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ABSTRACT 

We conducted an epigenome-wide association study meta-analysis (meta-EWAS) on blood pressure (BP) 

in 4,820 individuals of European and African ancestry aged 14-69. Genome-wide DNA methylation data 

from peripheral leukocytes were obtained using the Infinium HumanMethylation450k BeadChip. The 

meta-EWAS identified 39 BP-related CpG sites with p<1×10-5. In silico replication in the CHARGE 

consortium of 17,010 individuals validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed 

novel association with BP.  Conversely, out of the 126 CpG sites identified as being associated (p<1x10-7) 

with BP in the CHARGE consortium, 21 were replicated in the current study. Methylation levels of all the 

34 CpG sites that were cross-validated by the current study and the CHARGE consortium were heritable 

and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed association with 

BP with p<0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort 

(199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs 

and 62 singletons; 84% monozygous). Bivariate quantitative genetic  modeling of the twin data showed 

that a majority of the phenotypic correlations between methylation levels of these CpG sites and BP 

could be explained by shared unique environmental rather than genetic factors, with 100% of the 

correlations of systolic BP with cg19693031 (TXNIP) and cg00716257 (JDP2) determined by 

environmental effects acting on both systolic BP and methylation levels.  
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INTRODUCTION 

Essential hypertension (EH) is a major health problem with global proportions. A report in the Lancet1 

estimated that in 2015 there were 1.13 billion people living with high blood pressure (BP) worldwide. 

While many pathways involved in the development of EH and corresponding treatment options have 

been discovered, the elevated blood pressure (BP) of 16 million hypertensive patients remains 

uncontrolled2, indicating the need for further understanding of its pathogenesis. Epigenetics has 

recently been suggested as a massive regulatory machine that cannot be ignored in searching for the 

molecular understanding of EH 3, 4. In fact, it may explain the late onset, progressive and quantitative 

nature of this disease better than variations in DNA sequence.   

        Epigenetic alterations of the genes of the renin-angiotensin-aldosterone system, a hormone system 

that is integral to the physiological regulation of BP, have been extensively tested in hypertensive animal 

models, providing one line of substantial evidence on the involvement of epigenetic regulation in the 

development of EH 5. A recent, genome-wide, peripheral blood DNA methylation study in human by the 

CHARGE consortium6, including a discovery and a replication panel, identified 13 CpG sites in or next to 

8 genes that were differentially methylated in relation to BP. A methylation risk score based on these 13 

CpG sites explained 1.4% and 2.0% of the inter-individual variation in systolic and diastolic BP, 

respectively. Expanding the methylation risk score to include 126 CpG sites that were Bonferroni 

significant (p<1x10-7) in the overall meta-analysis did not explain additional phenotypic variance, 

indicating the need for further replication. Moreover, unlike sequence variation, epigenetic variation is 

influenced both by inherited and environmental factors7, 8. This is illustrated by the fact that 30-100% of 

the DNA methylation levels of the 13 BP-associated CpG sites described above is explained by heritable 

factors as estimated by the family data of the Framingham Heart Study 6. However, the extent to which 

the link between BP and DNA methylation signatures is driven by inherited vs. environmental factors has 

not been investigated. 

        In the present meta-EWAS in leukocytes of 4,820 individuals of European (EA) and African ancestry 

(AA) aged 14-69, we first identified new DNA methylation signals associated with BP and validated these 

signals in the CHARGE consortium6; next we attempted to replicate the 126 previously identified signals 

by the CHARGE consortium 6 in our own meta-EWAS data; third we conducted twin modeling to 

estimate the heritability of DNA methylation correlated with BP, and finally we assessed the genetic and 

environmental sources of the correlation between DNA methylation and BP (Figure S1).  

 

METHODS 

Data availability 

This study involves multiple cohorts. The genome wide DNA methylation data that support the findings 

of this study are available from the study PI of each cohort upon reasonable request and with 

permission of the Institutional Review Board of the universities where the participating cohort locates. 

 

Study Populations 



The discovery panel included 4820 individuals of EA and AA ancestries from 12 adult cohorts (average 

age ranges from 27.3 to 63.5 years old) and 2 youth cohorts (average age 16.2 and 17.7 years old) (Table 

1). Details of each cohort are provided in the Supplemental Data. All studies obtained written informed 

consent from participants and were approved by local institutional review boards and ethics 

committees. 

 

Blood Pressure Measurements  

For all the cohorts, BP was measured after a period of rest and an average of 3 sequential readings was 

used as the phenotype for each analysis.  For 3 cohorts (GSH, EpiGO and LACHY), BP was measured in a 

supine position, while for the other 11 cohorts, BP was measured in a sitting position.  With the 

exception of the NTR cohort for which BP was measured within ±2 years from the methylation 

measurement, all the cohorts had BP measured concurrently with the collection of peripheral 

leukocytes for DNA methylation profiling.  If antihypertensive medication was used, 15mmHg and 

10mmHg were added to the measured SBP and DBP levels, respectively9. 

 

DNA Methylation Profiling  

For all cohorts, genome-wide DNA methylation data were obtained from peripheral blood using the 

Illumina Infinium Human Methylation 450K Beadchip (Illumina Inc.).  A detailed description on 

preprocessing and quality control steps for each cohort is provided in the Supplementary Data. For all 

cohorts, white blood cell sub-populations were estimated using the approach described by Houseman et 

al.10.  

 

Cohort Level Association Analysis 

For cohorts only including unrelated subjects, a linear regression model was used to estimate the 

associations between DNA methylation (i.e. β values) and BP with methylation levels used as dependent 

variables adjusting for age, sex, ancestry (in samples including EAs and AAs), BMI, and white blood cell 

sub-populations. For cohorts including related subjects, a linear mixed effect model was used to account 

for sample relatedness.  

 

Meta-Analyses & Cross Validation 

Meta-analysis across the 14 cohorts was conducted using METAL11 by converting the direction of effect 

and p-value observed in each cohort into a signed Z-score. CpG sites with p≤1×10-5 for either SBP or DBP 

were selected for replication in the CHARGE consortium (n=17,010). Replication was defined as 

consistent direction of the β-coefficient and FDR<0.05. Conversely, we also checked whether we could 

replicate the 126 CpG sites for BP identified in the overall meta-analysis of the CHARGE consortium in 

our own meta-EWAS results. Replication was again defined as a consistent direction of the β-coefficient 

and FDR<0.05.   

 

Percent Variance Explained 



Percent variance explained by the cross-validated BP associated CpG sites was calculated in the Lifelines 

DEEP cohort. To avoid overestimation of percent variance explained, this cohort was not included in the 

Meta-analysis. Percent variance explained by the cross-validated BP associated CpG sites is reported as 

the change in the adjusted R2 from the model including these CpG sites compared to the model only 

including covariates (i.e. age, gender and BMI).   

 

Pathway Analysis 

Pathway enrichment analysis was conducted on the meta-analysis results of the genome-wide DNA 

methylation data using gene set enrichment analysis (GSEA)12. GSEA was performed on an unfiltered, 

ranked list of genes (ranked by the p values without consideration of directions), and a running-sum 

statistic was used to determine the enrichment of a priori defined gene sets (pathways) based on the 

gene ranks. All gene ontology biological process categories (c5.bp.v5.1) were assessed for enrichment at 

FDR<0.05.  The CpG site showing the most significant p value within a gene was used to represent the 

DNA methylation level of the gene.   

 

Associations of DNA Methylation and Gene Expression 

Association tests of the cross-validated BP-associated CpGs (Figure S1) with transcripts that were 

located within 500kb distance of the corresponding CpGs were performed in the 391 individual twins of 

the Finnish Twin Cohort for whom both DNA methylation and gene expression data were available. 

Gene expression data were obtained using the Illumina Human HT-12 V4 expression Beadchip (Illumina, 

Inc, San Diego, CA) 13. Linear mixed effects regression models were used with gene expression as the 

dependent variable, DNA methylation as the independent variable, age, sex, and BMI as fixed effects, 

and family as a random effect. An FDR < 0.05 was defined as significant association between DNA 

methylation and gene expression. BP associated gene expressions were defined as genes with their 

expression levels showing significant association with either SBP or DBP at p < 0.05. 

 

Genetic and Environmental Determinants of DNA Methylation Associated with BP  

For all the cross-validated BP associated CpG sites (Figure S1), we estimated the relative contributions of 

genetic and environmental factors to the variance of DNA methylation levels in the Finnish Twin Cohort 

and the Netherlands Twin Register using the R package OpenMx14, 15. Before analysis, age, sex and BMI 

were regressed out, and the DNA methylation residuals were used in the model fitting. Details of this 

univariate structural equation model for twin data (Figure S2) were described in a previous study 13. In 

short, the model allows separation of the observed phenotypic variance into its genetic and 

environmental variance components including additive genetic variance (A), common environmental 

variance shared by a twin pair (C), and unique environmental variance specific to individuals (E). The 

monozygotic twins of each pair (MZ twins) have identical genome sequences, while dizygotic twins (DZ 

twins) share 50% of their segregating alleles. Shared environmental factors are exposures and 

experiences that affect co-twins similarly on average irrespective of zygosity, while unique 

environmental factors are the effects not shared by cotwins and include measurement error. 

Significance tests of individual variance components (A or C) were conducted by comparing full models 

with sub-models constraining paths from latent variables to trait values (a, c) to 0 using a chi-square 

test; as E contains measurement error, the significance of E is not tested. Statistical significance was 



defined as p < 0.05. The analysis was conducted in each twin cohort separately, then a meta-analysis 

across the two twin cohorts (FTC and NTR) was performed to estimate the mean heritability (h2) using 

the Meta package in R 16. Following the approach described by Asefa et al. 17, each h2 was transformed 

using a logit function 18 and a random-effects model was used for the meta-analysis. The pooled h2 

(weighted by sample size) and 95% confidence intervals (CIs) were back-transformed. Heterogeneity 

between studies was quantified with Cochran’s Q test and the I2-statistic 19. 

Sources Underlying the Associations between DNA Methylation and BP 

For all the cross-validated BP associated CpG sites (Figure S1), we checked whether they were also 

significantly associated with BP in the meta-analysis of the Finnish Twin Cohort and the Netherlands 

Twin Register, i.e., a consistent direction of the β-coefficients and p<0.05. For those CpG sites 

significantly associated with BP in the meta-analysis of these two twin cohorts, we conducted bivariate 

structural equation modelling to test the extent to which the link between BP and DNA methylation was 

driven by genetic or environmental factors. Details of this model (Figure S3) have been described 

previously13. Briefly, the variation of DNA methylation and the variation of BP were decomposed into A, 

C, and E variance components. The bivariate model allows determination of the sources of the observed 

covariance between DNA methylation and BP by using a sequence of sub-models that test which 

genetic, shared environmental or unique environmental paths from DNA methylation to BP can be set to 

0. For example, in Figure S3, if a21 (genetic path from DNA methylation to BP) cannot be set to 0, it 

means there is overlap between the genetic factors influencing DNA methylation and BP. The model 

further allows calculation of genetic and environmental correlations between the traits. Similar to the 

univariate analysis, the bivariate analysis was conducted in each twin cohort separately, then a meta-

analysis was conducted to determine the genetic and environmental contributions to the correlation 

between DNA methylation and BP. Briefly, for each cohort, genetic (rg) and environmental (re) 

correlations were calculated based on the variance/covariance matrix estimated from the bivariate twin 

modeling (Figure S3). The genetic contribution to the observed phenotypic correlation (rph) is a function 

of the heritability estimates of the two phenotypes and the rg between them, i.e. √ℎ𝑀
2 × 𝑟𝑔 × √ℎ𝐵𝑃

2 . 

