
Master’s thesis

Computer Science

Zero-knowledge proofs in blockchain
applications

Antti Tani

November 26, 2020

Faculty of Science
University of Helsinki

Supervisor(s)

Prof. Valtteri Niemi

Examiner(s)

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Computer Science

Antti Tani

Zero-knowledge proofs in blockchain applications

Prof. Valtteri Niemi

Master’s thesis November 26, 2020 78 pages

zero-knowledge proof, blockchain, privacy, zk-SNARK

Helsinki University Library

Algorithms specialisation line

The release of Bitcoin marked the birth of blockchain applications. Due, among other things, to
the need for public verifiability, blockchain information is often transparent, which in many cases
leads to insufficient privacy. Various methods have been developed to obfuscate the blockchain
data, which should at the same time maintain public verifiability. A promising cryptographic
approach is zero-knowledge proof that enables a statement to be proved without revealing any
other information than the validity of the statement.

Zero-knowledge proofs are examined in detail, first focusing on their general properties. With
blockchains, the key features for zero-knowledge proof schemes are non-interactivity and suc-
cinctness, and schemes that fulfill these requirements are often called as zk-SNARKs. In a
limited use, where succinctness is not critical, Fiat-Shamir transform has also been useful. We
study the use of zero-knowledge proofs in blockchain applications Zcash, Ethereum and Monero,
with a particular focus on privacy and feasibility.

ACM Computing Classification System (CCS)
Theory of computation→ Computational complexity and cryptography→ Cryptographic pro-
tocols
Security and privacy → Security services → Pseudonymity, anonymity and untraceability

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Faculty of Science Computer Science

Antti Tani

Zero-knowledge proofs in blockchain applications

Prof. Valtteri Niemi

Master’s thesis 26.11.2020 78 pages

zero-knowledge proof, blockchain, privacy, zk-SNARK

Helsinki University Library

Algorithms specialisation line

Bitcoinin julkaisu merkitsi samalla lohkoketjusovellusten syntymää. Johtuen muun muassa jul-
kisen todennettavuuden tarpeesta, lohkoketjussa säilytettävä tieto on tyypillisesti läpinäkyvää,
joka voi olla ongelmallista yksityisyyden kannalta. Yksityisyyden parantamiseksi on kehitetty
menetelmiä, jotka hämärtävät lohkoketjun tietojen läpinäkyvyyttä säilyttäen niiden eheyden
ja todennettavuuden. Lupaava kryptografinen menetelmä tähän tarkoitukseen on nollatietoto-
distus, joka mahdollistaa väitteen todistamisen siten, että ainoa todistuksessa paljastuva tieto
on väitteen totuusarvo.

Nollatietotodistuksiin perehtyminen aloitetaan niiden teoreettisesta perustasta. Lohkoketjujen
kannalta tärkeitä vaatimuksia nollatietotodistuksille ovat ei-interaktiivisuus ja ytimekkyys, ja
nämä ehdot täyttäviä todistusrakenteita kutsutaan yleisesti nimellä zk-SNARK. Fiat-Shamir
muunnos on käyttökelpoinen menetelmä ei-interaktiivisen nollatietotodistuksen muodostami-
seen tapauksissa, joissa ytimekkyys ei ole tärkeää. Nollatietotodistusten käyttöä tutkitaan eri-
tyisesti yksityisyyden ja käyttökelpoisuuden kannalta kolmessa lohkoketjusovelluksessa, jotka
ovat Zcash, Ethereum ja Monero.

ACM Computing Classification System (CCS)
Theory of computation→ Computational complexity and cryptography→ Cryptographic pro-
tocols
Security and privacy → Security services → Pseudonymity, anonymity and untraceability

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Cryptography 3
2.1 Basic concepts . 3
2.2 Cryptographic assumptions and tools . 7

3 Review of Blockchain 14
3.1 Structure of Bitcoin . 15
3.2 Distributed consensus . 17
3.3 Bitcoin consensus mechanism . 19
3.4 Anonymity . 22

4 Zero-knowledge proof (ZKP) 26
4.1 Interactive proof systems . 27
4.2 Interactive zero-knowledge proofs . 29
4.3 Zero-knowledge definitions and variants . 33
4.4 Non-interactive zero-knowledge proofs . 37
4.5 Efficient NIZK proofs . 42
4.6 Succinct NIZK arguments . 44

5 ZKP’s utilization with blockchain technologies 50
5.1 Zcash . 50
5.2 Ethereum . 55
5.3 Monero . 58
5.4 Discussion . 60

6 Conclusions 65

Bibliography 67

1 Introduction

In 2008, pseudonym Satoshi Nakamoto published a white paper, describing a decentral-
ized payment system called Bitcoin, first of its kind. Shortly thereafter, he released its
implementation as open source. Gradually, Bitcoin’s peer-to-peer network began to grow.
People downloaded Bitcoin software and started running it on their own computers, thus
forming new nodes to the p2p network. The nodes validate the data of payment opera-
tions, i.e., transactions, and also participate in a process called mining that is essential for
the integrity of the protocol.

Bitcoin’s success as a decentralized payment system was soon evident. It was also soon
realized that its essential structure, known as the blockchain, could be used as a basis
for other decentralized systems. We call these blockchain-based decentralized systems
as blockchain applications, or if they are strictly payment systems, as cryptocurrencies.
Blockchain provides an immutable public ledger and brings an elegant solution to a prob-
lem of how to reach consensus in distributed systems.

The early blockchain applications, including Bitcoin, were totally transparent, which
means that all the data of atomic operations, i.e., transactions that are stored in the
blockchain are publicly visible. The senders and receivers of transactions are tied to the
actual users, but this information is obscured by addresses that act as pseudonyms. Ul-
timately, this obfuscation is not enough to provide sufficient privacy. Addresses may be
interlinked or be even linked to actual users by transaction graph analysis that is possibly
enriched with side-channel information.

Mixing services have been introduced as a way to increase obfuscation in transparent
cryptocurrencies. In a mixing operation the sender and receiver addresses of multiple
transactions are mixed with each other. This does not, however, completely remove the
linkability threat. Methods to achieve more profound privacy must be sought in cryptog-
raphy.

A particularly promising cryptographic method is zero-knowledge proof, which enables
the statement to be proved without revealing to the verifying party anything other than
the validity of the statement. In the blockchain, this means that the transaction could still
be validated when the confidential data of the transaction is not disclosed but is replaced
with zero knowledge proofs of their validity.

2

Both the blockchain technology and zero-knowledge proofs are based on cryptography,
hence, in Section 2 the required cryptographic concepts are introduced. Section 3 re-
views blockchains through the properties of Bitcoin. Also the privacy issues are brought
out. Zero-knowledge proofs are handled in Section 4. Treatment starts with interactive
zero-knowledge proofs that were historically introduced first, and which form a basis to
understand non-interactive zero-knowledge (NIZK) proofs that are reviewed thereafter.
Non-interactivity is essential for blockchain applications, where proofs need to be pub-
licly verifiable. NIZK proofs were initially too inefficient for any practical use, with the
exception of Fiat-Shamir transform that is also handled in the NIZK proof section.

In the context of blockchains, the most important NIZK proof efficiency metrics are the
proof size and validation time of the proof. Proofs are stored in the blockchain, and in
the examples we study, to fully participate in blockchain application’s network requires
storing a local copy of the blockchain. Proofs are validated by every participant, so the
validation should also be efficient.

Before 2013 the only NIZK proof scheme that could be used with blockchains was Fiat-
Shamir, and that too only as a sub-protocol in transaction validation, because it does not
yield short enough proofs to validate the transaction as a whole. In 2013 was introduced
the first practical NIZK proof scheme to validate the entire transaction. This scheme, that
represents a category called zk-SNARK, is reviewed in Section 4.6.

Examples of blockchain applications that use zero-knowledge proofs are reviewed in Sec-
tion 5. Making substantial changes to existing blockchain application may be difficult.
This is the case with Bitcoin, where the decision making of the protocol changes is also
decentralized. Two of the studied examples, Zcash and Monero are cryptocurrencies that
have been privacy-focused from the beginning. Third example, smart contract platform
Ethereum that also represents a more diverse use of blockchains, has introduced zero-
knowledge proofs at a later stage. Privacy properties, that are in these examples achieved
using zero-knowledge proofs are examined.

The main contributions of this thesis are to provide a thorough overview of the zero-
knowledge proofs in general, and then to investigate their use with blockchain applications;
how privacy is achieved with them and how suitable they are to that purpose.

2 Cryptography

Traditionally cryptography has mostly dealt with encryption. For millenia, the need for
a secure communication through insecure channels has dominated its development. Cur-
rently cryptography is a multidisciplinary field, and can be seen to deal with the system’s
ability to handle malicious attempts of abuse [61]. Another trend related to the birth of
modern cryptography has been the adoption of rigorous, scientific methodology. Also a
paradigm shift from an absolute security requirement to a probabilistic approach, which
takes into account adversary’s limited computational resources, has been fruitful for the-
oretical and practical advances of cryptography.

2.1 Basic concepts

In this section we define some basic concepts of computer science, that are also relevant
for modern cryptography.

Turing machine A Turing machine (TM) is a mathematical model of computation. Tur-
ing machine has an internal state, work tape, and finite transition function that
defines based on the current state and symbol in the work tape (1) what symbol the
machines writes to the work tape, (2) the direction machine moves on the work tape
and (3) the next state of the machine. TM also has an initial state where its compu-
tation begins, and a set of accepting states where the TM halts if it transfers to such
a state. According to Church-Turing thesis, for every algorithm a corresponding
Turing machine that simulates it can be constructed.

Nondeterministic Turing machine A nondeterministic Turing machine (NTM) is a
variant of Turing machine. In contrast to deterministic Turing machine, NTM may
have multiple available transitions in any situation, and it has the ability to guess
the right transition in the path that eventually leads to an accepting state, if such a
transition exists.

Efficient An algorithm is efficient if it is polynomial time, i.e., its execution time can be
bounded by a polynomial on the size of the input. The execution time, also called as
time complexity, is the number of steps (elementary operations) the algorithm takes.

4

Infeasible A problem is infeasible if there is no efficient algorithm to solve it [62].

Decision problem A decision problem is a problem that on any input, has only two
possible outputs: 1 (“yes“) or 0 (“no“). For an input set X, decision problem is a
function ω : X → {0, 1}.

Language A decision problem ω defines interchangeably a language Lω := {x | ω(x) =
1 }

P Complexity class P is the set of decision problems that can be solved in polynomial time
(efficiently) by a deterministic Turing machine. A corresponding language-based
definition is: Complexity class P is the set of languages that can be recognized in
polynomial time by a deterministic Turing machine.

NP Complexity class NP is the set of decision problems that can be solved in polynomial
time by a nondeterministic Turing machine. An equivalent formulation is the fol-
lowing: A language L is in NP if for every true statement sx := x ∈ L there exists
a proof that is verifiable in polynomial time by a deterministic Turing machine. A
widely supported, but not yet proved conjecture is, that P 6= NP .

NP-complete A language L is reducible to language C in polynomial time if there is a
polynomial time function f such that x ∈ L ⇔ f(x) ∈ C. A language C is NP-
complete if C ∈ NP and every language L ∈ NP is recucible to C in polynomial
time. This means that NP-complete problems are the hardest problems in NP. The
existence of an efficient solving algorithm for any NP-complete problem would imply
that P = NP (but this is not deemed expected).

