, for any β2 > 0, we have

〈[∇K(x)−∇K(x̂)]∗ŷ, x′j − x̂j〉
= 〈[Pj∇K(x′)− Pj∇K(x̂)]∗ŷ, x′j − x̂j〉

+ 〈[∇K(x)−∇K(x′)]∗ŷ, x′j − x̂j〉
≥ γK,j‖x′j − x̂j‖2 − L2‖PNLŷ‖2(4β2)−1‖x′ − x‖2 − β2‖x′j − x̂j‖2.

Combining the two estimates, we arrive at

RK ≥ a(γx − β1)‖x′ − x̂‖2 − aL2‖PNLŷ‖2(4β1)−1‖x′ − x‖2

−
∑m
j=1(aj − a)(β2‖x′j − x̂j‖+ L2‖PNLŷ‖2‖x′ − x‖2)

=
∑m
j=1(a(γx − β1)− (aj − a)β2)‖x′j − x̂j‖2

− aL2‖PNLŷ‖(β−1
1 + (β2a)−1∑m

j=1(aj − a))‖x′ − x‖2/4.

At the same time, using Assumption 3.1, we get for the right-hand side of (3.2) the bound

‖K(x̂)−K(x)−∇K(x)(x̂− x)‖ ≤ L

2
‖x− x̂‖2 ≤ L‖x′ − x̂‖2 + L‖x′ − x‖2.

Hence, Assumption 3.2 holds if we take p = 1, LθA ≤ minj a(γx − β1)− (aj − a)β2, and
L3 ≥ L2‖PNLŷ‖(β−1

1 + (β2a)−1
∑m
j=1(aj − a))/2 + 2LθA.

Appendix B. A technical lemma.
LEMMA B.1. We have szN ≤ sz0 +N/2 whenever zij > 0 (i = 1, . . . , N ; j = 1, . . . ,m)

satisfy

(B.1) zi+1
j =

1 + zij√
1 + sz−1

i

with szi := max
j=1,...,m

zij .

Proof. Taking maxj=1,...,m on both sides of the first part of (B.1), we obtain

szi+1 = (1 + szi)

√
szi

szi + 1
=
√

sz2
i + szi.

We thus obtain the claim by telescoping

szi+1 − szi =
√

sz2
i + szi − szi =

szi√
sz2
i + szi + szi

=
1√

1 + sz−1
i + 1

≤ 1

2
.

This finishes the proof.
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