Similarly, the environmental contribution to rph is equal to √𝑒𝑀
2 × 𝑟𝑒 × √𝑒𝐵𝑃

2 . Then a random-effects 

model was used to estimate the meta-genetic and environmental contributions respectively with the 

95% CIs.   

RESULTS 

The general characteristics of the study participants are listed in Table 1. A total of 4820 individuals were 

included from 14 cohorts with a wide range of mean SBP and DBP values. The prevalence of 

antihypertensive medication use also varied among the cohorts.   

        Our meta-analysis identified 39 CpG sites associated with SBP or DBP at p<1×10-5 (Manhattan and 

QQ plot, Supplementary Data Figure S4 and Figure S5; Table S1) with two CpG sites showing p<1×10-7.  

Out of these 39 CpG sites, the heterogeneity test across the cohorts reached significance (P<0.05) for 

five sites (cg06500161, cg00508575, cg19693031, cg12555233 & cg02711608, Supplementary Data 

Table S1). Further sensitivity tests by ancestry (EA vs AA) or age (adult cohorts vs. youth cohorts) did not 

support the heterogeneity being due to ancestry or age. Sixteen out of the 39 CpG sites including the 

three showing heterogeneity (cg06500161, cg00508575, & cg19693031) could be replicated (FDR<0.05) 



in the CHARGE consortium (Table 2).  Of the 16 replicated CpG sites, only three (cg02711608, 

cg19693031, cg08857797) have previously been reported to be associated with BP (highlighted in gray 

in Table 2) and the other 13 were novel signals.  Conversely, of the 126 CpG sites found to be associated 

with BP by the CHARGE consortium in the overall sample, 91 sites showed the same direction of effect in 

our meta-analysis with 21 sites having FDR < 0.05 (Table 3).  These 21 CpG sites included the three CpG 

sites previously reported to be associated with BP (highlighted in gray in Table 3). In total, 34 CpG sites 

were cross-validated to be associated with BP by the current meta-analysis and the CHARGE consortium. 

To assess the impact of antihypertensive medication use, we stratified the meta-analysis of these 34 

CpG sites by medication use and provide the results in Supplementary Data Table S2. In the individuals 

reporting no use of antihypertensive medications, the directions of the effects of all the CpG sites 

remained the same as for the overall sample with 27 out of the 34 retaining their significant associations 

(p<0.05) with BP, rendering it highly unlikely that the differentially methylated CpG sites we identified 

reflect drug treatment effects.   

        Inclusion of 33 out of the 34 CpG sites (cg02711608 was filtered out in the quality control step of 

the Lifelines DEEP cohort) explained an additional 3.31% and 3.99% of the interindividual variation in 

SBP and DBP, respectively, beyond the traditional BP covariates of age, gender and BMI in an additional 

sample from the Lifelines cohort (the Lifelines DEEP cohort, n=601) not included in the current meta-

analysis. Details of this cohort are provided in the Supplemental Data. Using the Lifelines DEEP cohort, 

we further explored whether these 33 CpG sites were individually or collectively associated with EH. A 

total of 102 out of the 601 (16.97 %) participants were classified as having EH (i.e., SBP≥140 mmHg, or 

DBP≥90 mmHg, or taking antihypertensive medication). Out of the 33 CpG sites, 4 CpG sites 

(cg12593793, cg11376147, cg21766592 and cg06500161) were individually associated with EH with 

p<0.05 in the expected direction (Supplementary Data Table S3). Collectively, adding these 33 CpG sites 

in the model with age, gender and BMI as covariates increased Nagelkerke’s pseudo R2 from 34.3% to 

47.7%.  

        Of the 34 CpG sites, the methylation levels of six sites were significantly associated with the 

expression of five genes in cis analysis (FDR <0.05) (Table 4). The methylation-gene expression 

associations did not differ by medication use. For all the CpG sites, increased methylation was associated 

with decreased gene expression (Supplementary Data Figure S6).  Furthermore, expression of two genes 

(i.e. ABCG1 and LMNA) showed significant association with BP. For both genes the direction of the 

association between CpG methylation and gene expression was as expected based on the association of 

CpG methylation and BP. For example, the methylation level of cg06500161 was negatively associated 

with ABCG1 gene expression and positively associated with SBP. This was consistent with the negative 

association between ABCG1 gene expression and SBP.  

        The pathway analyses yielded significant (FDR <0.05) enrichment of four biological process 

pathways for SBP-related DNA methylation changes, and six for DBP-related methylation changes in 

peripheral leukocytes (Supplementary Data Table S4). The primary pathway identified by the CHARGE 

consortium6, the transport of neutral amino acids, also showed borderline significance in the current 

enrichment analyses for both SBP (FDR=0.060) and DBP (FDR=0.074).  

        The cohort-level results of the univariate structural equation model analysis on the DNA 

methylation levels of the 34 cross-validated CpG sites are listed in Table S5.   For all the CpG sites, the 

best fitting models were AE models, with heritability estimates ranging from 31% to 83% in the Finnish 



Twin Cohort and 19% to 81% in the Netherlands Twin Register. The remaining part of the variation for 

DNA methylation of these CpG sites was attributable to environmental influences that are unique to the 

individual. Table 5 lists the heritability of the 34 CpG sites from the meta-analysis. The heritabilities 

ranged from 31% to 78%.  

        Of the 34 implicated CpG sites, the methylation level of 9 CpG sites showed significant association 

with BP in the meta-analysis of the Finnish Twin Cohort and the Netherlands Twin Register (Table 6). For 

these 9 sites, we estimated the relative contributions of genetic and environmental factors to the 

association between DNA methylation and BP.  Given that the AE model has generally been the best 

fitting model in previous twin studies of BP 20, which was again confirmed in the current study, the 

bivariate modeling was conducted using the AE model both for DNA methylation and BP. The cohort-

level results are listed in Table S6 and the meta-analysis results are listed in Table 6.  For the association 

of cg19693031 in the TXNIP gene and cg00716257 in the JDP2 gene with SBP, the meta-analysis showed 

that the correlation due to the environmental contribution cannot be set to 0 while the genetic 

contribution can be set to 0, suggesting that the phenotypic correlation is determined by unique 

environmental factors in common to the two traits. Similar trends were observed for the association of 

cg11468085 with SBP and cg19693031 with DBP. For the associations of the other CpG sites with BP, 

both genetic and environmental contributions can be set to 0, indicating a larger sample size is needed 

to increase the power to distinguish the relative contributions of genetic and environmental factors to 

the observed phenotypic correlations. 

 

DISCUSSION 

In this epigenome-wide association study, we identified 13 novel CpG sites associated with BP and 

replicated 21 CpG sites previously identified in the overall meta-analysis of the CHARGE consortium6. We 

also showed that DNA methylation levels from 6 of the 34 cross-validated CpG sites were associated 

with gene expression. Although all of the 34 CpGs were heritable (31-78%), further bivariate twin 

modeling analyses in the Finnish Twin Cohort and the Netherlands Twin Register suggested that, among 

the 9 CpG sites that were associated with BP, the correlations of cg19693031(TXNIP) and 

cg00716257(JDP2) with SBP were primarily attributable to  environmental factors that affect both traits, 

rather than genetic factors.  

        The 13 novel CpG sites that were associated with BP were annotated to 10 genes. Among these, 

only ABCG1 and ATP2B1 have previously been implicated in hypertension. For example, newly 

diagnosed hypertensive patients have been shown to have lower ABCG1 expression in peripheral blood 

monocytes in comparison with normotensive controls21. This is consistent with our results in which we 

also observed that peripheral leukocyte ABCG1 expression was negatively correlated with both SBP and 

DBP levels. Several genetic variants in ATP2B1 have been associated with BP and hypertension in  

multiple GWA studies22-24, and animal studies25 have demonstrated that mice lacking ATP2B1 in vascular 

smooth muscle cells had higher BP than wild type mice. In the current study, we observed higher 

methylation level of cg00508575 in ATP2B1 associated with higher SBP level; however, the methylation 

status of this CpG site was not associated with ATP2B1 expression levels in peripheral blood leukocytes. 

Further studies in other tissues such as vascular smooth muscle cells would be needed to clarify the 

functional role of this CpG site.  The potential involvement of the other 8 genes in the pathogenesis of 

hypertension has not been directly addressed in the literature although some evidence is available on 



their involvement in cardiovascular diseases. For example, TACC1 has been linked to inappropriate 

smooth muscle and endothelial cell proliferation in pulmonary arterial hypertension 26. Several genome-

wide association studies 27, 28 have reported variants in DAB21P, which encodes an inhibitor of cell 

growth and survival, that were associated with abdominal aortic aneurysm and atherosclerotic vascular 

diseases. ALDH3B2, encoding one member of the ALDH family of proteins that play a role in cell 

proliferation, differentiation, and responsiveness to environmental stress., has been suggested as a 

candidate gene for bisoprolol (a Beta blocker) responsiveness 29.  CpG sites in MAN2A2 have been 

associated with fasting insulin 30. Further experimental validation of the role of these genes in BP 

regulation is warranted. 

        Similar to the CHARGE consortium6 which involved cohorts from different ancestries (European, 

African American, and Hispanic) and a broad age range (18-80 years), the current study also included 

individuals from European and African American ancestry with an age range of 14-69 years.  The fact 

that the signals could be cross-validated between these two studies, and that both studies showed the 

effect of the majority of BP related CpG sites to be homogeneous across the cohorts, ancestral groups, 

and different age groups, indicates that these BP-related CpG sites may be ethnicity- and age- 

independent. However, a clearer picture of the role of DNA methylation in the pathogenesis of EH in 

various age and population groups will require even larger EWASs spanning multiple age ranges and 

ancestry groups. 

        Interestingly, the majority of the 34 cross-validated CpG sites have been linked with other metabolic 

phenotypes including obesity, lipids, CRP, insulin resistance and type 2 diabetes by previous epigenome-

wide association studies (Supplementary Data Table S7), indicating that DNA methylation may be one of 

the common factors related to the concurrence of multiple metabolic abnormalities. Indeed, 

epigenome-wide association studies have identified several CpG sites whose DNA methylation levels are 

associated with metabolic syndrome (MetS) including cg00574958 in the CPT1A gene31 and cg06500161 

in the ABCG1 gene32.  ABCG1 cg06500161 has also been reported to be associated with fasting insulin 33, 

blood lipids34, adiposity traits 35, 36 and type 2 diabetes 37, 38. In the current study we observed for the first 

time that a higher methylation level of cg06500161 was also associated with higher BP levels.  Taken 

together, these studies show that ABCG1 cg06500161 is associated with each MetS component, though 

the causal direction of these associations has not been determined. Furthermore, although the other 

components of MetS can be viewed as consequences of obesity, the associations of these CpG sites with 

these MetS components are independent of obesity. Future studies are warranted with multivariate 

analyses targeting multiple metabolic traits to disentangle the mechanisms involved in the association of 

DNA methylation with MetS and its components.  