Witness Complexity class NP can also be defined in the following way [61]: A language
L is in NP if and only if there exists a relation RL ⊆ {0, 1}∗ × {0, 1}∗ that can be
recognized in polynomial time and a polynomial p(·) such that

x ∈ L⇔ ∃w : |w| ≤ p(|x|) ∧ (x,w) ∈ RL.

Such a w is called a witness for membership of x ∈ L. In other words, it can be said,
that NP consists of languages for which there exists a short (polynomial) proof on
membership that can be efficiently (in polynomial time) verified.

BPP A probabilistic Turing machine may have multiple available transitions in any sit-
uation, and this transition is drawn from some probability distribution. So unlike

5

the “pure“ NTM described before, this probabilistic variant is not a “lucky guesser“,
but a “random guesser“. A complexity class bounded-error probabilistic polynomial
time (BPP) is the set of languages, that can be recognized in polynomial time by a
probabilistic Turing machine that has an error probability∗ smaller or equal than 1

3 .
It can be seen as one of the largest classes of problems, that can be solved efficiently.

Negligible A function µ : N → R is negligible [61] if for every positive polynomial p(·)
there exists an integer Np such that for all x > Np,

µ(x) < 1
p(x)

Therefore negligible function is asymptotically smaller than any inverse polynomial.

Overwhelming A function µ is overwhelming if 1− µ is negligible.

Security parameter A cryptographic scheme is based on some computational problem.
A security parameter is a input size related measure, that is used to calculate the
computational complexity of that problem. Therefore the security of the crypto-
graphic scheme is dependent on the security parameter. For example in the RSA
public key cryptosystem, the security parameter determines the size of generated
keys, that again dictates the security of the scheme. In short, it can be said that
the adversary’s probability to break a cryptographic scheme should be a negligible
function on the security parameter [7].

Oracle An oracle is a black box that replaces a function that is a part of a computa-
tional scheme, helping to construct a mathematical proof for that scheme. Oracle is
typically an idealization of the function it replaces.

Boolean circuit

A boolean circuit is a model of computation. It corresponds to digital logic circuits, which
are fundamental building blocks in computing devices. Boolean circuit is a directed,
acyclic graph, which consists of boolean input variables and logic gates that are connected
to each other by wires. A logic gate has depending on the type, one or two inputs and
one output. The input of a logic gate can be a circuit’s input variable or the output of

∗The error probability that the machine answers wrong, whether x ∈ L is bounded away from 1
3 . The

error probability drops exponentially when algorithm is run multiple times and a “majority vote“ is taken
from the results.

6

other gate. The circuit output consists of gate outputs that are not connected to any gate
inputs. Boolean circuit with n inputs and m outputs can be used to calculate the value
of a boolean function f : {0, 1}n → {0, 1}m

There are seven possible types of logic gates for boolean circuit: AND, OR, XOR, NAND,
NOR, XNOR and NOT. Some of them can be ignored without limiting the expressive
power of the circuit. For example {AND,OR,NOT}, {AND,XOR} and {NAND} are
functionally complete sets, meaning that every boolean function can be implemented with
circuits using only gates in one of these sets.

When we are restricted to circuits that have only one output, the circuit is satisfied, if there
exists an assignment of input variables such that the output is 1. The circuit satisfiability
problem (CSAT) is an NP-complete decision problem, where the task is to decide, whether
a certain circuit is satisfiable. An example of boolean circuit with satisfying assigment is
shown in the Figure 2.1. If there exists an satisfying assignment x = {x1, ..., xn} for the
circuit C, the assignment x is a witness of circuit C membership in the language L, that
consists of satisfied circuits.

Figure 2.1: Boolean circuit that consists of AND and XOR gates. Input assignment (0,1,0,1,1) is
satisfying.

As computation models, boolean circuit and Turing machine cannot be directly compared,
because the input size of boolean circuit is fixed, but with Turing machine the input size
can be arbitrary. However, the computation of Turing machine M with inputs of lenght
n can be simulated by a single circuit C with input length n, that has size (amount of
gates) O(t(n)2), where t(n) is bound of the running time of M on inputs of length n

7

[61]. Therefore any polynomial time computation can be performed with polynomial size
circuits.

2.2 Cryptographic assumptions and tools

Problems, that are infeasible for adversary, are essential building blocks of cryptographic
systems. Usually a legitimate user of the system has an access to some auxiliary infor-
mation, that enables this user to solve the problem efficiently. For a problem in NP, the
auxiliary information could be its NP witness. There should also be a way to create these
problems with auxiliary information efficiently - otherwise the system is not useful.

The problem class of NP-complete problems may seem to be promising for cryptographic
purposes, the only assumption being that P 6= NP. But in general this is not the case, and
P 6= NP assumption is not sufficient for cryptography [61]. First of all, NP-completeness
implies only, that problem is infeasible in the worst case. If it can be solved efficiently in the
average case, it is not secure. Secondly, there should be a way to create “hard“ instances
of NP-complete problems with solutions efficiently. Next we describe an assumption, that
is sufficient for many cryptographic problems.

One-way function

Definition 1 (One-way function) Informally, a function f is one-way if it is easy to
compute, but hard to invert [62]. More formally, one-way function f is such that:

• On input x, there is an efficient algorithm that outputs f(x).

• Given f(x) as an input, assuming x is uniformly selected, any efficient algorithm that
tries to invert f (to find preimage of f(x)) succeeds only with negligible probability.

Existence of one-way functions is a fundamental assumption for the most of modern cryp-
tography. It is an assumption, because their existence has not yet been proven, and
actually such a proof would also imply that P 6= NP [61]. There are, however, strong
candidates that have been passed through extensive scrutiny, and have wide support of
truly being a one-way function. Probably the most famous example is integer multiplica-
tion function f(x, y) = x · y, where x and y are sufficiently large primes. It is believed to
be a one-way function: the task of inverting f is the integer factorization problem.

8

Trapdoor one-way function

A trapdoor one-way function is a one-way function f that is associated with secret informa-
tion, called as trapdoor information, such that inverting f is feasible given that trapdoor
information [90].

Strongness of assumptions

It is said that assumption A is stronger than assumption B if A implies B, but the converse
is false or not known [83]. If the stronger assumption A is found to be false, the weaker
assumption B may still be true. It means that cryptographic schemes based on assumption
B may still be secure. It is therefore desirable to get a cryptographic scheme proved to
secure with the weakest possible assumptions.

Fow example, sometimes we would need a one-way function f , that is also a permutation
(i.e. a bijection). This property of one-way permutation is stronger than basic one-way
property. This is due to the fact that the set of one-way permutations is a strict subset
of one-way functions. The existence of one-way functions is a stronger assumption than
P 6= NP because the former assumption implies the latter, but the converse implication
is not known to be true.

Assumptions are often not comparable in the sense that one implies the another. In that
case, qualitative factors, such as what is the confidence in the assumption or how well it
has been studied, can be used to evaluate the assumptions against each other [83].

Cryptographic hash function

Definition 2 (Cryptographic hash function [83]) Hash function is a function that
maps an arbitrary size input to an output of fixed size (like 256-bits). A hash function is a
cryptographic hash function if it is a one-way function and collision-resistant. This latter
property is defined as follows:

• Collision resistance: For a hash function H with a security parameter n, a collision
is a distinct pair of input values x, y, where H(x) = H(y). Hash function H is
collision resistant if the probability of finding a collision is a negligible function on
the security parameter n.

9

Sometimes the assumptions for cryptographic hash function are relaxed by reviewing fol-
lowing property:

• Second-preimage resistance: A hash function H is second-preimage resistant, if for
every value x, it is infeasible to find other value y such that H(x) = H(y).

In the context of cryptographic hash function, the one-way property is often called as
preimage resistance. Collision resistance implies second-preimage resistance, but not one-
way property.

Public key cryptography

Traditionally, cryptography has mainly concerned encryption and decryption of confiden-
tial information. Before the mid-70s the only known way to implement this was that the
sender and the receiver use the same cryptographic key for both encryption and decryp-
tion. Such a key is known as a symmetric key (or private key). The key is needed to be
exchanged beforehand between the communicating parties, of course securely. This is the
Achilles heel of symmetric key cryptosystems. In 1976 Diffie and Hellman introduced an
idea of public key cryptosystem [40], that uses pairs of keys, where each pair consists of
a public key that may be distributed freely, and a private key that is meant to be known
only to the creator of the key pair. Encryption and decryption in public key cryptography
can be defined as follows [83]:

Definition 3 (Public key encryption scheme) A public key encryption scheme is a
triple of polynomial time algorithms (Gen, Enc, Dec) such that:

• Gen is a probabilistic key generation algorithm: (pk, sk) ← Gen(1n). It has a se-
curity parameter 1n as an input, and it outputs a key pair that contains a public
key pk and a private key sk. Unpredictability is required for the output keys, so the
algorithm must be probabilistic.

• Enc is a probabilistic encryption algorithm: c ← Encpk(m). It has a public key pk
and a message m (called also as plaintext) as inputs, and it outputs a ciphertext c.
For the security reasons the ciphertext needs also be generated probabilistically.

• Dec is a determiministic decryption algorithm: m := Decsk(c). It has a private key
sk and a ciphertext m as inputs, and it outputs message m.

10

The security parameter n is written as unary notation 1n when it is a input, for technical
reasons, to emphasize that the running time is polynomial. The notation y ← A(x) is
used when y is an output of probabilistic algorithm A.

An another fruit of public key cryptography is a digital signature. It is a way to verify
authenticity of information in the digital realm, being loosely analogous to handwritten
signatures with physical documents.

Definition 4 (Digital signature scheme [83]) A digital signature scheme is a triple
of polynomial time algorithms (Gen, Sig, Ver) such that:

• Gen is a probabilistic key generation algorithm, defined as in public key encryption
scheme.

• Sig is a probabilistic signing algorithm: σ ← Sigpk(m). It has a private key sk and
a message m as inputs, and it outputs signature σ.

• V er is a deterministic verification algorithm: b := V erpk(m,σ). It has a public key
pk, a message m, and a signature σ as inputs, and it outputs a bit b, where b = 1
means “valid“ and b = 0 means “invalid“.

Also following properties are required:

• If signature is valid, it must verify: V erpk(m,Sigsk(m)) = 1, except with negligible
probability.

• It is infeasible to forge signature - i.e. create valid signature for someone’s message
without her private key. Formally expressed, the signature must be the existentially
unforgeable under an adaptive chosen message attack [72], details omitted.

Rivest, Shamir and Adleman presented the first implementation of public key cryptosys-
tem [102]. This cryptosystem, known as RSA, is based on the computational hardness
assumption of integer factorization. Among the numerous later developed public key cryp-
tosystems we could mention the ElGamal encryption and digital signature schemes named
by their creator, Taher ElGamal [46]. These schemes are based on difficulty of the discrete
logarithm problem. A variant of ElGamal signature algorithm, known as DSA, is more
widely used than the original, and currently the latter has a more popular variant called
ECDSA, that uses elliptic curve cryptography.