        Unlike genetic sequence variants, epigenetic variation is influenced by both genetic and 

environmental factors7, 8. We first quantified the genetic and environmental sources of the variation in 

the 34 cross-validated BP associated CpG sites and confirmed that the variance of all these 34 CpG sites 

was indeed determined by both genetics (31-78%) and environment (22-69%). Since BP is also a 

heritable trait, an interesting question is to what extent the link between BP and DNA methylation is 

driven by genetic or environmental factors in common to the two traits. We tried to answer this 

question using the Finnish Twin Cohort and the Netherlands Twin Register by conducting a bivariate 

twin modeling analysis on BP and the 9 CpG sites which showed association with BP in the meta-analysis 

of these two cohorts.  Surprisingly, we observed that 100% of the correlations of BP with 



cg19693031(TXNIP) and cg00716257(JDP2) could be attributed to environmental factors in common to 

the two traits rather than genetic factors, despite evidence for high heritability of both methylation at 

those CpG sites and SBP. The apparent lack of shared genetic component indicates that the link between 

the methylation level of these two CpG sites and BP may be driven primarily by environmental 

conditions; the relatively modest sample size should be recognized however, and further confirmation is 

needed.   

        Our study has several limitations. First, it is cross-sectional, thus making it impossible to discern the 

temporal order between BP and DNA methylation. Second, the bivariate twin modeling analysis was 

only conducted in the Finnish Twin Cohort and the Netherlands Twin Register which included about 

1000 twins. An even larger sample size is required to tease out reliably the relative contribution of 

genetic or environmental factors to the associations of BP with DNA methylation. Third, we did not 

conduct in vitro and in vivo functional studies to confirm the impact of these CpG sites on gene 

expression and subsequently on blood pressure, which is warranted for future research.  

        In conclusion, we identified 13 novel CpG sites associated with BP, and replicated several previously 

identified signals.  These newly identified signals may aid in annotating the future gene findings by 

providing a potential molecular mechanism for BP regulation. Our study further provides new insights 

into the genetic and environmental sources of BP related DNA methylation signatures as well as their 

associations with BP. The identification of shared unique environmental factors rather than genetic 

factors between BP and DNA methylation of TXNIP and JDP2 indicates that the environment plays a 

significant role in creating an association between DNA methylation signatures and BP.  
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Table 1. General characteristics of the study cohorts  

 

BHS : the Bogalusa Heart Study; GSH: the Georgia Stress and Heart study; DILGOM: the DIetary, Lifestyle, and Genetic determinants 

of Obesity and Metabolic syndrome Study; ETS: the Emory Twin Study; EGCUT: the Estonian Genome Center of the University of 

Tartu; FTC: the Finnish Twin Cohort; HBCS: the Helsinki Birth Cohort Study; JHS: the Jackson Heart Study; Lifelines: the Lifelines 

Cohort Study; NTR: the Netherlands Twin Register; PREVEND: Prevention of REnal and Vascular ENd stage Disease study; YFS: the 

Young Finns Study; EpiGO: the EpiGenetic basis of Obesity induced cardiovascular disease and type 2 diabetes study; and LACHY: the 

Lifestyle, Adiposity, and Cardiovascular Health in Youth study. 

1) EA: European Ancestry; AA: African American.  

Cohorts N Race 1 Age, years 
Mean (SD)  

Female
, % 

BMI, kg/m2 SBP, mmHg DBP, mmHg HTN4, % AHT5, % 

Adult cohort          

BHS 968 EA, AA2  43.2(4.5) 56.5 30.8(7.5) 127.3(23.6) 81.2(14.6) 36.9 26.9 
GSH 480 EA, AA3  27.3(3.5) 52.4 29.9(8.2) 114.9(13.3) 66.6(8.81) 9.39 4.80 
DILGOM 512 EA 51.9(13.7) 53.7 26.9(4.8) 143.3(16.9) 83.4(10.0) 49.1 37.5 
ETS 218 EA 55.7(3.4) 0 29.4(4.7) 135.66(18.4) 84.8(11.8) 56.3 34.4 
EGCUT(Asthma) 173 EA 26.2(6.9) 64.2 22.8(3.0) 116.7(12.0) 73.2(9.4) ---6 ---6 
EGCUT (Young_Old) 100 EA 52.7(23.7) 52.0 26.7(5.1) 129.1(19.1) 79.6(10.4) ---6 ---6 
FTC 402 EA 62.3(3.7) 59.3 26.9(4.9) 150.2 (18.6) 87.8(11.0) 58.4 43.5 
HBCS 159 EA 63.5(2.8) 0 27.5(3.8) 148.1(19.0) 91.0(10.3) 75.0 44.7 
JHS 96 AA 38.4(4.3) 50 33.9(7.1) 127.8(23.7) 81.5(14.5) 50.0 34.3 
Lifelines 150 EA 50.3(10.5) 58.7 28.0(5.1) 124.4(12.0) 74.1(8.60) 10.0 0.00 
NTR 5967 EA 29.4(10.5)8 66.1 23.6(3.6)8 126.0(14.7) 76.3(10.5) 17.8 1.34 
PREVEND 307 EA 46.7(10.0) 39.7 27(4.6) 131.1(20.8) 76.2(11.2) 48.5 19.5 
YFS 188 EA 44.0(3.3) 38.8 26.3(4.4) 119.1(13.2) 73.2(9.5) 9.57 5.30 

Youth cohort          

EpiGO 188 AA 17.7(1.7) 48.4 29.3(11.5) 114.8(15.1) 63.8(7.7) 9.57 0.00 
LACHY 283 AA 16.2(1.3) 50.0 24.1(5.6) 112.9(10.1) 61.4(6.0) 3.53 0.00 



2) For BHS, there are 70.3% EA and 29.7% AA.  

3) For GSH, there are 52.5% EA and 47.5% AA.  

4) HTN: hypertension; HTN definition for adults: SBP≥140mmHg or DBP≥90mmHg or on antihypertensive medication; HTN definition 

for youth: SBP≥95th or DBP≥95th percentile for age, sex and height. 

5) AHT, antihypertensive treatment. 

6) Only medication adjusted BP data were available. 

7) This dataset included 499 MZ and 95 DZ twins as well as 2 spouses of twins. The 2 spouses of twins were excluded in the analyses 

only involving twins. 

8) Age and BMI at blood sampling time. 

 

  



Table 2. CpG sites showing association with BP in our analysis with p <1E-05 and replicated by CHARGE consortium with FDR<0.05 

Probe ID Chr. Position Gene 

SBP   DBP 

META  CHARGE  META  CHARGE 

Direction* p  Direction* P  Direction* p  Direction* p 

cg19693031 1 145441552 TXNIP - 2.18E-07  - 3.10E-29  - 4.65E-05   - 1.80E-14 

cg01343041 2 24397787 C2orf84 + 4.21E-07  + 2.30E-02  + 1.01E-04  + 5.74E-01 

cg19695041 8 38615330 TACC1 - 6.26E-06  - 4.45E-05  - 3.36E-02  - 3.26E-03 

cg13696706 9 124396830 DAB2IP + 9.83E-08  + 3.95E-03  + 1.16E-03  + 7.90E-01 

cg11468085 11 67435577 ALDH3B2 + 4.16E-06  + 1.75E-04  + 1.38E-04  + 2.27E-02 

cg00508575 12 90050967 ATP2B1 + 6.47E-06  + 1.44E-03  + 9.20E-04  + 1.63E-01 

cg05248321 14 20898128 KLHL33 + 7.01E-07  + 1.68E-05  + 1.88E-03  + 1.86E-03 

cg02003183 14 103415882 CDC42BPB + 3.66E-07  + 5.56E-07  + 1.54E-03  + 3.09E-02 

cg12555233 15 91455366 MAN2A2 + 2.74E-06  + 6.25E-03  + 3.50E-03  + 2.97E-02 

cg07558761 16 87866696 SLC7A5 + 8.83E-07  + 1.46E-05  + 1.71E-03  + 3.37E-04 

cg07021906 16 87866833 SLC7A5 + 1.38E-06  + 1.65E-06  + 3.37E-03  + 5.73E-03 

cg04583842 16 88103117 BANP + 5.54E-09  + 4.16E-03  + 2.99E-06  + 8.28E-01 

cg08857797 17 40927699 VPS25 + 9.64E-06   + 3.60E-10   + 4.98E-05   + 2.30E-06 

cg02711608 19 47287964 SLC1A5 - 7.48E-06   - 2.00E-21   - 1.41E-03   - 4.30E-10 

cg06500161 21 43656587 ABCG1  + 5.69E-06  + 1.01E-04  + 5.06E-05  + 1.01E-03 

cg01820192 21 44869762 C21orf125 + 6.44E-06   + 1.66E-02   + 3.96E-02   + 4.75E-02 

* “+” indicates that DNA methylation levels increase with BP increase. “-“indicates that DNA methylation levels decrease with BP 

increase. 

CpG sites previously reported by the CHARGE consortium are highlighted in gray.   

 

  



 

* “+” indicates that DNA methylation levels increase with BP increase. “-“indicates that DNA methylation levels decrease with BP 

increase. 

CpG sites that overlapped between Table 3 and Table 2 are highlighted in gray.   

Direction*
p Direction*

p Direction*
p Direction*

p

cg18933331 1 110186418 Intergenic - 4.80E-09 - 7.64E-03 - 2.40E-08 - 1.17E-02

cg16246545 1 120255941 PHGDH - 1.20E-22 - 4.11E-04 - 1.10E-09 - 4.34E-04

cg14476101 1 120255992 PHGDH - 2.70E-34 - 4.27E-05 - 2.10E-21 - 2.31E-04

cg19693031 1 145441552 TXNIP - 3.10E-29 - 2.18E-07 - 1.80E-14 - 4.65E-05

cg19266329 1 145456128 Intergenic - 1.90E-12 - 3.61E-03 - 5.70E-05 - 2.22E-01

cg24955196 1 154982621 ZBTB7B + 5.00E-08 + 8.28E-04 + 6.00E-06 + 5.09E-02

cg12593793 1 156074135 Intergenic - 2.60E-12 - 3.22E-03 - 3.00E-07 - 7.49E-02

cg18119407 2 201980504 CFLAR - 2.00E-09 - 7.10E-03 - 4.40E-05 - 4.51E-03

cg06690548 4 139162808 SLC7A11 - 1.60E-32 - 1.52E-05 - 7.90E-26 - 2.47E-05

cg18120259 6 43894639 LOC100132354 - 2.20E-21 - 5.58E-03 - 8.90E-14 - 4.55E-02

cg21429551 7 30635762 GARS - 3.40E-16 - 6.84E-04 - 8.70E-06 - 1.34E-02

cg19390658 7 30636176 GARS - 4.70E-09 - 2.58E-04 - 4.40E-06 - 3.30E-04

cg00008629 9 115093661 ROD1 - 6.50E-08 - 4.38E-03 - 8.00E-02 - 6.45E-02

cg11376147 11 57261198 SLC43A1 - 4.20E-21 - 6.66E-03 - 3.40E-12 - 1.34E-02

cg00574958 11 68607622 CPT1A - 1.20E-13 - 1.04E-02 - 3.00E-10 - 6.83E-04

cg00716257 14 75897417 JDP2 - 6.00E-08 - 4.39E-03 - 4.40E-07 - 4.28E-01

cg26916780 15 64889554 ZNF609 - 4.50E-06 - 8.87E-03 - 3.70E-09 - 5.77E-02

cg08857797 17 40927699 VPS25 + 3.60E-10 + 9.64E-06 + 2.30E-06 + 4.98E-05

cg22304262 19 47287778 SLC1A5 - 1.40E-17 - 1.97E-05 - 9.60E-11 - 1.05E-02

cg02711608 19 47287964 SLC1A5 - 2.00E-21 - 7.48E-06 - 4.30E-10 - 1.41E-03

cg21766592 19 47288066 SLC1A5 - 2.60E-08 - 5.65E-04 - 1.10E-01 - 1.88E-02

GenePositionChr. Probe ID

Table 3. Signals reported by CHARGE Consortium and replicated by the current study (FDR<0.05).

CHARGE META CHARGE META

SBP DBP



 

Table 4. Cross-validated CpG sites that show association with gene expression (±500kb) at FDR<0.05 in the Finnish Twin Cohort 

DNAm 
ProbeID 

DNAm 
annotation 

GX 
ProbID 

GX 
annotation 

DNAm-GX   GX-SBP   GX-DBP   DNAm-SBP   DNAm-DBP 

Dir. P FDR   Dir. P   Dir. P   Dir. P   Dir. P 

cg14476101 PHGDH 240086 PHGDH - 2.33E-11 1.19E-08 
 

+ 1.08E-01 
 

+ 5.62E-01 
 

- 1.33E-02 
 

- 2.88E-02 

cg16246545 PHGDH 240086 PHGDH - 2.94E-10 7.47E-08 
 

+ 1.08E-01 
 

+ 5.62E-01 
 

- 5.23E-02 
 

- 9.29E-02 

cg06500161 ABCG1 6060377 ABCG1 - 1.37E-04 1.39E-02   - 2.75E-03   - 4.49E-04   + 4.74E-02 
 

+ 2.51E-01 

cg12593793 Intergenic 6020424 LMNA - 3.60E-04 2.28E-02   + 2.57E-04   + 1.78E-05 
 

- 2.10E-01 
 

- 2.53E-01 

cg26916780 ZNF609 5960682 RBPMS2 - 8.61E-04 4.56E-02 
 

+ 1.88E-01 
 

+ 1.43E-01 
 

- 6.84E-01 
 

- 6.64E-01 

cg02711608 SLC1A5 7610433 SLC1A5 - 8.98E-04 4.56E-02   + 4.62E-01   + 2.88E-01   - 4.34E-02   - 1.07E-01 

GX: gene expression; Dir.: direction of the association 

DNAm-GX: the association between DNA methylation and gene expression; GX-SBP: the association between gene expression and SBP; GX-DBP: the association 
between gene expression and DBP.   

 

 

  



  

Probeid chr. Position Gene h2 95% CI

cg18933331 1 110186418 intergenic 0.72 0.62 - 0.81

cg16246545 1 120255941 PHGDH 0.77 0.69 - 0.84

cg14476101 1 120255992 PHGDH 0.74 0.63 - 0.82

cg19693031 1 145441552 TXNIP 0.56 0.53 - 0.60

cg19266329 1 145456128 intergenic 0.39 0.31 - 0.49

cg24955196 1 154982621 ZBTB7B 0.41 0.22 - 0.63

cg12593793 1 156074135 intergenic 0.65 0.37 - 0.86

cg01343041 2 24397787 C2orf84 0.65 0.62 - 0.68

cg18119407 2 201980504 CFLAR 0.36 0.33 - 0.39

cg06690548 4 139162808 SLC7A11 0.36 0.27 - 0.46

cg18120259 6 43894639 LOC100132354 0.63 0.56 - 0.69

cg21429551 7 30635762 GARS 0.68 0.65 - 0.71

cg19390658 7 30636176 GARS 0.35 0.32 - 0.38

cg19695041 8 38615330 TACC1 0.51 0.43 - 0.59

cg00008629 9 115093661 ROD1 0.78 0.65 - 0.87

cg13696706 9 124396830 DAB2IP 0.58 0.55 - 0.61

cg11376147 11 57261198 SLC43A1 0.41 0.25 - 0.59

cg11468085 11 67435577 ALDH3B2 0.54 0.51 - 0.57

cg00574958 11 68607622 CPT1A 0.44 0.30 - 0.58

cg00508575 12 90050967 ATP2B1 0.48 0.38 - 0.59

cg05248321 14 20898128 KLHL33 0.65 0.54 - 0.75

cg00716257 14 75897417 JDP2 0.31 0.11 - 0.62

cg02003183 14 103415882 CDC42BPB 0.62 0.59 - 0.65

cg26916780 15 64889554 ZNF609 0.40 0.34 - 0.46

cg12555233 15 91455366 MAN2A2 0.56 0.44 - 0.67

cg07558761 16 87866696 SLC7A5 0.53 0.38 - 0.68

cg07021906 16 87866833 SLC7A5 0.61 0.58 - 0.64

cg04583842 16 88103117 BANP 0.63 0.58 - 0.67

cg08857797 17 40927699 VPS25 0.48 0.21 - 0.75

cg22304262 19 47287778 SLC1A5 0.70 0.47 - 0.87

cg02711608 19 47287964 SLC1A5 0.69 0.61 - 0.75

cg21766592 19 47288066 SLC1A5 0.58 0.52 - 0.63

cg06500161 21 43656587 ABCG1 0.61 0.50 - 0.71

cg01820192 21 44869762 C21orf125 0.37 0.32 - 0.42

Table 5. Heritability of the 34 cross-validated CpG sites from the meta-analysis



Direction P rPh G contribution E contribution PG=0 PE=0

cg19693031 SBP TXNIP -- 0.0185 -0.047 0.023 (-0.040, 0.085) -0.070 (-0.132, -0.008) 0.477 0.026

cg13696706 SBP DAB2IP ++ 0.0120 0.059 0.036 (-0.026, 0.098) 0.023 (-0.039, 0.085) 0.254 0.464

cg11468085 SBP ALDH3B2 ++ 0.0148 0.026 -0.029 (-0.138, 0.079) 0.055 (-0.007, 0.116) 0.595 0.084

cg05248321 SBP KLHL33 ++ 0.0117 0.056 0.034 (-0.028, 0.096) 0.022 (-0.04, 0.084) 0.279 0.492

cg00716257 SBP JDP2 -- 0.0317 -0.050 0.013 (-0.050, 0.075) -0.063 (-0.124, -0.001) 0.692 0.048

cg04583842 SBP BANP ++ 0.0132 0.066 0.045 (-0.017, 0.107) 0.021 (-0.041, 0.083) 0.159 0.512

cg08857797 SBP VPS25 ++ 0.0029 0.070 0.018 (-0.044, 0.08) 0.052 (-0.01, 0.114) 0.568 0.101

cg22304262 SBP SLC1A5 -- 0.0252 -0.050 -0.030 (-0.118, 0.058) -0.020 (-0.082, 0.042) 0.509 0.535

cg06500161 SBP ABCG1 ++ 0.0417 0.031 0.003(-0.098, 0.105) 0.028 (-0.034, 0.090) 0.952 0.369

cg19693031 DBP TXNIP -- 0.0246 -0.062 -0.006 (-0.068, 0.056) -0.056 (-0.118, 0.006) 0.857 0.076

cg11468085 DBP ALDH3B2 ++ 0.0099 0.023 -0.013 (-0.126, 0.101) 0.036 (-0.037, 0.110) 0.828 0.333

cg08857797 DBP VPS25 ++ 0.0022 0.090 0.065 (-0.016, 0.146) 0.025 (-0.037, 0.087) 0.117 0.432

rph: phenotypic correlation; G contribution: genetic contribution; E contribution: unique environmental contribution. A detailed 

explanation is provided in Supplementary Data Figure S2.

Table 6. Meta analysis results of the bivariate SEM analysis for BP and its associated CpG sites in FTC and NTR

Probeid Trait Gene
Association Bivariate SEM analysis



NOVELTY AND SIGNIFICANCE 

What Is New? 

 Identified 13 novel CpG sites of which their methylation levels are associated with BP 

 Genetic factors contribute to the methylation variations of the BP associated CpG sites 

 The phenotypic correlations between CpG sites and SBP are primarily attributable to 
environmental factors that affect both traits, rather than genetic factors. 

What Is Relevant? 

 The identification of shared unique environmental factors rather than genetic factors between 
BP and DNA methylation indicates that the environment plays a significant role in creating an 
association between DNA methylation signatures and BP. 

  

Summary 

In this study of 4,820 individuals of European and African ancestry aged 14-69, genome-wide DNA 
methylation data from peripheral leukocytes were obtained using the Infinium HumanMethylation450k 
BeadChip and blood pressures were measured during clinical visit. Linear regression or mixed models 
were used to identify differentially methylated CpG sites associated with BP. Univariate and bivariate 
structural equation modelings were used to further investigate to what extent the genetic and 
environmental factors influence DNA methylation and blood pressure in the Finnish Twin Cohort and the 
Netherlands Twin Register. Our study identify 13 more CpG sites with their methylation levels associated 
with BP and replicated 21 previously identified signals. Univariate twin modeling showed that genetic 
factors contributed to the methylation variations of all the 34 CpG sites with heritability estimates 
ranging from 31-78%. Bivariate twin modeling showed that 100% of the correlations of systolic BP with 
cg19693031 (TXNIP) and cg00716257 (JDP2) were determined by environmental effects acting on both 
systolic BP and methylation levels, rather than genetic factors. 

Key words 

Blood pressure, DNA methylation, Epigenome-wide association study, Twin study, Hypertension 
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COHORT DESCRIPTION 

Finnish Twin Cohort (FTC): In 2011, a comprehensive questionnaire was sent to all the living twins of the 
Finnish Twin Cohort born between 1945 and 1957 (11738 twins). A total of  8501 twins returned the 
questionnaire with a response rate of 72% 1. Three questions in this questionnaire are related to 
hypertension: (1) When was your BP last measured? (2) Have you ever been told that you have elevated BP 
or hypertension? and (3) On how many days in the past year have you used antihypertensive medication? 
Based on the questionnaire, twins were defined as hypertensive if they had been diagnosed with 
hypertension or had taken antihypertensive medication for at least 2 months, while twins were defined as 
normotensive if they had not been diagnosed with hypertension and did not take antihypertensive 
medication. Based on the replies, 330 same-sex twin pairs free of self-reported previous diagnosis of 
myocardial infarction, congestive heart failure or stroke were defined as potentially discordant for 
hypertension. These twin pairs were phone interviewed and asked to participate in clinical assessments at 
the University of Helsinki during 2012-2015.  A total of 222 twin pairs and 3 singletons (n=447) participated 
in the clinical protocol. Informed consent was obtained from each subject, and the study was approved by 
the Ethics Committee of the University Central Hospital of Helsinki. 
        During the clinical testing, the twins had a comprehensive physical examination, and their health history 
was recorded, including questions again about previous diagnoses of hypertension and use of anti-
hypertensive medication. Resting BPs were measured four times during the visit, seated by a 
sphygmomanometer according to the JNC7 guidelines. The average of the last two readings of each 
measurement occasion was used to represent BP values. Information on medications was further 
complemented with data from community pharmacies. Based on the fact that only 50 twin pairs met the 
criteria for current discordance for hypertension (one twin on anti-hypertensive medication or with 
SBP≥140mmHg or DBP≥90mmHg and his/her co-twin not on anti-hypertensive medication, and with 
SBP<120mmHg and DBP<80mmHg), we included all the twins for the current analysis by using SBP and DBP 
as continuous variables. If antihypertensive medication was used, 15mmHg and 10mmHg were added to the 
measured SBP and DBP levels, respectively 2. Fasting peripheral blood samples were obtained from 402 
participants. Zygosity was determined by genotyping using Illumina HumanCoreExome  BeadChip.   