11

Homomorphic encryption

Homomorphic encryption is a form of encryption, which enables certain calculations on
encrypted data without decrypting it first. Thus, certain processing can be done on
the data while keeping it confidential. In mathematics, a homomorphism is a structure
preserving map between two algebraic structures of the same type, such as groups or rings.
Let (A, ◦), (B, �) be algebraic structures with operations ◦, �, respectively. Here ◦ and
� denote abstract operations; they could be additive operation + or multiplicative ·. A
function f : A→ B is a homomorphism, if for all x, y ∈ A it holds that [113]

f(x ◦ y) = f(x) � f(y).

In cryptography, a desired property is to make operations directly on encrypted data
while preserving its integrity, and a cryptosystem with homomorphic properties enables
this. In a homomorphic encryption scheme, the function f in the previous equation is a
homomorphic encryption function, and algebraic structures A and B are plaintext and
ciphertext spaces, respectively.

Cryptographic schemes with homomorphic properties have existed for decades. Sometimes
the homomorphism has been deliberately constructed, and sometimes again more or less
a byproduct. For example, RSA encryption scheme is multiplicatively homomorphic.
Encryption scheme is called fully homomorphic, if it is both additively and multiplicatively
homomorphic, and the amount of operations is not limited. In 2009 Craig Gentry presented
the first fully homomorphic encryption (FHE) scheme [57]. A mere existence of such a
scheme was a breakthrough, and subsequently there has been intense research to make
FHE schemes more efficient for practical purposes.

Fully homomorphic encryption scheme enables any efficient computation to be done on
encrypted data, without decryption. Using modulo 2 arithmetic, the addition operation
can be represented as XOR gate, and the multiplication as AND gate in boolean circuits.
Because these two gates form a functionally complete set, any boolean circuit can be
constructed using these two gates. As was stated in Section 2.1, all efficient computation
can be done with boolean circuits. Next we examine in more detail how the computation
using ciphertexts proceeds on circuit with a FHE scheme.

Let A be a polynomial time algorithm, that is simulated by a circuit family {Ci} where i
is the input size of the circuit. User Alice possesses an input x = x1, ..., xn for the circuit
Cn, and she wants to keep it secret. Let Cn(x1, ..., xn) denote the output of circuit Cn on
input x1, ..., xn. This time Alice decides to outsource the computation of output.

12

Using fully homomorphic public key encryption scheme, denoted by E , Alice generates
a key pair: a public key pk and a private key sk. Then Alice encrypts her input with
encryption algorithm EncE that yields ciphertexts {ψi ← EncE(pk, xi)}. Because the
scheme EncE is fully homomorphic, it by definition [57] includes an evaluation function
ψ ← EvalE(pk, C, ψ1, ..., ψn), that on encrypted input computes an encrypted output of
circuit. More specifically, when we look at some gate in the first level of circuit, that im-
plements operation ◦ (+ or ·) for plaintext inputs xi,xj, the function EvalE on ciphertext
inputs ψi,ψj, operation �, and public key pk yields ψi �ψj = EncE(pk, xi)�EncE(pk, xj) =
EncE(pk, xi ◦xj)}. This evaluation then continues level by level using intermediate cipher-
text outputs as inputs until the evaluation outputs the result for circuit: ψ.

When Alice gets the evaluation result ψ she can now decrypt it: DecE(sk, ψ) = Cn(x1, ..., xn),
except with negligible probability.

Random oracle

In cryptography, term provable security refers to a methodology where a security of cryp-
tographic scheme is proved mathematically from some assumptions. If these assumptions
relate only to computational hardness of some problems, it is said that scheme is proved se-
cure in the standard model. Unfortunately, it is often an insurmountable task to construct
a security proof in the standard model. A common technique is to replace a cryptographic
primitive used in the scheme with an idealized version to make the proof easier.

Definition 5 Random oracle A random oracle (RO) is an idealized version of crypto-
graphic hash function: a truly random function. It means that for each x ∈ X, the output
H(x) of the random oracle H is chosen uniformly from the output domain. By the defini-
tion every subsequent call with input value x returns always the same output value H(x).

There does not exist more efficient way to implement the random oracle than to enumerate
output values H(x) for each x ∈ X. If the input domain X is infinite, then the description
of random oracle is infinite.

Random oracle is a controversial subject in cryptography. For many cryptographic schemes
that have no security proof in the standard model, such a proof have been provided in the
RO-model. On the other hand, proof in RO-model does not apply to any practical setting
with an implementation of a real cryptographic hash function. Bellare and Rogaway [10]
explicitly formulated a methodology, where the security proof for cryptographic scheme

13

is first done in RO-model, and after that the random oracle is replaced by a "good"
cryptographic hash function. This methodology, that has already been used prior to the
work of [10], is known hereafter as random oracle methodology.

Canetti, Goldreich and Halevi [33] pointed out limitations for this methodology, by pro-
viding an example of cryptographic scheme that is secure in RO-model, but insecure
in standard model with any cryptographic hash function implementation. Their cryp-
tographic scheme was tailor-made to fulfill their purposes, and also subsequent random
oracle counterexamples have been artificial [83]. Nevertheless, it is possible, that some
usable cryptographic scheme that is being developed now or in the future passes the ex-
amination in RO-model, but proves vulnerable when deployed with concrete cryptographic
hash function.

It has been said [83], that security proof for a cryptographic scheme in RO-model implies,
that there are no obvious design flaws in the scheme. The vulnerability of such a scheme
depends of the actual hash function used. Also, as a general comment [83]:

“A proof of security in the random-oracle model is significantly better than no
proof at all.“

3 Review of Blockchain

The term blockchain has been quite ubiquitous in the recent years, also as a buzzword.
There is no standardized definition for it, but it could be described as a distributed ledger
or records called blocks, of which tampering has been made difficult by cryptographic
means, and where decentralization is achieved by variety of different, implementation
specific strategies.

The most famous, and also the first implementation of blockchain is Bitcoin. It is often
used as an archetypal example, where other blockchain implementations are compared.
We use the Bitcoin as a reference to introduce the structure of blockchain.

Bitcoin, in addition of giving a birth to a concept of blockchain, is the first successful
decentralized cryptocurrency. It has no central authority that manages the creation and
transactions of its currency, units of bitcoin†. Bitcoin is instead managed by equally
privileged nodes of peer-to-peer (p2p) network, and it uses cryptography to secure its
functioning.

Bitcoin white paper, titled Bitcoin: A Peer-to-Peer Electronic Cash System [94] was pub-
lished in 2008 by pseudonym Satoshi Nakamoto on a cryptography mailing list. Nakamoto
implemented Bitcoin software, and the first block, also known as genesis block was hard-
coded on the code base timestamped on 3 January 2009. It is the only block introduced
this way, and all subsequent blocks have been created by a collaborative and competitive
process called mining. Because the Bitcoin was released as open source, anyone could
download the software and participate to its p2p-network, by broadcasting and validating
bitcoin transactions.

Bitcoin is a cryptocurrency. Definition of cryptocurrency in Merriam-Webster online dic-
tionary is [37]:

“any form of currency that only exists digitally, that usually has no central is-
suing or regulating authority but instead uses a decentralized system to record
transactions and manage the issuance of new units, and that relies on cryp-
tography to prevent counterfeiting and fraudulent transactions.“

†Bitcoin is usually written lowercase, when it is being referred to as currency, in contrast to uppercase
notation when referred to as protocol, software or network.

15

The misuse of ordinary, non-cryptocurrencies must be made difficult by the governing
bodies, such as banks. But it is not technologically impossible, so the law enforcement is
needed as a backup the prevent the system from breaking. Cryptocurrencies do not (in
principle) have such a backup, instead they rely solely on technological means, crypto-
graphic mechanisms, trying to make misuse impossible.

3.1 Structure of Bitcoin

In this chapter we study the structure of Bitcoin and how it utilizes certain cryptographic
tools. The most important tools are cryptographic hash functions and digital signatures
[95].

Cryptographic hash functions are used in multiple roles in Bitcoin protocol. The function
used is SHA-256 hash function, that belongs to SHA-2 function family that is designed
by NSA [107]. At the time Bitcoin was designed SHA-256 was among the strongest hash
functions [95], and while it is still viable, later have been developed stronger ones, like the
SHA-3 family.

Hash pointer [95] is a pointer to data associated with a cryptographic hash of that data.
If we use a hash pointers in linked list instead of regular pointers, we get a list where each
item points to previous item similarly as with regular pointers. Hash pointers gives linked
list an additional tamper-evident property: Assuming we have stored the hash pointer of
the list head, we will find out, if any items of the list are tampered. If adversary modifies
some list item, then due to collision resistance, the hash pointer of next item will not match,
and he would have to modify it also. This effect propagates to the head of the list, as
shown in Figures 3.1 and 3.2. By replacing the term item with the term block, we have now
described the data structure of a blockchain at abstract level. This type of data structure,
cryptographically secured chain of items was described in 1991 by Haber and Stornetta
[79]. They used it to cryptographically secure timestamping of documents, chaining the
documents with timestamps by hash pointers. Later they proposed more efficient data
structure to be used [6]. There collections of temporally proximate documents would be
arranged into units, whose internal structure would be a binary tree of hash pointers,
providing fast verification of membership. This tree data structure is called Merkle tree
after its inventor, Ralph Merkle [91].

Note that the term blockchain (or block chain, both spellings have been used) has not
been used prior to Nakamoto’s work [94]. This term has been used afterwards, as a loose

16

Figure 3.1: Linked list with hash pointers, blockchain’s core structure. Here H() denotes hash pointer
with arrow to data

Figure 3.2: If data is tampered somewhere in the list (left item in the picture), the evidence will
propagate to the head of the list

umbrella term, lacking formal definition [96]. In addition to data structure properties,
also other features has been associated to it, like mechanisms relating to decentralization.

Bitcoin uses both the blockchain and Merkle tree data structures. Individual transactions
are collected to blocks, whose internal structure is a Merkle tree. Those blocks then form
a blockchain.

Bitcoin uses digital signature scheme. In practice, the public keys associated with the
scheme can be treated as identities. Bitcoin has a notion of address that is a hash of a
public key. The address is a shorter version of the public key, retaining its uniqueness due
to the collision resistance of the hash function.

Addresses relate to Bitcoin transactions that we will examine next. A transaction consists
of inputs and outputs. Input must refer to unspent output oti of some other transaction
t, reference is the hash of t. Outputs are addresses, associated with the values in bitcoins.
The sum of output values must not exceed the sum of input values. Transaction must be
signed by the private key that corresponds to public key defined in the output oti. If there
are multiple inputs, then transaction needs to be signed by all of the private keys of the

17

inputs∗ (see Figure 3.3). Thus, the transaction verification includes checking the validity
of the signatures, and that the inputs are unspent, i.e., they have not been used in other
transactions. Also the causality is maintained: the transaction cannot be verified, until
its inbound transactions are verified.

Figure 3.3: Alice signs transaction C with her private key, spending output 1 of transaction A that is
addressed to her public key (_pkh denotes public key hash). Transaction C needs to be also signed by
David, because his unspent output is spent. Note that the names used here are just pseudonyms of public
keys, they could all belong to same person or entity.

3.2 Distributed consensus

In the previous chapters we have outlined how the Bitcoin transaction data could be
stored and validated, using hash pointer data structure and digital signatures. One key
issue that needs clarification, is how this collection of transactions is maintained. In
centralized systems there is one party, that maintains the integrity of the system. Bitcoin
is a distributed system, and in that domain the integrity maintenance is closely connected
to the consensus problem. Nodes in distributed systems should act so, that the consensus
is reached. Consensus is described as an agreement among multiple nodes for a single

∗This is a little simplified description, and is valid in most of the cases. Bitcoin input signature and
output public key portions are actually scripts, written by specifically built stack-based scripting language
called Script.

18

data value. Nodes can be honest∗, i.e. following the prescribed rules or protocol, or faulty.
The goal is to design the system so that it fulfills the requirements of distibuted consensus
protocol.

Definition 6 (Distributed consensus protocol) [59] Distributed system contains n

nodes. Every node has initial value in a mutually agreed domain. Despite the occur-
rence of failures, nodes eventually agree upon an irrevocable decision value, and following
three conditions are met:

• Termination: Every honest node must eventually decide some value.

• Agreement: The decision of every honest node must be identical.

• Validity: If every honest node has the same initial value v, decision value must also
be v.

Let us have a look at the Bitcoin, what are the issues on which consensus is to be reached.
Users of Bitcoin broadcast their transactions to p2p network. Nodes must agree on these
broadcasted transactions, which transactions are added to the blockchain and in which
order. In general the consensus problem is far from trivial to solve. If there would be
a certainty, that every node operates honestly, the problem would be much simpler. In
the theory of distributed systems there are categorized different failures, that faulty node
may exhibit. For example a crash failure is where node just stops, but behaves otherwise
honestly. Failure type that is most difficult to manage is Byzantine failure. It implies
any kind of arbitrary behaviour from a faulty node, including that the faulty node sends
different kinds of data to different nodes, and also the case that the faulty node might be
malicious.

The term Byzantine originates from the Byzantine generals problem, an illustrative for-
mulation of the problem regarding tolerance for arbitrary fault, devised by Lamport et
al. [86]. In their problem setting a group of generals of the Byzantine army tries to reach
a consensus on the attack plan, whether attack or retreat, through pairwise messaging†.

∗Alternative terms for honest are the terms correct and non-faulty. Often term node is replaced by the
term process.

†More specifically the message model is oral messages model: In that model 1) the message is delivered
correctly. Imperfect message delivery is indistinguishable from traitor, hence it can be considered as an
additional traitor to the problem. 2) The receiver knows who sent it. 3) The absence of a message can
be detected.

19

Some of the generals can be traitors, i.e., having Byzantine fault. They showed that if
there are k traitors, there need to be at least 2k+1 honest generals in order to reach a con-
sensus. They also described the protocol for reaching consensus, thus giving an example
of how Byzantine fault tolerance, the ability to tolerate Byzantine faults can be reached in
their scenario. The result of [86] is one of the famous impossibility results that give bounds
to fault tolerance in the field of distributed systems. There are other results for different
problem settings, and it is not always clear, whether some result is applicable to given
scenario. In Byzantine Generals problem the communication is synchronous, i.e. having
bounded delay. A setting, where the communication is asynchronous has been studied,
e.g., by Castro and Liskov [34]; they implemented Byzantine fault tolerant network file
system (NFS) service.

3.3 Bitcoin consensus mechanism

Bitcoin utilizes a consensus mechanism called proof-of-work (PoW). The idea of proof-of-
work is, that obtaining a resource or service requires a computationally expensive puzzle
(PoW function) to be solved. Asymmetry is an essential feature: PoW function should be
moderately hard (yet feasible) to solve, but easy to verify. The concept was first proposed
by Dwork and Naor [43]. Their main use case was preventing junk email, by requiring
email sender to solve some computational task prior to sending. Later Back studied similar
use case by applying his algorighm Hashcash [5] as a PoW function. The Hashcash aims
to find a partial hash collision for the target value, and this type of PoW function is also
utilized in Bitcoin. Nodes compete with each other of the permission to broadcast next
block to blockchain. This permission is obtained by completing a proof-of-work.

Definition 7 (Proof-of-work (in Bitcoin)) [95] Each node in Bitcoin network receives
broadcasted transactions, and after verifying them, collects those transactions to their own
template of the next block. If node can fulfill following condition by finding sufficient value
for nonce∗, then it can broadcast this new block to other nodes.

H(nonce|prev_hash|transactions) < target

The target is a value adjusted by Bitcoin network. The target value is dynamically pa-
∗In cryptography the term nonce refers to random number that is (or can be) used only once

20

rameterized so, depending on the network’s current computing power∗, that the average
solving time for the “winner“ would be around 10 minutes. When writing this, the target
in block 616913 is

000000000000000000121ad400

and therefore approximately only 1 out of 6, 7 ∗ 1022 of all possible hash values are below
the target. The properties of the hash function ensures, that there is no better method
for finding a suitable nonce, than brute-force search. The resulting hash value becomes
the header (id) of the new block. Nodes can easily verify that the hash value meets the
demands, given the nonce, target and other block data. This activity of validating trans-
actions and solving proof-of-work is called mining, and the nodes that execute it are called
miners .

The proof-of-work seems to solve the consensus problem, which relates to agreeing on new
blockchain transactions. The winner node of the “mining lottery“ gets its block template
as the new block to the blockchain. Other nodes verify the validity of the block b and its
transactions. If everything is ok, they start to build their block templates on top of the
block b (setting hash of block b as the prev_hash). The Bitcoin network is not perfect,
there are latencies, and in any given moment, the exact set of unverified transactions,
called as a transaction pool, may vary between nodes. So the particular transaction might
not be added to the next possible block, but eventually the unverified transactions are
verified and added to blockchain.

Incentives

Bitcoin incorporates incentives in two ways [18]. First, there is the block reward. The first
transaction in every block is a special coinbase transaction, which is added by the miner of
the block. Its transaction value includes a fixed block reward (currently 12,5 BTC), and
the miner chooses the output address (which usually belongs to him). This block reward
creates bitcoins “out of thin air“ and is the only way to create new bitcoins.

Secondly, the transaction may include a transaction fee. If the sum of transaction outputs
is less than the sum of inputs, the difference, which is the transaction fee, belongs to

∗Every 2016 blocks nodes calculate independently is the timestamp difference of the 2016 blocks smaller
or greater than the target value, that is exactly two weeks, and difficulty is adjusted correspondingly.

21

miner. Miner is free to choose which transactions to be added to the block, and the
transaction fee affects to the miners’ willingness to include the transaction in the block.
So the fee may affect how quickly the transaction gets its confirmation. Fees are often
dynamically adjusted based on current network traffic. Compared to the block reward,
the total amount of transaction fees per block has been so far small, but their relative
importance will probably change in the future as the block reward decreases according
to a predetermined schedule. Being a Bitcoin miner causes expenses with the needed
electricity and hardware. The block reward with the variable exchange value to regular
currencies more or less balances the efforts. There is also economical incentive to be a
honest miner. Let us say some miner manages to mine a block, where it sets a non-
standard, bigger block reward. Honest miners will reject this block, so it will not end up
to the blockchain, leaving the non-honest miner empty handed. Next we analyze specific
threats to Bitcoin’s decentralization, and how it can cope with them.

Forking

It is possible, that two miners broadcast their blocks (blocka and blockb) almost simulta-
neously, both referring to the same parent block. Only one of them can remain in the
long-term consensus chain∗. How can the network agree on which block to build on? For
a while there can be a situation, where part of the nodes build on the blocka, and other
part on the blockb. But eventually one of the branches will become longer, and nodes
are following a heuristic to build on the longest valid branch [18]. Transactions of the
orphaned block(s), that are not yet in blockchain will be broadcasted again.

Double spending

Consider the case, where Bob sends transaction t1 as a payment of some product (worth
x BTC) to some merchant Mike. Let us denote it as t1 = Bob x−→ Mike. Mike sees that
the transaction is broadcasted and decides to give the product to Bob. Right after that
Bob sends another transaction t2 = Bob x−→ Bob2, where he plans to transfer the input of
t1 to another address (it could be his or someone else’s). Now that input is double-spent.

∗The block structure of a blockchain is based on consensus, so at least in theory changes can occur
anywhere. Because of the consensus rules used, the probability that a particular block will not remain
permanently in the blockchain decreases exponentially as we move towards older blocks. Loosely speaking,
the long-term consensus chain [95] refers to that part of the blockchain that is no longer subject to change.

22

In this case t1 was not yet confirmed (not included in a confirmed block), so it is possible
that t2 will be verified in the next block instead of t1 (both cannot be verified, the miner
probably verifies the one it sees first, rejecting the latter). This situation could have been
avoided, if the merchant had waited until the transaction had been confirmed. Only one
confirmation is not usually considered safe. For example the transaction t1 could be in the
soon-to-be orphan block of the forking example, and the transaction t2 could still displace
it from the long-term consensus chain. Some rule of thumb is to wait 6 confirmations to
consider transaction secure [18] (depth of transaction is then 6 blocks), but this of course
depends on the circumstances.

The 51 percent attack

A fundamental requirement to Bitcoin protocol to work is that the majority of miners are
honest, or more specifically, the majority of computing power belongs to honest miners.
Conversely, a group of colluding miners controlling the currency with their mining power
could, for example, prohibit certain transactions. Even if such a group would act honestly,
the mere existence of it could destroy confidence in the currency, which, in essence, would
not be anymore decentralized. Obtaining the majority of computing power is generally
considered prohibitively expensive. On the other hand, perhaps less is enough. Bitcoin
miners often belong to some mining pool, which shares rewards proportionally to members
contribution. Eyal and Sirer pointed out [47] that certain selfish strategy for a mining pool
could provide to them better revenues. This could even lure other honest miners to join
their pool, and before long, the pool will grow into majority.

3.4 Anonymity

The transaction data of Bitcoin is public. Transaction values, how many BTCs are sent
to output addresses, are plaintext. Input and output addresses of transactions, i.e. the
senders and receivers of transactions, are hash values of public keys, so they look random.
Thus, addresses are pseudonyms, “pseudo-identities“ of users. Pseudonymity alone does
not guarantee privacy. In pseudonymous systems the privacy depends on the unlinkability
of the actions where these pseudonyms are involved [100]. Anonymity, that is a strong
notion of privacy, requires both pseudonymity and unlinkability.

Two items are unlinkable for a specific adversary, if their occurrence in the system does not

23

increase the probability that they are related from adversary’s point of view, in respect to
the adversary’s a-priori knowledge [100]. Narayanan et. al [95] enumerated requirements
that Bitcoin should fulfill to reach unlinkability. These include the difficulty to link to-
gether different addresses that belong to the same user, as well as difficulty to connect
transactions that are made by the same user. Third requirement concerns the difficulty
to connect the sender of the payment to its receiver.

In the case a payment is executed on a single transaction, the sender and the receiver are
of course immediately tied to each other. The payment can also be a chain of multiple
transactions, which makes the connection less clear. Nevertheless, it may be possible to
deduce from the matching amounts of bitcoins from the input and output of the transaction
chain, and from the temporal proximity of the transactions, that these in fact form a single
payment.

On a larger scale, the analysis of transaction graphs [89, 104], with the possible help of
coincidental real-world events has been used successfully to reveal identities in some cases.
These revelations of identity have been made, for example, in criminal investigations, such
as in the Silk Road case [73]. The data put to blockchain stays there permanently. Leakage
of some casual user’s address identity reveals some of his transactions details, regardless
of how many years have passed.