Georgia Stress and Heart study (GSH)3, 4: The GSH study is a longitudinal study, which was established in 
1989 with the goal of exploring the development of cardiovascular risk factors. It consisted of 396 EA and 
349 AA health youths aged from 7 to 16 years at baseline. All participants were recruited from the general 
population in the Augusta, Georgia area. The evaluation was conducted annually from 1989 to 2001 (visit 1-
10), and every 1.5 years from 2002 to 2007 (visit 11-14). Most recently two more visits were conducted from 
2008 to 2012 (visit 15-16). Blood samples were collected from visit 9.  In the current study, all the participants 
in visit 15 with buffy coat available were selected for the current study (n=480).  
 
Epigenetic Basis of Obesity Induced Cardiovascular Disease and Type 2 Diabetes (EpiGO) study 5, 6.  The 
EpiGO study was established in 2011 with the goal of identifying methylation changes involved in the 
pathogenesis of obesity and its related co-morbidities.  The EpiGO study in total enrolled 351 obese (BMI 
percentile ≥95%) and 435 lean (BMI percentile ≤50%) youth aged 14 to 20 years with 70% of African-
Americans (AA), 30% of European-Americans (EA), 47% of males and 53% of females. All the subjects were 
recruited from the Augusta, Georgia area from 2011-2015. The youths were free of any acute or chronic 
illness, and did not take daily prescription medication to treat diseases. Illumina 450k data were obtained 
from 192 African-American participants (96 obese vs. 96 lean, 50% of females). After quality control, genome-
wide DNA methylation data for 188 subjects (96 obese vs. 92 controls) were included in the current analysis.      
 
Lifestyle, Adiposity, and Cardiovascular Health in Youth (LACHY) study 5, 7: The LACHY study was established 
in 2000 and finished in 2004 with the goal of determining the relations of fatness and fitness to cardiovascular 



disease (CVD) risk factors in the juvenile years. It consisted of 756 youths aged from 14 to 18 years recruited 
from general population, with roughly equal numbers of AA and EA of both genders. All participants were 
recruited from the Augusta, Georgia area. The youths were apparently healthy and did not take daily 
prescription medication to treat diseases. In this study, all AA participants with buffy coat available (n=286) 
were selected for the current study. After quality control, genome-wide DNA methylation data in leukocytes 
were available for 284 subjects.  
 
Jackson Heart Study (JHS): The JHS is a large, community-based, longitudinal study whose participants were 
recruited from the Jackson metropolitan area. The primary objective of the JHS is to investigate the causes 
of EH and cardiovascular disease to learn how best to prevent and treat these diseases in AAs 8. At baseline, 
a total of 5,302 AAs (21 to 94 years of age) were enrolled from 2000 to 2004. The participants have provided 
extensive medical and social history, and had an array of physical and biochemical measurements and 
diagnostic procedures.  In particular, BP and buffy coat DNA were collected. For the current study, we 
selected 48 EH cases (50% females and 48% on antihypertensive medication) and 48 age (±2 years), sex and 
BMI (within the same category) matched normotensive controls for the genome-wide DNA methylation 
analysis. The including criteria for EH cases were: (1) age<45; (2) having genome-wide SNP data; and (3) on 
anti-hypertensive medication, or having SBP≥130mmHg or DBP≥85mmHg. The including criteria for 
normotensive controls were: (1) age<45; (2) having genome-wide SNP data; and (3) having SBP<120mmHg 
and DBP<80mmHg. To be in consistent with other cohorts, the current analysis used SBP and DBP as 
continuous variables rather than the phenotype of hypertension. If antihypertensive medication was used, 
15mmHg and 10mmHg were added to the measured SBP and DBP levels, respectively 2. 
 
Prevention of REnal and Vascular ENd stage Disease (PREVEND): The PREVEND is an ongoing large 
population-based longitudinal cohort started in 1997 and conducted in Groningen, the Netherlands. The 
main objective is to study microalbuminuria as a risk factor for renal and cardiovascular disease 9, 10. During 
1997-1998, all inhabitants of the city of Groningen between the ages of 28 and 75 yr (85,421 subjects) were 
asked to send in a morning urine sample and to fill out a short questionnaire. A total of 40,856 subjects 
(47.8%) responded. Subjects with a urinary albumin concentration of ≥10 mg/L (n = 7,768) together with a 
randomly selected control group with a urinary albumin concentration of <10 mg/L (n = 3,395) were invited 
for further investigations in an outpatient clinic. In total, 8,592 subjects completed the baseline test. Of the 
8,592 subjects who completed the baseline test, 7928 Caucasians had buffy coat DNA available and BP 
measured. The current analysis included 2 genome-wide DNA methylation datasets from PREVEND. The 
first one included 98 EH cases (46.9% females and 35.7% on antihypertensive medication) and 98 age (±2 
years), sex and BMI (within the same category) matched normotensive controls. The including criteria for 
EH cases were: (1) age<50; (2) having genome-wide SNP data; and (3) on anti-hypertensive medication, or 

having SBP≥140mmHg or DBP≥90mmHg. The including criteria for normotensive controls were: (1) 

age<50; (2) having genome-wide SNP data; and (3) having SBP<120mmHg and DBP<80mmHg. The second 
dataset consisted of 111 randomly selected samples, of which 28.3% were female and 20.9% used anti-
hypertensive medication. 
 
Emory Twin Study (ETS): The ETS consists of 283 middle-aged male Caucasian MZ and DZ twin pairs from the 
Vietnam Era Twin Registry who were born between 1946 and 195611. All twins were examined in pairs at the 
Emory University General Clinical Research Center between 2002 and 2010. Genome wide DNA methylation 
data and measured BP were available in 218 twins aged 31-6612. In the current analysis we included all the 
twins with epigenetic and BP data. If antihypertensive medication was used, 15mmHg and 10mmHg were 
added to the measured SBP and DBP levels, respectively 2. 



Lifelines sample: Lifelines is a prospective population-based cohort to study health and health-related 
behaviours of 167,729 individuals living in the North of The Netherlands 13. Details on clinical examination 
and biochemical measurements have been described elsewhere 13. In short, a standardized protocol was 
used to obtain blood pressure and anthropometric measurements such as height, weight and waist 
circumference. Blood was collected in the fasting state, between 08:00 and 10:00 in the morning. Five groups 
were selected for genome-wide DNA methylation measurement from the baseline of the Lifelines study (all 
unrelated and European ancestry samples, n=13,436) 14 using the following criteria (n=50 for each group): 
(1) type 2 diabetes patients without CVD complications; (2) type 2 diabetes patients with CVD complications; 
(3) non-diabetic controls, with no history of CVD risk factors, and age- and sex- matched to groups 1 and 2; 
(4) healthy, obesity subjects (BMI≥30kg/m2); and (5) healthy, normal-weight controls (BMI<25),  and age- 
and sex-matched to group 4.  The non-diabetic controls, healthy obesity subjects and normal-weight controls 
(n=150, i.e. group 3, 4, and 5) were included in the current analysis. 15 

Netherlands Twin Register (NTR) biobank project: For the NTR biobanking project,  participants and 
collection procedures of blood, urine and buccal sample were described in detail previously15. The study also 
included parents of twins, siblings of twins and spouses of twins. In total, 3,264 blood samples from 3,221 
NTR participants were assessed for genome-wide methylation, of which 3,089 samples from 3,057 subjects 
passed quality control. Blood pressure was measured in a subset of NTR participants as part of several 
projects that used similar methodology 16. Here, we analyze SBP and DBP measured at rest. SBP and DBP 
were corrected for antihypertensive medication use by adding drug-class specific average treatment effects 
to the measured values 17, 18. Only samples with good-quality DNA methylation data, white blood cell counts 
and BP measured ±2years from the methylation measurement were retained for EWAS and bivariate twin 
modeling analysis, leaving 596 subjects (age at the methylation measurement: 29.4±10.5; 66% females). This 
dataset included 499 MZ and 95 DZ twins as well as 2 spouses of twins. The univariate heritability analysis 
included 2802 twins (1736 MZ twins, and 1066 DZ twins) with good quality methylation data available. All 
subjects provided written informed consent. The study protocols were approved by the Central Ethics 
Committee on Research Involving Human Subjects of the VU University Medical Centre, Amsterdam, an 
Institutional Review Board certified by the US Office of Human Research Protections (IRB number IRB-2991 
under Federal-wide Assurance-3703; IRB/institute codes, NTR 03-180). 

Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome study (DILGOM): The 
Finnish study samples included a total of 513 unrelated individuals aged 25–74 years from the Helsinki area, 
recruited during 2007 as part of the DILGOM study, an extension of the FINRISK 2007 study described 
earlier19. Study participants were asked to fast overnight (at least 10 hours) prior to giving a blood sample. 
Genome-wide DNA methylation data were obtained from 512 individuals (Male= 237, Female=275, mean 
age 51.9 ± 13.7). The blood pressure measurements of DILGOM were carried out approximately three 
months earlier at baseline investigation of the FINRISK 2007 survey. As described19, blood pressure 
measurements were performed by a trained nurse  from the right arm of the participant who had been 
resting in a sitting position for five minutes before the first measurement. A standard mercury 
sphygmomanometer with a cuff size 14 x 36 cm was used. The first phase of the Korotkoff sounds was taken 
as the systolic pressure and the fifth phase as the diastolic pressure. Three measurements were performed 
and the mean of the last two measures was used in the analyses.  

Estonian Genome Center of the University of Tartu (EGCUT) biobanking project:  The EGCUT is the 
population-based database which comprises currently the health, genealogical and genome data of more 
than 51,530 individuals 18 years of age and up reflecting closely the age distribution in the adult Estonian 
population. Participants of EGCUT recruited by the general practitioners (GP) from GP offices, physicians 
from the hospitals or data collectors from EGCUT’s patient recruitment offices. Each participant filled out a 
Computer Assisted Personal interview during 1-2 hours at a doctor’s or data collector’s office, including 



personal data (place of birth, place(s) of living, nationality etc.), genealogical data (family history, three 
generations), educational and occupational history and lifestyle data (physical activity, dietary habits, 
smoking, alcohol consumption, quality of life). 20Anthropometric and physiological measurements were also 
taken. Resting BPs were measured three times during the visit, seated by a sphygmomanometer according 
to the JNC7 guidelines. The average of  three readings of each measurement occasion was used to represent 
BP values. If antihypertensive medication was used, 15mmHg and 10mmHg were added to the measured SBP 
and DBP levels, respectively. The current analysis included 2 genome-wide DNA methylation datasets from 
EGCUT. The first one included 91 asthma cases (mean age: 26.1±7.1 63.7% females) and 82 age- and gender-
matched controls (mean age: 24.6±6.0, 64.6% females). Both cases and controls were required to have 
BMI<30kg/m2 and to be non-smokers. The second one included 50 younger (age 22–34, 52% females) and 
50 older (age 73–84, 52% females) individuals.   

The Bogalusa Heart Study (BHS): The BHS, a long-term epidemiology study of the natural history of 
cardiovascular disease from childhood to adulthood, was founded by Dr. Gerald Berenson in 1973 21. The 
current study cohort consisted of 968 adult participants (680 whites and 288 blacks, 421 males, mean 
age=43.2±4.5 years) who had been recruited in the BHS from 2006 to 2010. Anthropometry and BP were 
measured in the morning. Participants’ BP levels were obtained on right arms in a relaxed sitting position by 
2 trained observers (3 times each). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 
recorded using a mercury sphygmomanometer. The mean values of the 6 readings were used for analysis. 
Whole blood samples were collected between 8:00 AM and 10:00 AM after overnight fasting for DNA 
methylation profiles assays. All participants in the BHS gave informed written consent. Study protocols were 
approved by the Institutional Review Board of Tulane University. 
 