Mixing services

One way to mitigate these linkability issues is to use mixing services. A purpose of mixing
is to break connections between Bitcoin addresses, by taking a set of inputs and outputs
from intended transactions from different users, and then shuffle the inputs and outputs
and make the actual transactions. Making sure, of course, that everyone gets the right
amount of bitcoins to the right address. Mixing services are, generally, privately owned
services that take some commission, “mixing fee“, of mixed bitcoins. Mixing services are
categorized to centralized and decentralized solutions.

To give a simplified description of the operation of the centralized mixing service: first,
user A sends bitcoins to an address that belongs to the mixing service while specifying
the desired output address. Next the mixing service collects a set of these transaction
requests made by other service users to mix the inputs and outputs of transactions. After
that the mixing service executes transaction to the output address of user A with the
input address of other user [95]. The users of the service must trust that they get their

24

bitcoins back, and that their Bitcoin, and possibly also IP addresses which are inevitably
known by the service are not leaked outside. There have been fraudulent mixing services
that have stolen bitcoins [36].

A good yardstick to evaluate a transaction mixing operation is the size of the anonymity
set it provides. For a specific subject, its anonymity set is the set of subjects among
which this specific subject is not identifiable [100]. If the adversary tries to figure out
the output address o for the input address of specific user that is used in mixing, then
the anonymity set of o consists of other output addresses that are involved in the mixing.
The anonymity set shrinks if more complex adversary model is considered. For example,
transaction timing patters can be exploited in graph analysis to reduce the anonymity
set. Therefore, mixing services might provide the possibility to define multiple output
addresses, each with its own custom delay for the output transaction.

Most decentralized mixing services are based on the CoinJoin method [87, 19], that en-
ables users to anonymously combine their intended transactions to a one large transaction
containing all the inputs and outputs. Technically, the CoinJoin is implemented using
a centralized service as a coordinator, at least in the most popular services, like Wasabi
Wallet and Whirlpool. The main claim of the decentralization is the fact that users mix
bitcoins with each other without having to hand them over even temporarily to an inter-
mediary.

There are dozens of active mixing services, but only a small number of them are gen-
erally considered reliable in the Bitcoin community [36]. While the statistics of mixing
service popularity in general is difficult to get, the CoinJoin transactions can be quite
reliably identified from the blockchain, and according to an analysis conducted in 2019,
approximately 4 percent of all transactions were CoinJoin transactions [35].

The mixing services add noise to the transaction graph, thus reducing linkability for users
and addresses that are involved in these mixing transactions. The risk of deanonymization
still exists. Services that require identity verification, may be a risk factor. These include
bitcoin exchanges where bitcoins are exchanged to fiat currencies or to other cryptocurren-
cies, and also include many bitcoin wallet services that are used to ease bitcoin payments.
In the event of a possible data breach, the user data and the addresses associated with it
may be compromised.

25

Protocol level privacy

Dandelion protocol [22] is one of the proposals that aims to increase Bitcoin privacy. It
is a privacy enhancement to Bitcoin’s p2p network. Other proposal is the utilization of
the Schnorr signature algorithm [88] that is more tightly tied to Bitcoin’s roadmap than
Dandelion. The Schnorr signature algorithm is supposed to partially replace the current
ECDSA algorithm. By using Schnorr signatures it is possible to implement “key aggre-
gation“ [88] when transaction has multiple inputs. This means that instead of having
multiple signatures, one for each address, a single signature can be created by all pri-
vate keys involved, and it can be verified by using an aggregation of the corresponding
public keys. This saves space in transaction, so the transaction fee for users is lower in
this combined transaction than what it would have been if each user had done separate
transactions. Thus, the use of CoinJoin would also have an economic incentive. Overall,
future improvements to Bitcoin appear to have a positive impact on its privacy.

The fact that the transaction amounts are plaintext diminish the overall privacy. Some-
times even acute issues can occur. For example, If Bob has 100 BTC in an address that he
uses for a payment of 0,01 BTC to merchant Mike, then Mike knows that Bob has at least
a moderate amount of money in his possession. With careful handling of bitcoins, such
situations can be avoided. In general it can be said that maintaining privacy in Bitcoin
requires active measures. The protocol as such does not guarantee privacy.

It is imperative that Bitcoin transactions can be verified, and it may also seem inevitable
that information that compromises privacy will be revealed at the same time. There are,
however cryptographic schemes that enable verification without leaking any additional
information. They belong to a category of zero-knowledge protocols and they are studied
in the next section. The prospects of zero-knowledge protocols for blockchain applications
were quickly recognized, and some examples are reviewed in Section 5.

4 Zero-knowledge proof (ZKP)

Normally, when a statement is proved, the proof discloses some additional information
besides the truth value of the statement (true or false). An usual way to prove a statement
in NP is to provide a witness for that statement. To prove that a boolean circuit is
satisfiable it suffices to provide a satisfying assignment of its inputs. The “proof“ of
Bitcoin transaction validity for miner includes information of unspent outputs it refers,
public keys, transaction amounts and signatures. In 1985 Goldwasser, Micali and Rackoff
developed theory of interactive proof systems [71]. An important notion in their study,
using methods of complexity theory, was to analyze the additional knowledge that the
proof reveals. Interesting special case is when there is no additional knowledge, in which
case the term zero-knowledge proof (ZKP) is used.

Informal example: “Colour-blind friend“

First we have a look at an informal example of a zero-knowledge proof. This example
of proving to colour-blind friend that two balls are differently coloured occurs in many
ZKP introductions. The “prover“, who is not color blind, has two balls, red and green,
and he tries to convince the colour-blind “verifier“ that these balls are indeed differently
coloured. In order to keep the proof as zero-knowledge, the prover does not want to reveal
any additional information - which ball is red and which is green. The “proof system“ is
to repeat following procedure sufficiently many times.

1. Verifier holds the balls one in each hand (without differentiating their colours) so that
the prover sees them, and then puts his hands behind his back. Then he randomly
either switches the balls in his hands or not (prover does not see that). After that
he brings the hands in the front of him and asks prover: “Did I switch the balls? “.

2. Prover answers truthfully.

Prover’s probability to guess right in one round is 1
2 , so when this procedure is repeated

k times, the probability to succeed by guessing in each k round is 1
2k . With sufficiently

large k the verifier becomes convinced, that the prover is not just guessing, but actually

27

sees by their colour whether the balls have been switched. Yet the verifier has not learned
which ball is red and which is green.

In the following chapter we go through the interactive proof systems, in order to under-
stand interactive zero knowledge proofs. Later, we discuss non-interactive zero knowledge
proofs, a variant which is essential when implementing zero-knowledge proofs to blockchain
technologies. The limitations of zero-knowledge proofs and their challenges in practical
implementation are also considered.

4.1 Interactive proof systems

Goldreich [61] primed interactive proofs systems comparing them to proofs in mathemat-
ics. Traditionally in mathematics, proofs have a static nature. They are considered as
fixed objects that have been written once. A proof gives absolute certainty of the state-
ment it proves. On the other hand, in daily life proofs often have dynamic nature and
they are constructed e.g. by legal process in the courtroom. Chance of error is usually
acknowledged. Interactive proof systems embrace the latter interpretation of proof.

Interactive proof system (IPS) involves two parties: a prover (P) and a verifier (V). The
prover is not trusted by the verifier, and its computational resources are not limited.
Verifier on the other hand has limited resources, its running time is polynomial. Recall
that the complexity class NP is a set of decision problems solvable in polynomial time
(efficiently) by a non-deterministic Turing machine (NTM). These solutions are verifiable
in polynomial time (efficiently) by a deterministic Turing machine (TM). As described in
Section 2.1, this gives an equivalent definition for NP . By these terms, NP can be viewed
as a class of proof systems, where interaction consist of prover (NTM) providing a proof,
and a verifier (TM) verifying it [61].

Basic properties of any proof system are completeness and soundness. These are defined
already in mathematical logic where with logical systems, completeness means that every
valid statement is provable, and soundness means that no invalid statement can be proved.
In interactive proof systems these properties are relaxed by replacing certainty with “very
high“ probability. Randomness is included in the system by allowing verifier to “toss
private coins“. The definition of IPS includes requirements for the computational model.
Prover and verifier are a pair of interactive Turing machines, which for instance includes
machine-to-machine communication tapes, that enables interaction (messages) between
machines (see Figure 4.1). A random tapes of verifier and prover provides randomness

28

to their computation and mutual messages. The random tape makes prover and verifier
probabilistic Turing machines.

Figure 4.1: A pair of interactive Turing machines (P, V) with conjoined communication tapes, and
common input tape, forming a “interactive protocol“ for IPS. R, W , and RW denotes read-only, write-
only and read/write heads, respectively. Figure adapted from [71].

Definition 8 (Interactive proof systems) [71] Let (P, V)(x) ∈ {0, 1} denote verifier
V decision value for input x and prover P , when the verification procedure, i.e., interactive
computation ends (1 = accepts, 0 = rejects). A pair of interactive Turing machines (P, V)
is called an interactive proof system for language L, if V is polynomial-time machine and
the following two conditions hold:

• Completeness: ∀x ∈ L: Pr((P, V)(x) = 1) > 1− ν(|x|)

• Soundness: ∀x /∈ L,∀P ′: Pr((P ′, V)(x) = 1) < ν(|x|)

Where ν is a negligible function.

Note that the soundness condition concerns all potential provers, in contrast to complete-
ness, which refers to the specified prover P. There are alternative definitions of IPS [61]
where the completeness and soundness error bounds are not negligible, but are instead
some fixed values, like 1

3 . These errors bounds can be made negligible by repeating the
(randomized) verification procedure, and taking a majority vote of the outcomes.

Complexity class IP (Interactice Polynomial time), is defined as the class of languages for
which there exists an interactive proof system [71]. Equivalently, it is the class of decision

29

problems solvable by an interactive proof system. It is generally believed, although not
proved, that the IP is larger than NP . There are examples of languages that are in IP ,
but not known to be in NP . One example is the language of pairs of graphs that are
non-isomorphic to each other [66]. Without verifier’s randomness the complexity class
collapses to NP [62]. It has been shown [52] that every language that has IPS, has one
with perfect completeness, so removing completeness error does affect to the complexity
class IP.

Independently, about the same time when IPS was introduced, Babai [4] published a
similar proof system called Arthur-Merlin protocol, which can be considered as a variant
of IPS. In Arthur-Merlin protocol the “coin tosses“ of verifier are public (to prover), so it
has been referred as a public coin protocol, in contrast to IPS with private coins. In the
public coin protocol the verifier sends uniformly chosen random message, often referred as
a “challenge“, to the prover in each round. The challenge space, whereof the challenge is
chosen is correspondingly defined, and it varies depending on the setup of the protocol. It
can be just a one bit {0, 1}, or substantially larger.

It may seem that the public coin property significantly impairs verifier’s ability to expose
a cheating prover (hindering the soundness), as the verifier cannot hide anything from the
prover. However, these public coin systems have been proved [69] to be equally powerful
than private coin systems, when it comes to language recognition. Every language that
can be recognized by an IPS, can also be recognized by an Arthur-Merlin protocol.