The Helsinki Birth Cohort (HBC): The HBCS comprises 13345 individuals (6370 women and 6975 men), born 
as singletons between 1934 and 1944 in one of the two main maternity hospitals in Helsinki and who were 
living in Finland in 1971 when a unique personal identification number was allocated to each member of the 
Finnish population. The HBCS, which has been described in detail elsewhere 22, has been approved by the 
Ethics Committee of the National Public Health Institute. Register data were linked with permission from the 
Finnish Ministry of Social Affairs and Health and the Finnish National Archives. In 2001–2004 at an average 
age of 61.5 years (s.d. = 2.9 and range = 56.7 –69.8 years), a randomly selected subsample of the cohort 
comprising 2003 individuals (1075 women and 928 men) was invited to a clinical examination including 
collection of a blood sample for (epi)genetic and biochemical studies. Genome-wide DNA methylation data 
were obtained from 83 evacuated men (mean age: 64±2.9 years) and 83 non-evacuated controls (mean age: 
62.4±2.6 years) matched for sex, birth year and father’s occupational status in childhood 23. Blood pressure 
data were available for 164 participants. Blood pressure was measured from the right arm while the subject 
was in the sitting position, and it was recorded as the mean of 2 successive readings from a mercury 
sphygmomanometer. All measurements were performed by a team of 3 trained research nurses.  

The Young Finns study (YFS): 24YFS comprises a series of six cohorts, representing general population, born 
in 1962, 1965, 1968, 1971, 1974 and 1977 from five cities with university hospitals in Finland (Helsinki, 
Kuopio, Oulu, Tampere and Turku) [18]. A subsample of 188  (Male= 115, Female=73, mean age 44.0 ± 3.3) 
individuals were randomly assigned from a follow-up in 2011. The sample collection in 2011 is described in 
more detail elsewhere [34]. The categories of age in the methylation analysis were 40, 43, 46 and 49 years 
old, with group sizes of 50, 44, 55 and 35, in which 58 %, 68.2, 56.4 and 60 % were women, respectively. All 
of the participants were of western European descent. The study followed the guidelines of the Declaration 
of Helsinki and was approved by the Ethical Review Committee of Turku University Hospital. All participants 
provided informed consent. Blood pressure from the right brachial artery was measured in the sitting 
position after a 5-minute rest with a random-zero sphygmomanometer (Hawksley & Sons Ltd, Lancin, United 
Kingdom) as described previously 25. The average of three measurements was used in the analysis. 



Hypertension was defined as systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, self-
reported use of antihypertensive medication, or a self-reported hypertension diagnosis. 

The Lifelines DEEP cohort: This cohort was not included in the current meta-analysis. It was used as an 
independent cohort to evaluate the contribution of the CpG sites to BP variation. A total of 601 adults (age: 
45.6±13.1 years; 58.2% females, 9.48% taking antihypertensive medications) from the Lifelines DEEP cohort 
were included in this study based on available epigenome-wide methylation data and BP. If antihypertensive 
medication was used, 15mmHg and 10mmHg were added to the measured SBP and DBP levels, respectively. 
Initially, 1539 participants were enrolled in the Lifelines DEEP, which is a subpopulation of the Lifelines cohort 
in the north of The Netherlands 14, 26. Except for the regular Lifelines procedures, additional deep molecular 
measurements were performed in Lifelines DEEP participants. All participants provided written informed 
consent. The Lifelines DEEP study was approved by the Medical Ethical Committee of the University Medical 
Center Groningen (UMCG), Groningen, The Netherlands.  

GENOME-WIDE DNA METHYLATION PROFILING AND PROPROCESSING QUALITY CONTROL 

The FTC, JHS, PREVEND, GSH, EpiGO, LACHY, YFS, DILGOM and ETS: The Minfi package 27 and CPACOR 

(incorporating Control Probe Adjustment and reduction of global CORrelation) package 28 were used for initial 

quantification, data preprocessing and quality control (QC). The key QC steps included: (1) Detectable probes 

were defined as the probes with detection P-value < 1x10-16 in more than 95% samples; (2) Detectable 

samples were defined as the samples with more than 95% CpG sites having a detection P-value <1x10-16 and 

correct classification of gender based on the genome-wide DNA methylation data; (3) Probes on the X and Y 

chromosomes and the 65 SNP markers were excluded; (4) Illumina background correction and quantile 

normalization were applied to all intensity values and beta value was further calculated and used as the index 

of CpG methylation levels; (5) A principal component analysis (PCA) of the control probe intensities (excluding 

negative control probes) was performed and the resulting PCs up to 30 (different numbers were used by 

different cohorts) were stored; (6) White blood cell sub-populations were estimated using the approach 

described by Houseman et al. 29; (7) A linear regression model was conducted for each CpG site with DNA 

methylation level as the dependent variable and the PCs from the control probe intensities as well as the 

estimated cell compositions as the independent variables. The residuals were calculated and used as indices 

of DNA methylation levels in further analysis.  The above steps were conducted for each cohort separately.  

BHS: The methylation data were normalized using the R package watermelon30. Given the importance of 

cellular heterogeneity in DNAm, we estimated the relative proportions of six pure cell types (CD4+ and CD8+ 

T-cells, natural killer cells, monocytes, granulocytes, and b-cells) in each sample using the R package Minfi 

package 27. For correction of systematic technical biases in the 450K assay, the β scores were normalized 

using the dasen function, in which type I and type II intensities and methylated and unmethylated intensities 

are quantile-normalized separately after backgrounds equalization of type I and type II probes. Based on 

bead count and detection p-values, the following thresholds were set for removal: 1) samples having 1% of 

CpG sites with a detection p-value>0.05; 2) probes having 5% of samples with a detection p-value>0.05; 3) 

probes with bead count less than 3 in 5% of samples. 

NTR: The methylation data were examined with the R-package MethylAid 31. Only samples that passed all 
five quality criteria (using the default MethylAid thresholds) were kept for further analyses. Several probe-
level QC steps were performed to filter out probes with low performance. For all samples, ambiguously 
mapped probes were excluded, based on the definition of an overlap of at least 47 bases per probe from 
Chen et al. 32, and all probes containing a SNP, identified in the Dutch population33, within the CpG site (at 
the C or G position) were excluded, irrespective of minor allele frequency. For each sample individually, 



probes with an intensity value of zero (not present on the array of a particular sample), probes with a 
detection P value>0.01, and probes with a bead count <3 were excluded. After these steps, probes with a 
success rate <0.95 across samples were removed from all samples. The total number of CpGs after these 
filtering steps was 421,119. Only autosomal sites were kept in the current analyses (N=411,169). 

EGCUT: Data pre-processing and quality control analyses were performed in R with the Bioconductor package 
minfi27, using the original IDAT files extracted from the HiScanSQ scanner. ‘Raw’ pre-processing was used to 
convert the intensities from the red and the green channels into methylated and unmethylated signals. Beta 
values were computed using Illumina’s formula [beta = M/(M + U + 100)]. The difference in the distribution 
of beta values for type I and type II probes was corrected using “SWAN”, a normalization method to address 
systematic changes between type I and type II probes. Detection p-values were obtained for every CpG probe 
in each sample. Qualified CpG sites were defined as probes with detection P-value<0.01 in ≥95% of the 
samples. Qualified samples were defined as samples having ≥90% of CpG sites with detection P-value<0.01. 
Only autosomal sites were kept in the final analyses.  

Lifelines: DNA methylation data were generated by the Genome Analysis Facility of UMCG, the Netherlands 
(www.rug.nl/research/genetics/genomeanalysisfacility/). Quality control (QC) and normalization steps are 
described in detail elsewhere 34 and in ESM Methods. In short, the QC pipeline by Touleimat and Tost was 
used with background correction and probe type normalization 35. Then, normalized beta-values were log-
transformed into M-values for downstream analysis, since they have been shown to perform better in studies 
with smaller sample sizes 36. 

HBC: Quality control pipeline was set up using the R-package minfi, including intensity readouts, 

normalization, cell type composition estimation, β- and M-value calculation. We excluded samples with 
low intensity (badSampleCutoff<10.6) or deviant beta distribution based on visual inspection (n=5). 
We did not detect any gender discrepancy. Data were normalized with functional normalization 

(FunNorm). Of the probes, we excluded those with detection p-value >0.01 in >50% of samples (ref. 
Minfi), non-autosomal and non-specific binding probes as well as probes with SNPs in the interval 
for which the Illumina probe is designed to hybridize and if they were located close (10bp from 
query site) to a SNP which had a minor allele frequency of ≥0.05. Probes located in the X and Y 
chromosome were also excluded.  This yielded a total number of probes of 424,844. Batch effects were 
identified by inspecting the association of principal components of the methylation levels with possible 
technical batches using linear regressions and visual inspection of PCA plots using the Bioconductor R 
package shinyMethyl (version 0.99.3). Identified batch effects (i.e. array column) were removed using the 
Empirical Bayes' (EB) method ComBat 37. Batch corrected beta values after ComBat were used for all further 
statistical analyses and white blood cell sub-populations were estimated using the Houseman et al 29. 

The Lifelines Deep Cohort: For genome-wide DNA methylation data, 500 ng of genomic DNA was bisulfite-
converted using the EZ DNA Methylation kit (Zymo Research Corp., USA) and hybridized on Illumina Human 
Methylation 450K BeadChip arrays (Illumina, Inc.) according to the manufacturer’s protocols. The original 
IDAT files were generated by the Illumina iScan BeadChip scanner and performed by the Human Genotyping 
facility (HugeF) of ErasmusMC, The Netherlands (http://www.glimDNA.org/). Quality control and 
normalization details are described elsewhere (unpublished manuscript). Briefly, the R-package “minfi” was 
used to check on the quality of probes and samples. By following the Touleimat and Tost’s pipeline 35, we 
performed background correction and probe type normalization using preprocessQuantile implemented in 
the minfi package 27. Methylation levels at each CpG site were expressed as the ratios of the methylated 
intensity over the total intensity (β-values). Normalized M-values were used for all subsequent statistical 
analyses, while β-values were used for biological interpretation in tables and figures.  



FIGURE LEGEND 

Figure S1. Flow diagram of the study design. 

 

Figure S2. Path diagram for univariate structural equation model 

The observed phenotypes (P) for co-twins are shown in squares, and latent factors are shown in circles. 

Correlation between genetic factors (A) is 1 in monozygotic (MZ) twin pairs and 0.5 in dizygotic (DZ) twin 

pairs. Correlation between common (or shared) environmental factors (C) is 1 for MZ/DZ twin pairs. Unique 

environmental factors (E) are always uncorrelated. 

 

Figure S3. Path diagram for bivariate structural equation model (Cholesky model) 

The observed two phenotypes (P1, P2) for co-twins are shown in squares, and latent factors are shown in 

circles. Similar to the univariate model, correlation between genetic factors of the same phenotype (A1, A2) 

is 1 in monozygotic (MZ) twin pairs and 0.5 in dizygotic (DZ) twin pairs, while correlation between common 

(or shared) environmental factors (C) is 1 for both MZ/DZ twin pairs. Unique environmental factors (E) are 

always uncorrelated between two twins. The paths of genetic factors on each phenotype are a11 and a22 

respectively, and the path of genetic factors between two phenotypes is a21. Similarly, The paths of 

common and unique environmental factors on each phenotype are c11 and c22, and e11 and e22, respectively, 

and the path of common and unique environmental factors between two phenotypes are c21 and e21. As 

the correlation is the standardized covariance, we can calculate the genetic correlation (rg) based on the 

variance/covariance matrix estimated from the bivariate twin modeling, i.e. rg= 
(𝑎11×𝑎21)
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, and the 

common and unique environmental correlations (rc and re) as well, i.e. rc= 
(𝑐11×𝑐21)
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. The genetic contribution to the observed phenotypic correlation (rph) is a function of both 

heritabilities of the two phenotypes and the rg between them, i.e. √ℎ1
2 × 𝑟𝑔 × √ℎ2

2. Similarly, the 

environmental contributions to the observed correlation are equal to √𝑐1
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2 and √𝑒1
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Dividing these terms by rph yields the proportion of rph due to genetic, common and unique environmental 

factors, repectively, because rph = √ℎ1
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Figure S4. Manhattan plot of the genome-wide DNA methylation analysis. The blue line indicates the 

threshold of P<1E-05. Figure S4a: SBP; Figure S4b: DBP. 