4.2 Interactive zero-knowledge proofs

Interactive proof system for language L is said to be zero-knowledge if for every x ∈ L,
the verifier gets from prover essentially no other knowledge, than the fact that x ∈ L.
In addition to above-mentioned completeness and soundness, there is a third condition
for the zero-knowledge. Verifier might try to get prover to reveal something, so the zero-
knowledge is the prover’s objective. The zero-knowledge property of the prover P can
be informally described as “whatever can be efficiently computed after interacting with
P on input x ∈ L can also be efficiently computed from x (without any interaction)“
[71]. This means, that for every x ∈ L and for every verifier V ∗ there exists a simulator
(algorithm) M∗ so that the output of V ∗ (after interacting with P on common input x),
and the output of M∗ on input x are “computationally indistinguishable“. More formal
description follows next.

30

The simulator M∗ is assumed to be a probabilistic polynomial time Turing machine simi-
larly as the verifier V ∗ is. This captures the notion of “what can be efficiently computed“.
Because the machines M∗ and V ∗ are probabilistic, their outputs are random variables R.
Furthermore, when we use the set L as an index set, the outputs of M∗ and V ∗ can be
described as a set of random variables, that are indexed by x ∈ L. The outputs of M∗

and V ∗ are then denoted as {Rx}x∈L, which is in cryptography often called as a probability
ensemble.

Definition 9 (Computational indistinguishability) [61] Let a distinguisher D be a
probabilistic polynomial time algorithm. Two probability ensembles {Rx}x∈L and {Sx}x∈L
are computationally indistinguishable [61] if for every distinguisher D, for every polyno-
mial function p, and for all sufficiently long x ∈ L it holds that

|Pr[D(Rx) = 1]− Pr[D(Sx) = 1]| < 1
p(|x|)

Where D(Rx) ∈ {0, 1} is the output of the distinguisher D on a polynomially time pro-
cessable sample of Rx. Output D(Rx) is probabilistic, because D is probabilistic.

This definition means, that there is no efficent algorithm D that can tell the difference
between ensembles R and S, excluding a negligible probability.

Definition 10 (Zero-knowledge) [71] [61] Let (P, V) be an interactive proof system
for language L. System (P, V) is a zero-knowledge proof system (ZK proof system), if
for every probabilistic polynomial time verifier V ∗ there exists a probabilistic polynomial
time simulator M∗ such that the following two probability ensembles are computationally
indistinguishable:

• {(P, V ∗)(x)}x∈L}, which is the output of verifier V ∗ after it interacts with the prover
P on common input x

• {M∗(x)x∈L}, which is the output of simulator M∗ on input x

Goldreich, Micali and Widgerson showed [66] that all languages in NP have zero-knowledge
proof systems, provided that one-way functions exists. First they presented zero-knowledge
proof system for graph 3-colorability (G3C). This is an NP-complete problem, so every
language L in NP can be reduced to it. Next it was sufficient to show that in addition to
G3C, the zero-knowledge proof system can also incorporate the reduction. Zero-knowledge
proof of 3-colorability (sketch of it) is presented in next chapter.

31

Zero-knowledge proof of graph coloring

An important ingredient of the G3C zero-knowledge proof is the concept of commitment.
In cryptography, the commitment is an action, where one party commits a value while
keeping it secret from others. It is digitally analogous to a physical world scenario, where
one party puts a value to sealed envelope. Later, when the commitment is revealed, it can
only yield the value, which was already determined when the commitment was done. Not
only with ZK proofs, the commitment scheme is widely used construct in cryptographic
protocols.

We review commitment scheme informally, following notation from [95], more formal treat-
ment can be found in [61]. A commitment scheme includes a polynomial time algorithm
commit that outputs a commitment c for the input valuesm and r, wherem is the value to
be committed, and r is a random value. Commitment scheme fulfills following properties:

• Hiding: For a commitment value c it is infeasible to find a pair (m, r) such that
commit(m, r) = c.

• Binding: It is infeasible to find two pairs (m, r) and (m′ , r′) such that m 6= m
′ and

commit(m, r) = commit(m′ , r′).

In addition to commit algorithm, commitment scheme defines also how the committed
value m can be revealed. In interactive commitment scheme the sender of the commitment
reveals the committed value m by sending the pair (m, r) to the verifier who checks that
the commit algorithm yields the commitment value c = commit(m, r).

The language graph 3-coloring (G3C) consists of all graphs whose vertices can be colored
with three colors so that any two adjacent vertices do not have the same color. A graph
G = (E, V) is 3-colorable, if there exists a mapping ϕ : V → {1, 2, 3} such that ϕ(u) 6= ϕ(v)
for every edge (u, v) ∈ E.

The idea of the ZK proof for G3C is the same as with many other ZK proofs. The proof is
divided into multiple sub-proofs, each of which increases the verifier’s trust to the validity
of the statement, but individually does not reveal any additional knowledge. When the
verifier checks enough of these sub-proofs, he will be convinced of the statement. Next we
define the protocol of the “sub-proof“, which is also illustrated in Figure 4.2.

32

Construction of the ZK proof for G3C

• Common input: graph G = (V,E), where |V | = n, and V = {v1, ..., vn}.

• Prover’s first step: Let ϕ be a 3-coloring of G. The prover selects random per-
mutation π of the set {1, 2, 3}. Denote value ϕπ(vi) := π(ϕ(vi)) for each vi ∈ V ,
which is the permutated color of vi. For every vi ∈ V prover assigns secret ran-
dom value si, and makes commitment ci using function commit for each vi ∈ V :
ci := commit(ϕπ(vi), si). The prover sends committed values {c1, ..., cn} to the veri-
fier.

• Verifier’s first step: The verifier selects randomly an edge (vi, vj) ∈ E and sends it
to the prover.

• Prover’s second step: The prover reveals committed colors of vi and vj by sending
values (si, ϕπ(vi)) and (sj, ϕπ(vj)) to the verifier.

• Verifier’s second step: The verifier checks whether the revealed values corresponds
to the committed values ci and cj, and whether revealed colors differ: ϕπ(vi) 6=
ϕπ(vj) and belong to {1, 2, 3}. If these conditions are fulfilled, then verifier accepts,
otherwise verifier rejects.

The commitment scheme allows the prover to offer to the verifier a free choice of the
revealed edge, while the verifier can be convinced that the prover cannot cheat (change
the answer) after he has made the choice.

The completeness of this protocol is perfect, if graph G is 3-colorable, then the prover can
commit a 3-coloring of G, and every edge the verifier chooses is revealed as two-colored
with colors in {1, 2, 3}. The soundness error is 1 − 1/|E|. In the worst case 3-coloring
applies to the graph G with all but one edge, and the probability that verifier selects that
edge is 1/|E|. When this sub-proof is repeated n|E| times, the soundness error goes down
to (1− 1

|E|)
n|E| ≈ e−n, which is negligible.

The zero-knowledge property can be intuitively seen to be valid, because each sub-proof
shows only whether vertices have same color or not. The revealed colors are random, and
do not necessarily correspond to 3-coloring of the graph (it if exists). Because the color
permutation is drawn for each sub-proof, verifier is not able to collect the information of
3-coloring with subsequent repeats of the protocol - the colors are unrelated. Formal proof
through computational indistinguishability is omitted.

33

Figure 4.2: Illustration of the protocol of the graph 3-coloring zero-knowledge proof.

4.3 Zero-knowledge definitions and variants

Verifier’s view

An alternative formulation for the zero-knowledge, which is more convenient in some
occasions, replaces the output of the verifier V ∗ at the previous definition with the “view“
(of information) that the verifier gains from the interaction with the prover. Let the
ViewP

V ∗(x) be a random variable that describes the content of the random tape of the V ∗

and the messages V ∗ receives from the interaction with P on a common input x. In the
alternative formulation the probability ensemble {ViewP

V ∗(x)}x∈L replaces the output of

34

V ∗.

Zero-knowledge condition

There are also different definitions of zero-knowledge, which are not equally powerful. The
definition above is actually of a computational zero-knowledge. The most demanding is
the definition for perfect zero-knowledge. It requires that for every verifier there exist a
simulator which produces identical probability ensembles to what the verifier produces.
Statistical zero knowledge requires that the above-mentioned probability ensembles are
statistically close the each other: their statistical difference is negligible.

With perfect and statistical zero-knowledge even adversary with unbounded computa-
tional power cannot distinguish the real proof from the simulated proof. So these two
types of zero-knowledge provide security even against unbounded adversary, whereas com-
putational zero-knowledge protects from computationally bounded adversary. The latter
property is easier to achieve and often sufficient. This difference in complexity is revealed
also in the fact that statistical zero-knowledge proof systems cannot be constructed for
all∗ languages in NP [50, 1].

Soundness condition

Also the soundness property has variants: there are notions of statistical soundness and
computational soundness. The statistical soundness is the one we have used here so far.
Statistical soundness holds against unbounded adversary, that in this case is the prover.
So far prover’s resources have not been limited. But if we require also the prover to be
computationally bounded, to execute in probabilistic polynomial time, we get to the notion
introduced by Brassard, Chaum and Crépeau [29]: the computational soundness. When
it prevails, it is infeasible, that computationally bounded prover can cheat the verifier (to
accept a false statement). With computationally sound protocols it is common to use a
term argument instead of the term “proof“ in the nomenclature. So when zero-knowledge
is involved, we often see the term zero-knowledge argument. A notable difference between
proof and argument systems is, that there exist statistical zero-knowledge argument sys-
tems for all languages in NP [29].

∗These proof systems can be constructed to languages in complexity class AM ∩ coAM that is not
believed to include NP.

35

Auxiliary input

An often used augmentation to the zero-knowledge proof model is the notion of auxiliary
input. This captures the idea of ZK proof system not being an isolated process, but
belonging to a larger system, whereof verifier might also get some a priori information.
Let us denote this information as z. It might be for example, that information z relates
to input x in ZK proof, and could help verifier to extract more information from prover,
potentially destroying zero-knowledge property.

Definition 11 (Auxiliary input zero-knowledge) [98],[67] An interactive proof sys-
tem (P, V) for language L is auxiliary input zero knowledge if for every probabilistic
polynomial time verifier V ∗ there exists a probabilistic polynomial time simulator M∗ such
that the following two probability ensembles are computationally indistinguishable:

• {P (x), V ∗(x, z)}x;z∈D1, which is the output of verifier V ∗ after it interacts with the
prover P on common input x and auxiliary input z

• {M∗(x, z)}x;z∈D1, which is the output of simulator M∗ on input (x, z)

where D1 = {(x, z)|x ∈ L, z ∈ {0, 1}∗}

As was noted, the verifier’s a priori information z is relevant for the examination of the
zero-knowledge property. The prover’s a priori information, which could be denoted as y,
is not significant in that sense. Prover’s auxiliary input is often used in problem settings to
contain a “proof“ of the membership x ∈ L. It enables prover’s execution to be polynomial
time, when prover’s auxiliary input y is a witness for the membership of x ∈ L.

Protocol composition

Formally, the more general problem that the construction of the auxiliary input zero-
knowledge aims to solve is called sequential composition (of zero-knowledge proofs). It
means that the protocol is repeated sequentially. As was noted, the verifier might be
able to gain some additional knowledge from subsequent executions of the protocol. It
is still desirable that the zero-knowledge property would hold in sequential composition.
It has been shown [65] that this is not the case for the “original“ definition (10) of zero-
knowledge, i.e is not closed under sequential composition. On the other hand, the auxiliary
input zero-knowledge has been proven to be closed under sequential composition [67].