Figure S5. QQ plot of the genome-wide DNA methylation analysis. Figure S5a: SBP; Figure S5b: DBP. 

Figure S6. Scatter plot of the assocations between DNA methylation and gene expression. X axis is DNA 

methylation level, which are the residuals of beta values after  regressing out the effect of cell composition 

and 5 PCs from the control probes. Y axis is gene expression level, which are the residuals of the gene 

expression levels after regressing out the batch effect.   



Table S1. CpG sites associated with SBP or DBP at P<1×10-5 from our meta-analysis. 

Probe ID Chr. Gene 
SBP     DBP    

Direction P value Het P value   Direction P value Het P value 

cg06500161 21 ABCG1 + 5.69E-06 5.79E-03  + 5.06E-05 3.45E-02 

cg11468085 11 ALDH3B2 + 4.16E-06 2.32E-01  + 1.38E-04 2.22E-01 

cg00508575 12 ATP2B1 + 6.47E-06 4.50E-02  + 9.20E-04 2.62E-01 

cg04583842 16 BANP + 5.54E-09 2.91E-01  + 2.99E-06 2.33E-01 

cg05166473 16 BANP + 1.26E-06 4.31E-01  + 8.71E-04 4.45E-01 

cg01820192 21 C21orf125 + 6.44E-06 9.82E-01  + 3.96E-02 5.67E-01 

cg14562076 21 C21orf125 + 2.93E-06 4.35E-01  + 3.38E-03 2.41E-01 

cg01343041 2 C2orf84 + 4.21E-07 5.77E-01  + 1.01E-04 1.08E-01 

cg18587476 2 C2orf84 + 3.98E-06 6.66E-01  + 3.59E-03 2.51E-01 

cg19849557 6 C6orf136 + 2.64E-06 7.81E-01  + 4.07E-02 5.50E-01 

cg02003183 14 CDC42BPB + 3.66E-07 2.85E-01  + 1.54E-03 9.01E-02 

cg10258505 14 CDC42BPB + 3.95E-06 8.64E-01  + 2.43E-04 2.80E-01 

cg23570433 11 CTR9 + 2.52E-03 6.34E-01  + 3.07E-06 3.14E-01 

cg13696706 9 DAB2IP + 9.83E-08 5.55E-01  + 1.16E-03 8.16E-01 

cg10785537 2 DCTN1 + 6.50E-06 3.81E-01  + 2.43E-02 3.90E-01 

cg24461627 10 DIP2C + 2.35E-05 9.57E-01  + 6.49E-06 3.78E-01 

cg19637821 12 FBRSL1 + 4.98E-07 6.38E-01  + 2.15E-02 2.08E-01 

cg22590032 5 FLT4 + 3.94E-06 2.03E-01  + 3.06E-03 6.15E-01 

cg10342963 15 IGF1R + 2.91E-07 4.26E-01  + 6.48E-05 6.32E-01 

cg05248321 14 KLHL33 + 7.01E-07 8.70E-01  + 1.88E-03 9.76E-01 

cg08059112 19 LINGO3 + 2.42E-06 6.52E-01  + 1.85E-03 6.28E-01 

cg12555233 15 MAN2A2 + 2.74E-06 4.87E-02  + 3.50E-03 2.90E-01 

cg03835709 12 NAV3 + 8.75E-06 1.21E-01  + 8.24E-03 6.20E-01 

cg13673536 9 PIP5K1B + 1.73E-04 3.32E-01  + 4.24E-07 8.25E-01 

cg20738719 3 SEMA5B + 2.23E-07 3.36E-01  + 2.23E-04 7.02E-01 

cg26401492 3 SFMBT1 + 1.08E-02 1.15E-02  + 5.92E-06 5.16E-01 

cg02711608 19 SLC1A5 - 7.48E-06 2.50E-03  - 1.41E-03 3.36E-02 

cg07021906 16 SLC7A5 + 1.38E-06 6.98E-01  + 3.37E-03 4.38E-01 

cg07558761 16 SLC7A5 + 8.83E-07 1.90E-01  + 1.71E-03 8.45E-02 

cg04690793 6 SNRPC + 3.98E-06 9.09E-01  + 1.57E-03 4.90E-01 

cg02980023 3 STAB1 + 3.78E-07 2.84E-01  + 5.86E-06 5.31E-01 

cg19695041 8 TACC1 - 6.26E-06 8.09E-01  - 3.36E-02 5.34E-01 

cg19693031 1 TXNIP - 2.18E-07 1.23E-03  - 4.65E-05 7.63E-02 

cg08857797 17 VPS25 + 9.64E-06 6.44E-01  + 4.98E-05 7.75E-01 

cg00916854 12 VPS37B + 7.99E-06 8.48E-02  + 2.06E-03 1.20E-01 

cg09012734 21 WDR4 + 3.38E-02 2.52E-01  + 8.42E-06 2.21E-01 

cg00989229 16 Intergenic + 1.37E-02 6.58E-01  + 8.30E-06 3.47E-01 

cg03411579 12 Intergenic + 9.35E-07 2.54E-01  + 2.68E-04 2.19E-01 

cg08232160 16 Intergenic + 9.11E-06 1.86E-01   + 5.15E-03 5.82E-03 

  



  

Probe ID Chr. Gene Direction P value Direction P value Direction P value Direction P value

cg18933331 1 intergenic - 2.16E-02 - 1.89E-02 + 6.17E-01 + 9.88E-01

cg16246545 1 PHGDH - 5.20E-04 - 1.14E-02 - 5.78E-01 - 7.89E-01

cg14476101 1 PHGDH - 1.20E-04 - 7.11E-03 - 7.23E-01 - 6.20E-01

cg19693031 1 TXNIP - 1.23E-02 - 4.82E-04 - 1.20E-03 + 7.17E-01

cg19266329 1 intergenic - 1.93E-01 - 9.85E-01 - 4.01E-01 + 7.11E-02

cg24955196 1 ZBTB7B + 1.54E-02 + 4.18E-03 + 5.80E-03 + 3.00E-02

cg12593793 1 intergenic - 1.66E-01 - 3.26E-01 - 5.52E-03 - 5.47E-01

cg01343041 2 C2orf84 + 2.18E-02 + 9.93E-02 + 9.19E-03 + 1.65E-01

cg18119407 2 CFLAR - 4.32E-02 - 1.38E-03 - 3.72E-01 + 3.60E-01

cg06690548 4 SLC7A11 - 2.21E-03 - 1.61E-04 - 5.32E-01 - 8.79E-02

cg18120259 6 LOC100132354 - 7.20E-02 - 6.90E-01 - 7.03E-01 - 5.75E-01

cg21429551 7 GARS - 1.20E-02 - 3.43E-02 - 9.55E-01 + 8.10E-01

cg19390658 7 GARS - 8.64E-04 - 2.48E-02 - 9.86E-01 + 7.45E-01

cg19695041 8 TACC1 - 2.97E-04 - 5.92E-01 - 5.55E-02 - 6.36E-03

cg00008629 9 ROD1 - 2.27E-01 - 9.84E-01 - 1.85E-02 - 1.80E-01

cg13696706 9 DAB2IP + 9.16E-06 + 1.39E-02 + 3.52E-04 + 8.21E-02

cg11376147 11 SLC43A1 - 1.88E-02 - 1.83E-02 - 8.51E-01 + 9.60E-01

cg11468085 11 ALDH3B2 + 9.01E-05 + 2.04E-03 + 2.69E-01 + 4.39E-01

cg00574958 11 CPT1A - 4.65E-01 - 9.28E-02 - 9.61E-01 - 4.11E-01

cg00508575 12 ATP2B1 + 5.45E-03 + 3.01E-02 + 8.62E-04 + 1.43E-01

cg05248321 14 KLHL33 + 2.87E-04 + 6.44E-03 + 4.41E-02 + 3.78E-01

cg00716257 14 JDP2 - 6.42E-02 - 6.81E-01 - 7.37E-01 - 2.68E-01

cg02003183 14 CDC42BPB + 1.44E-05 + 5.92E-02 + 4.18E-01 - 2.39E-01

cg26916780 15 ZNF609 - 1.56E-01 - 2.27E-01 - 5.27E-01 + 9.09E-01

cg12555233 15 MAN2A2 + 2.35E-05 + 1.63E-03 + 8.16E-02 + 9.62E-01

cg07558761 16 SLC7A5 + 3.96E-05 + 3.37E-02 + 1.21E-01 + 6.48E-01

cg07021906 16 SLC7A5 + 8.72E-05 + 1.10E-02 + 3.17E-02 + 2.09E-01

cg04583842 16 BANP + 5.29E-07 + 3.97E-05 + 2.82E-02 + 5.99E-02

cg08857797 17 VPS25 + 4.46E-04 + 8.65E-05 + 8.39E-01 + 7.14E-01

cg22304262 19 SLC1A5 - 4.64E-03 - 1.79E-01 - 5.54E-01 - 9.50E-01

cg02711608 19 SLC1A5 - 2.52E-02 - 6.34E-01 - 6.54E-01 + 5.66E-01

cg21766592 19 SLC1A5 - 6.69E-03 - 4.70E-01 - 8.66E-02 + 9.17E-01

cg06500161 21 ABCG1 + 3.43E-02 + 2.98E-02 + 7.19E-01 - 8.97E-01

cg01820192 21 C21orf125 + 6.41E-04 + 7.01E-02 + 1.90E-01 + 5.00E-01

Table S2. Stratified analysis of the 34 CpG sites in participants with or without antihypertensive medication

SBP DBP

Without medication (n=3855)

SBP DBP

With medication (n=790)



 

  

ProbeID chr. Position Gene Direction P value

cg18933331 1 110186418 intergenic + 0.40982

cg16246545 1 120255941 PHGDH - 0.59214

cg14476101 1 120255992 PHGDH - 0.24269

cg19693031 1 145441552 TXNIP + 0.42444

cg19266329 1 145456128 intergenic + 0.30504

cg24955196 1 154982621 ZBTB7B - 0.367741

cg12593793 1 156074135 intergenic - 0.00561

cg01343041 2 24397787 C2orf84 + 0.199573

cg18119407 2 201980504 CFLAR + 0.07703

cg06690548 4 139162808 SLC7A11 - 0.18537

cg18120259 6 43894639 LOC100132354 - 0.0603

cg21429551 7 30635762 GARS + 0.96625

cg19390658 7 30636176 GARS + 0.24793

cg19695041 8 38615330 TACC1 - 0.06736

cg00008629 9 115093661 ROD1 + 0.09652

cg13696706 9 124396830 DAB2IP + 0.3064

cg11376147 11 57261198 SLC43A1 - 0.001

cg11468085 11 67435577 ALDH3B2 + 0.26652

cg00574958 11 68607622 CPT1A - 0.4117

cg00508575 12 90050967 ATP2B1 + 0.38144

cg05248321 14 20898128 KLHL33 - 0.84643

cg00716257 14 75897417 JDP2 + 0.52039

cg02003183 14 103415882 CDC42BPB + 0.82545

cg26916780 15 64889554 ZNF609 - 0.32459

cg12555233 15 91455366 MAN2A2 + 0.85009

cg07558761 16 87866696 SLC7A5 + 0.69759

cg07021906 16 87866833 SLC7A5 + 0.61261

cg04583842 16 88103117 BANP + 0.8756

cg08857797 17 40927699 VPS25 - 0.08236

cg22304262 19 47287778 SLC1A5 + 0.14571

cg21766592 19 47288066 SLC1A5 - 0.04095

cg06500161 21 43656587 ABCG1 + 0.00749

cg01820192 21 44869762 C21orf125 - 0.7618

Table S3. Associations of the 33 CpG sites with EH in Lifelines DEEP cohort



Table S4. GSEA results of our meta-analysis (FDR<0.05) 

Trait Biological Process Pathways FDR  

SBP CELL SUBSTRATE ADHERENS JUNCTION ASSEMBLY 0.029 

 CELL SUBSTRATE JUNCTION ASSEMBLY 0.032 

 CALCIUM ION IMPORT INTO CYTOSOL 0.039 

 ADHERENS JUNCTION ASSEMBLY 0.050 

  NEUTRAL AMINO ACID TRANSPORT 0.060 

DBP REGULATION OF GRANULOCYTE DIFFERENTIATION 0.003 

 REGULATION OF DENDRITE EXTENSION 0.007 

 MEMBRANE BIOGENESIS 0.028 

 PROTEIN AUTOPHOSPHORYLATION 0.030 

 MEMBRANE ASSEMBLY 0.034 

 REGULATION OF PROTEIN AUTOPHOSPHORYLATION 0.042 

  NEUTRAL AMINO ACID TRANSPORT 0.074 

The pathway previously identified by the CHARGE consortium was highlighted in grey. 
  



 

  

h2 95%CI h2 95%CI

cg18933331 1 110186418 intergenic 0.77 0.69 - 0.83 0.68 0.64 - 0.71

cg16246545 1 120255941 PHGDH 0.73 0.63 - 0.80 0.81 0.79 - 0.83

cg14476101 1 120255992 PHGDH 0.69 0.57 - 0.77 0.78 0.76 - 0.81

cg19693031 1 145441552 TXNIP 0.58 0.46 - 0.68 0.55 0.50 - 0.59

cg19266329 1 145456128 intergenic 0.44 0.28 - 0.57 0.35 0.29 - 0.40

cg24955196 1 154982621 ZBTB7B 0.53 0.40 - 0.63 0.31 0.24 - 0.37

cg12593793 1 156074135 intergenic 0.77 0.69 - 0.84 0.51 0.46 - 0.55

cg01343041 2 24397787 C2orf84 0.64 0.52 - 0.73 0.65 0.61 - 0.69

cg18119407 2 201980504 CFLAR 0.37 0.22 - 0.51 0.36 0.30 - 0.41

cg06690548 4 139162808 SLC7A11 0.31 0.08 - 0.51 0.40 0.35 - 0.46

cg18120259 6 43894639 LOC100132354 0.66 0.54 - 0.75 0.60 0.56 - 0.64

cg21429551 7 30635762 GARS 0.67 0.55 - 0.75 0.70 0.66 - 0.73

cg19390658 7 30636176 GARS 0.37 0.21 - 0.51 0.34 0.28 - 0.40

cg19695041 8 38615330 TACC1 0.55 0.41 - 0.66 0.47 0.42 - 0.52

cg00008629 9 115093661 ROD1 0.83 0.77 - 0.87 0.72 0.69 - 0.75

cg13696706 9 124396830 DAB2IP 0.57 0.44 - 0.67 0.59 0.55 - 0.63

cg11376147 11 57261198 SLC43A1 0.50 0.35 - 0.63 0.33 0.27 - 0.39

cg11468085 11 67435577 ALDH3B2 0.54 0.41 - 0.65 0.54 0.50 - 0.59

cg00574958 11 68607622 CPT1A 0.51 0.38 - 0.62 0.37 0.31 - 0.42

cg00508575 12 90050967 ATP2B1 0.54 0.41 - 0.65 0.43 0.37 - 0.48

cg05248321 14 20898128 KLHL33 0.71 0.60 - 0.79 0.60 0.56 - 0.64

cg00716257 14 75897417 JDP2 0.46 0.30 - 0.60 0.19 0.12 - 0.25

cg02003183 14 103415882 CDC42BPB 0.62 0.49 - 0.72 0.62 0.58 - 0.66

cg26916780 15 64889554 ZNF609 0.43 0.38 - 0.57 0.37 0.31 - 0.42

cg12555233 15 91455366 MAN2A2 0.62 0.51 - 0.71 0.50 0.45 - 0.55

cg07558761 16 87866696 SLC7A5 0.61 0.48 - 0.71 0.45 0.40 - 0.50

cg07021906 16 87866833 SLC7A5 0.61 0.49 - 0.71 0.61 0.57 - 0.65

cg04583842 16 88103117 BANP 0.65 0.53 - 0.74 0.61 0.56 - 0.64

cg08857797 17 40927699 VPS25 0.63 0.51 - 0.72 0.33 0.27 - 0.38

cg22304262 19 47287778 SLC1A5 0.80 0.73 - 0.85 0.59 0.54 - 0.63

cg02711608 19 47287964 SLC1A5 0.72 0.62 - 0.80 0.65 0.61 - 0.68

cg21766592 19 47288066 SLC1A5 0.55 0.41 - 0.65 0.60 0.56 - 0.64

cg06500161 21 43656587 ABCG1 0.66 0.55 - 0.75 0.56 0.51 - 0.60

cg01820192 21 44869762 C21orf125 0.34 0.18 - 0.48 0.39 0.33 - 0.44

Table S5. Heritability of the 34 cross-validated CpG sites in the FTC and NTR cohorts

FTC NTR
Probeid Chr. Position Gene



 

 
 

 

 

 

 

 

 a21 e21  a21 e21

cg19693031 TXNIP SBP -0.009(-0.244, 0.253) -0.203(-0.36, -0.044) 0.943 0.019 0.068(-0.088, 0.224) -0.13(-0.252, -0.003) 0.396 0.045

cg13696706 DAB2IP SBP 0.102(-0.149, 0.352) 0.041(-0.132, 0.213) 0.421 0.644 0.042(-0.109, 0.191) 0.068(-0.059, 0.193) 0.587 0.294

cg11468085 ALDH3B2 SBP -0.182(-0.453, 0.067) 0.168(-0.002, 0.327) 0.155 0.053 0.034(-0.111, 0.178) 0.098(-0.031, 0.223) 0.645 0.136

cg05248321 KLHL33 SBP 0.13(-0.101, 0.359) 0.029(-0.152, 0.207) 0.266 0.759 0.013(-0.134, 0.157) 0.082(-0.046, 0.206) 0.866 0.208

cg00716257 JDP2 SBP 0.023(-0.259, 0.348) -0.119(-0.288, 0.059) 0.878 0.188 0.042(-0.177, 0.225) -0.117(-0.238, 0.008) 0.754 0.066

cg04583842 BANP SBP 0.052(-0.189, 0.282) 0.105(-0.073, 0.275) 0.666 0.247 0.086(-0.063, 0.233) 0.01(-0.12, 0.139) 0.255 0.886

cg08857797 VPS25 SBP 0.088(-0.147, 0.314) 0.072(-0.102, 0.24) 0.455 0.413 -0.002(-0.186, 0.176) 0.146(0.02, 0.267) 0.983 0.024

cg22304262 SLC1A5 SBP -0.133(-0.327, 0.074) -0.124(-0.294, 0.054) 0.202 0.171 0.017(-0.128, 0.161) -0.014(-0.144, 0.117) 0.822 0.837

cg06500161 ABCG1 SBP 0.109(-0.12, 0.328) 0.088(-0.087, 0.257) 0.345 0.325 -0.07(-0.218, 0.079) 0.061(-0.067, 0.187) 0.355 0.350

cg19693031 TXNIP DBP 0.048(-0.207, 0.329) -0.148(-0.308, 0.021) 0.722 0.086 -0.041(-0.197, 0.118) -0.106(-0.231, 0.022) 0.612 0.103

cg11468085 ALDH3B2 DBP -0.167(-0.469, 0.102) 0.147(-0.021, 0.305) 0.229 0.085 0.065(-0.083, 0.211) 0.01(-0.118, 0.139) 0.392 0.875

cg08857797 VPS25 DBP 0.227(-0.018, 0.471) -0.021(-0.191, 0.15) 0.069 0.807 0.055(-0.131, 0.235) 0.106(-0.021, 0.229) 0.557 0.101

rg: genetic correlation; re: unique environmental correlation. A detailed explanation is provided in Supplementary Data Figure S3.

Table S6. Separate results of the bivariate SEM analysis for BP and its associated CpG sites in FTC and NTR

NTRFTC

Probeid Gene Trait P for dropping pathwaysP for dropping pathways
rg rerg re



 

 

  

Table S7. Phenotypes previously associated with the 34 CpG sites  

CpG sites Gene Phenotypes 

cg06500161 ABCG1 BMI, Lipid, Type 2 diabetes 

cg11468085 ALDH3B2 BMI 

cg00508575 ATP2B1  
cg04583842 BANP BMI, CRP 

cg01820192 C21orf125  
cg01343041 C2orf84  
cg02003183 CDC42BPB CRP 

cg18119407 CFLAR BMI 

cg00574958 CPT1A BMI, lipids 

cg13696706 DAB2IP  
cg19390658 GARS BMI 

cg21429551 GARS BMI 

cg00716257 JDP2 Alcohol 

cg05248321 KLHL33 CRP 

cg18120259 LOC100132354 BMI, A-diol 

cg12555233 MAN2A2 CRP 

cg14476101 PHGDH BMI, Lipids, A-diol 

cg16246545 PHGDH BMI, alcohol intake 

cg00008629 ROD1 Smoking 

cg02711608 SLC1A5 BMI, Lipids, CRP 

cg21766592 SLC1A5 BMI 

cg22304262 SLC1A5 BMI, A-diol 

cg11376147 SLC43A1 BMI 

cg06690548 SLC7A11 BMI, Lipids, A-diol 

cg07021906 SLC7A5 BMI, CRP 

cg07558761 SLC7A5  
cg19695041 TACC1  
cg19693031 TXNIP BMI, Lipids, Type 2 Diabetes 

cg08857797 VPS25 BMI 

cg24955196 ZBTB7B Alcohol 

cg26916780 ZNF609  
cg12593793 Intergenic BMI 

cg18933331 Intergenic diabetes 

cg19266329 Intergenic Alcohol, All-cause mortality 



 

 

Figure S1. 



 

 

Figure S2 

 

  



 

 

Figure S3.  



 

 

 

Figure S4a. 

Figure S4b. 



 

 

 

Figure S5a.  

Figure S5b. 
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Figure S6-A. cg14476101 and gene expression of PHGDH
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Figure S6-B. cg16246545 and gene expression of PHGDH
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Figure S6-C. cg06500161 and gene expression of ABCG1
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Figure S6-D. cg12593793 and gene expression of LMNA
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Figure S6-E. cg26916780 and gene expression of RBPMS2
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Figure S6F. cg02711608 and gene expression of SLC1A5
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