36

Other related setups are parallel composition and concurrent composition. In the parallel
composition polynomially many instances of the protocol are invoked at the same time
synchronously so, that they proceed at the same pace. In the concurrent composition
the synchronization of parallel invocations is relaxed to be completely asynchronous or to
follow a specific timing-model [44].

Parallel (or concurrent) composition would help to decrease the protocol’s round-complexity,
i.e., the number of rounds needed in the protocol. Unfortunately it is harder to maintain
zero-knowledge property with these setups, compared to the sequential composition. Zero-
knowledge, when based only on the existence of one-way functions, is not closed under
parallel composition [65]. Under number-theoretical assumptions, namely, the existence
of claw-free permutations, there exist protocols where zero-knowledge property holds in
parallel composition [64] and in concurrent composition [60]. Goldreich and Kahan showed
[64] how to make a parallel version of the zero-knowledge proof for graph 3-coloring (its
sequential version was sketched above).

Proof of knowledge

Proof systems we have reviewed so far have dealt with whether the prover can convince
the verifier that the statement x ∈ L is valid. If NP-statement x ∈ L is true, then there
exists a witness w such that the validity of x ∈ L can be verified from w in polynomial
time. Note that there may be several such witnesses. However, if the prover can convince
the verifier that x ∈ L is valid, it does not necessarily mean that the prover “knows“ any
such witness.

The expression that “a machine knows something“ may sound vague, but in the field of
cryptography it has been formalized as a notion. It is said that a machine P knows w,
if w can be “efficiently learned“ from the P . This means that there exists a probabilistic
polynomial time extractor E that by using P as a subroutine∗ can extract w from P .
Proof system (P, V) is a proof of knowledge for language L if

V (P (x)) = “accepts“⇒ P knows a witness w for x.

The proof of knowledge can be seen as a reinforcement for the property of computational
soundness, with the prover then being, of course, polynomial time. More rigorous treat-
ment is found from [9].

∗This is often phrased as “using P as an oracle“.

37

4.4 Non-interactive zero-knowledge proofs

There are scenarios, where the zero-knowledge property would be definitely useful, but the
interaction becomes a burden. For instance with blockchain implementations and their
distributed nature, pairwise communication between prover and verifier does not fit well
in the picture. Anyone should be able to verify blockchain “statements“ easily. The needs
for non-interactivity already existed before blockchains. The notion of non-interactive
zero-knowledge (NIZK) was introduced by Blum et al. [21]. In their proof system, the
interaction consists of a single message from the prover to the verifier, making it non-
interactive. As the interactivity is removed, the system needs some other properties in
order to maintain zero-knowledge, and to be useful at the same time.

Oren proved [98], that if language L has one round (single message from the prover to the
verifier) zero-knowledge interactive proof system, then L ∈ BPP . The cryptography, on
the other hand, is largely based on problems that cannot be solved efficiently, only verifying
might be efficient. A large part of cryptography is based on assumption, that NP *
BPP . When language L ∈ BPP , it cannot contain any complexity-based cryptographic
constructs, like hash functions or digital signatures. Other way to look at this is, that
language L ∈ BPP has trivial zero-knowledge proof system. Verifier can check by itself
if x ∈ L.

The result of Oren applies for NIZK proof systems in the standard model. Therefore,
NIZK proof systems needs stronger model. Two main examples of such models, where
NIZK proof systems have been successfully developed, are common reference string (CRS)
model and random oracle model.

Common reference string (CRS) model

Let us start from a zero-knowledge proof: the prover wants to convince the verifier that
x ∈ L. At this time the prover is helpful and wants to save verifier’s effort. The prover
sends a transcript of a simulated proof, containing the interaction between prover and a
simulated verifier. In the simulation, the prover obviously plays the simulated verifier’s
part according to the protocol, but special attention needs to be paid to the randomness
of the simulated verifier.

First, the protocol of this zero-knowledge proof is a public coin protocol (described in
Section 4.1). The prover plays the simulated verifier’s part, so prover must also know the

38

coin tosses. Secondly, it is crucial that the true verifier can trust the randomness used by
the simulated verifier. If the prover has all power over the randomness of the simulated
verifier, then he can choose the seed of pseudorandom generator that enables the seemingly
random behaviour of the simulated verifier. This destroys the soundness of the proof. The
prover could choose the seed deliberately so, that the simulated verifier asks "randomly"
that kind of questions from the prover which enable prover to produce a convincing proof
of the membership of x in L while x /∈ L.

If we want to obtain non-interactive zero-knowledge proofs through this paradigm of sim-
ulated proof, we need to solve how the randomness of the simulated verifier could be
beyond the reach of the prover. For clarification, because the term “simulation“ is used
also in other context with zero knowledge proofs, and not to confuse the verifier with the
simulated verifier, we can use other interpretation for the latter one. Informally, the role
of the simulated verifier could be described as a set of randomized challenges that are
included in the proof.

Blum et al. [21] introduced the common reference string (CRS) model to solve this issue
with trusted randomness. Common reference string is a shared string that both prover and
verifier can read. This string is assumed to be sampled from some distribution D. In the
case of [21] distribution D was discrete uniform distribution of {0, 1}. This means that the
CRS is completely random. In the construction of the zero-knowledge proof using CRS, it
is essential that the randomness of its randomized challenges (simulated proof paradigm)
originates from the CRS.

A drawback with the CRS is, that it needs to be trusted. Verifier must be able to trust it
as a source of randomness, beyond prover’s intervention. Also the prover has something
to fear, does the zero-knowledge property anymore hold if the credibility of the CRS is
compromised. The generation of the CRS is a trusted setup. When comparing to interac-
tive zero-knowledge proof systems in general, they do not necessitate such a setup phase
where trust is required. This requirement of trust in the setup can be an annoyance, espe-
cially in scenarios like blockchain implementations, where decentralization is advocated.
Previously the generation of the CRS has usually needed a trusted third party, but more
distributed means have been developed, like in the form of a multi-party computation [11].

To approach the definition of the zero knowledge proof systems let us introduce following
notations. Function ν(n) is a negligible function. Common reference string, that the
prover and the verifier share, is denoted by σ. Let language LR ∈ NP be characterized by
polynomial time recognizable relation R, where for each (x,w) ∈ R, w is a witness to the

39

statement “x ∈ LR“. The prover has the witness w as an auxiliary input. The proof that
prover sends to verifier is therefore denoted as P (x,w, σ), where only input w is hidden
from verifier. The decision value of the verifier is either 1 (accepts) or 0 (rejects).

Definition 12 (Non-interactive proof systems) [21], [48] A pair of Turing machines
(P, V), where V is probabilistic polynomial time, is a non-interactive proof system for
language LR if the following two hold:

• Completeness: ∀(x,w) ∈ R : Pr(V (x, σ, P (x,w, σ)) = 1) > 1− ν(|x|)

• Soundness: ∀P ′,∀x /∈ LR,∀w′ : Pr(V (x, σ, P ′(x,w′, σ)) = 1) < ν(|x|)

First constructions of NIZK proof systems using CRS [21] allowed the prover to prove
exactly one statement with the same CRS. We now introduce a definition of zero-knowledge
for this “bounded“ case. The applicability of the CRS for proving multiple statements,
while preserving the zero-knowledge property, is not guaranteed with this setup.

Definition 13 (Bounded non-interactive zero-knowledge) [21, 48] A non-interactive
proof system (P, V) for relation R is bounded zero-knowledge if there exists a probabilis-
tic polynomial time simulator S, such that ∀(x,w) ∈ R the two probability ensembles
{(x, σ, P (x,w, σ))} and {S(x)} are computationally indistinguishable.

Later, Feige, Lapidot and Shamir [48] showed how to construct a NIZK proof system, that
enables polynomially many provers to prove polynomially many statements, using a single
CRS. Using a notation from the article of Groth, Ostrovski and Sahai [77] we present
the definition for this "multiple prover" case. By this definition zero-knowledge holds also
against adaptive distinguisher∗, denoted here as adversary A, where A may select the
statement-witness pair (x,w) after seeing the CRS. The adversary A is expected to be
non-uniform polynomial time, which means that A can be represented by a family of
polynomial size Boolean circuits. The CRS generation algorithm K is included to the
definition.

Definition 14 (Multi-theorem adaptive non-interactive zero-knowledge) [48, 77]
Let S = (S1, S2) be a probabilistic polynomial time simulator such that S1 generates a sim-
ulated CRS along with a trapdoor information τ that enables the second simulator S2 to

∗The distinguisher was referred in the definition 9 (computational indistinguishability).

40

create a simulated proof for statement x without the witness w. A non-interactive proof
system (K,P, V) is adaptive multi-theorem zero-knowledge for language LR if there exists
a simulator S = (S1, S2) such that for all non-uniform polynomial time adversaries A:

Pr[σ ← K(1k); (x,w)← A(σ);π ← P (x,w, σ) : A(π) = 1]−

Pr[(σ, τ)← S1(1k); (x,w)← A(σ);π ← S2(x, τ, σ) : A(π) = 1] < ν(k),

where P and S2 are expected to output failure if (x,w) /∈ R.

In some setups the CRS is explicitly divided to two portions, proving key and verification
key, where the first portion is needed by the prover and the second portion by the verifier.
This is relevant especially in the case when the verification key is made very small compared
to the proving key, thus reducing verification complexity.

In both cases ([21], [48]) the constructed NIZK proof systems were proven to exist for all
languages in NP.

Fiat-Shamir transform

The work of Fiat and Shamir [49] was one of early applications of random oracle, before the
explicit random oracle methodology was described [10]. They first presented an interactive
identification protocol between prover and verifier, which they then transformed to a non-
interactive protocol∗. The interactive protocol consists of three moves and is a public coin
protocol. Let us denote the statement to be proved as x. The prover sends a message
m to the verifier, whose role is then to pick a challenge c randomly from challenge space,
and send it to the prover. Finally the prover sends a response r to the verifier. Verifier’s
decision can be denoted as a function V (x,m, c, r) that outputs either 1 (accept) or 0
(reject).

In the transformation (illustrated in Figure 4.3), verifier’s role of providing a challenge is
replaced by a cryptographic hash function H. The random challenge to prover is H(m),
the hash value of the message m that prover would send to verifier in interactive protocol.
Prover’s response is now (m, r), thus providing to the verifier both the final message r and
the intermediate value m so that the hash function usage is transparent to the verifier.
Verifier’s decision function is denoted now as V (x,m,H(x,m), r). This way it is possible
to transform a three-move protocol into a non-interactive one-move protocol.

∗The interactive protocol was identification protocol, that was transformed to digital signature protocol.
This has been since an important use case for Fiat-Shamir transform.

41

Bellare and Rogaway [10] formalized the transformation of Fiat and Shamir under random
oracle model, where hash function is replaced by an idealized version of it, a random func-
tion. They also generalized this transformation to three-move public coin zero-knowledge
arguments, that are transformed to non-interactive zero-knowledge arguments. Recall the
difference between proof and argument, stated in Section 4.3, so Fiat-Shamir transform
ensures only computational soundness.

Figure 4.3: Fiat-Shamir transform, based on the definition from [42]. On the left side is interactive
protocol, and on the right side is non-interactive protocol that is yielded with Fiat-Shamir transform. In
the context of zero-knowledge proofs the prover’s message m is typically a commitment.

The Fiat-Shamir transform is an efficient way to construct NIZK arguments. The starting
point, the existence of underlying three-move interactive protocol, also referred as Σ-
protocol, is of course a requirement by itself. Informally can be said, that in Σ-protocol
the challenge space must be big enough, so that the verifier can be convinced of the prover’s
response for just one challenge, i.e., probability that prover succeeds in cheating in a single
challenge is negligible.

The pitfalls found in the random oracle model were discussed in Section 2.2. Similarly,
a specific scheme that is secure in random oracle model and is rendered insecure with
any real hash function, has also been found relating to Fiat-Shamir transform [70]. De-
spite these negative theoretical results, Fiat-Shamir transform has been used in practical
implementations to obtain NIZK arguments, like in e-voting [74].

42

4.5 Efficient NIZK proofs

After the theoretical foundation for the non-interactive zero-knowledge proofs has been
built, a substantial portion of the related research has been focused to its practical fea-
sibility. Related aspects include the size of the proof (or argument), prover’s execution
time, verifier’s execution time and the size of the CRS. Smaller proof or CRS size decreases
communication costs and it typically also means that verifying the proof is computation-
ally easier. This section handles exclusively NIZK with CRS model: the Fiat-Shamir
transform is in its simplicity convenient for many practical implementations at the cost of
controversial security.

It is a goal worth pursuing to find a NIZK proof system that can be used for all NP
statements (for any statement of any language in NP). This kind of proof system is con-
structed for some NP-complete language. Any statement in NP can be transformed to
that chosen language by polynomial time (and polynomial space) reduction. After that
the NIZK proof system can be used for that transformed statement.

Various NP-complete problems have been used in NIZK proof system construction, like
3-satisfiability problem (3-SAT) [20], Hamiltonian cycle problem (HC) [48] and circuit
satisfiability problem (CSAT) [38]. Damgård noted the benefits of constructing the proof
system for CSAT: the reduction process from the given statement to an CSAT instance
is more straightforward compared to 3-SAT and HC, and also the resulting instances are
smaller [38]. The reduction of an NP statement s to CSAT means finding a circuit Cs
that is satisfiable if and only if s is true.

NIZK proof system, like any cryptographic scheme, is based on some computational as-
sumption(s). As was noted in Section 2.2, in general, a weaker assumption yields a better
security than a stronger assumption, at least if the scheme is viewed like a black box and
only this assumption aspect is scrutinized. On the other hand, it may be harder to find a
security proof that is based on weaker assumption, or the resulting scheme may be more
complex. It is an open question whether NIZK proof system for NP can only be based on
existence of one-way functions. Various other computational assumptions have been used.
Notable examples include quadratic residuocity [20, 38] that is a specific number-theoretic
assumption, and existence of trapdoor permutation [48].

In 2006 Groth, Ostrovski and Sahai [78] introduced a NIZK proof system for CSAT, that
was significantly more efficient compared to previous systems. With CSAT problem the
NIZK proof and CRS size can be expressed in terms of the circuit size |C| and the inevitable

43

security parameter k. In previous NIZK proof systems for CSAT both the CRS size and
the proof size∗ were O(|C|k2) at its best [85, 28]. In the new proof system [78] the CRS
size was O(|k|) and the proof size O(|C|k). The Boneh-Goh-Nissim cryptosystem [24],
based on pairing-based cryptography, played a pivotal role in the efficiency gains.

Even better results have been gained by utilizing fully homomorphic encryption. When
Gentry introduced the first FHE scheme, he also outlined NIZK proof system that uses
FHE [56]:

NIZK proof for CSAT using FHE

• Common input: circuit C. Prover’s input: witness w = w1, ..., wn that is a satisfying
assignment for circuit C. Prover’s statement: there exists witness w′ such that
C(w′1, ..., w

′
n) = 1, i.e. C is satisfiable.

• Using the fully homomorphic encryption scheme E = (GenE , EncE , DecE , EvalE)
prover generates:

– A public key pk (a key pair (pk, sk)).

– The input (witness) ciphertexts {ψi ← EncE(pk, wi)}.

– The output ciphertext ψ ← EvalE(pk, C, ψ1, ..., ψn).

• Using a NIZK scheme prover constructs following NIZK proofs†:

– The public key pk is a valid public key

– Each input ciphertext ψi is a ciphertext of 0 or 1.

– The output ciphertext ψ is a ciphertext of 1

• The verifier verifies NIZK proofs and confirms that the output ciphertext ψ evaluates
from the input ciphertexts: ψ = EvalE(pk, C, ψ1, ..., ψn). The properties of the
encryption scheme ensures that: The output ciphertext ψ is a ciphertext of 1⇒ the
output of the circuit with plaintext input is 1: C(w1, ..., wn) = 1.

∗As represented in [77], original articles [85, 28] have more detailed description.
†Describing these NIZK proofs would require a walkthrough of subtle details of the (FHE) encryption

scheme, which is omitted. We note, however, that similar NIZK proofs can also be done with non-FHE
scheme: example of a NIZK proof for the statement that a commitment contains 0 or 1 is found in [78].
As usual, the random bits needed to construct the NIZK proofs are in the CRS.

44

Gentry’s NIZK proof construct provides proofs of size O(|w|poly(k)), where |w| is the wit-
ness size and k is the security parameter. Subsequently the size of NIZK proof for CSAT
with FHE has been reduced to O(|w| + poly(k)) [58], so the proof size is proportional to
witness. According to current knowledge [63, 68], the proof size cannot be substantially
smaller than the witness, so in essence the theoretical limit has been reached in the asymp-
totic efficiency. But when the soundness property is relaxed to computational soundness,
and we are therefore limited to argument systems, substantial gains in efficiency can be
reached, as is shown in the next section.

4.6 Succinct NIZK arguments

Development of NIZK argument systems has lead to succinct arguments, meaning that
the argument size is sublinear with respect to the input. The following paradigm [23]
has proven to be successful in the construction of succinct argument systems, and also
cryptographic proof systems in general:

1. First construct a proof system, referred as information theoretic proof system, that
provides security even against computationally unbounded parties, because its se-
curity is derived from information theory. This proof system usually falls into a
category of probabilistically checkable proofs (PCP), which are explained later in
this section.

2. Next use cryptographic tools, referred as cryptographic compiler, to bind the sys-
tem to respect desired properties. Examples are the zero-knowledge property and
non-interactivity. The cost is typically restriction to security against computation-
ally bounded prover instead of an unbounded one. This restriction leads to an
argument system. Examples of such “compilers“ are random oracle, extractable
collision-resistant hash function (ECRH) [16] and CRS model.

A SNARG means a succinct non-interactive argument, and correspondingly SNARK is a
succinct non-interactive argument of knowledge. So the SNARK is a SNARG with proof of
knowledge property. If also the zero-knowledge property prevails, we get to the notations
zk-SNARG and zk-SNARK.

Next we introduce the notions of PCP and its variant known as linear PCP, and review
some SNARG/SNARK constructions that are done with these models.

45

Probabilistically checkable proofs

The notion of probabilistically checkable proofs (PCP) [3] defines a hierarchy for complexity
classes. Following the PCP definition, languages are classified based on how efficiently a
verifier can check membership proofs for them. In PCP the probabilistic polynomial time
verifier has a random access to the proof, and it can query from the proof a certain, small
amount of bits at a time. The explicit notion of prover is not needed, but it can be thought
of as an oracle that responds to verifier’s queries by providing the bits from the position
of the proof that verifier asks. A language L is in the complexity class PCP[r, q] if there
exists a verifier V that uses r random bits, reads q bits from the proof and the following
two properties hold:

• if x ∈ L, then there exists a proof π such that Pr[V accepts (x, π)] = 1;

• if x /∈ L, then for every proof π Pr[V accepts (x, π)] ≤ 1
2 .

Let n be the size of the input x. It follows from the definition that NP = PCP[0,O(poly(n))].
A deterministic polynomial time verifier does not require any random bits, and it queries
at most a polynomial amount of bits from the proof. The PCP theorem [2] gives a new
characterization for the NP:

NP = PCP[O(log n),O(1)].

This means that for every language in NP there is a verifier that uses at most O(log n)
random bits and reads only O(1) (constant amount) of bits from the proof. The soundness
error ε = 1

2 as described above follows the original definition, but it can also be added to
the PCP definition as an extra parameter: ε < 1.

Naturally a “classical“ type of proof is not suitable for the PCP proof system, because the
verifier could have to go through almost the whole proof to find an erroneous place that
falsifies it. The PCP introduces a new kind of a proof that is more suitable for probabilistic
checking. In the PCP proof system a proof of a false statement is guaranteed to have so
many errors that the verifier is able to find one with high probability by reading only a
small part of a proof.

Over time various PCP proof constructions have been described. A starting point is
some specific NP-complete language, so the NP-reduction is an overhead that is usually
required. The PCP proof construction has an analogy to error correcting codes (ECC) that
are used to detect errors in data transmission over unreliable channels. When the message

46

is encoded to ECC format, it contains redundant information in a way, that enables the
receiver detect if the message is corrupted. In the PCP proof of Dinur [41] an integral
part is a “gap amplification“, that is iteratively used to double the “erroneous places“ of
the proof with only linear increase to the proof size.

Already at an early stage, PCPs were introduced in cryptographic applications. Using
PCPs, Kilian [84] constructed an interactive argument system where the communication
complexity between the prover and the verifier is polylogarithmic, i.e., succinct. Micali
[92] showed how to make this kind of argument system non-interactive in the random
oracle model, by using a hash function along with the PCP string, to simulate verifier’s
PCP queries. Bitansky et. al replaced the random oracle with ECHR, that is a collision
resistant hash function with an additional extractability property [16].

Linear PCP

Initially PCP has been regarded as a string to which a verifier has oracle access. Gennaro
et. al [55] noted that while the regular, “general-purpose“ PCP enables the creation of
SNARGs, some other model could fit better for cryptographic purposes. They introduced
the models of quadratic span programs (QSPs) and quadratic arithmetic programs (QAP).
These models are linear algebraic constructions that are converted from input circuits.
QSP is converted from a boolean circuit, and QAP from an arithmetic circuit. The
reduction from the specific problem to the input format, a boolean or an arithmetic circuit
is still needed to be done, so the user of the scheme can decide which one of these suits
better. Their scheme [55], also known as GGPR13, yields arguments of size O(1) with
O(1) verifier’s complexity. Prover’s complexity is O(n log n), and the CRS size is O(n),
where n is the number of gates in circuit.

We omit the details of these conversions but basically what is obtained from the QSP
or QAP, is a set of polynomials. The size and degree of each polynomial is roughly the
number of the gates in the circuit. We now review the QAP in more detail and show how
it can be used to obtain zk-SNARKs. Before that we need to formalize arithmetic circuit
and the satisfiability therein.

An arithmetic circuit is a directed, acyclic graph that consists of arithmetic gates. The
output of the gate is a result of an arithmetic operation to input value or values. Figure
2.1 of a boolean circuit can be used to familiarize oneself with circuit structure in general.
The gates considered here are bilinear : the operation can be addition, multiplication or

47

multiplication by scalar. Arithmetic circuit C with n inputs and m outputs is therefore a
function f : Fn → Fm, where F is a field, typically a prime field that consists of integers
mod p, where p is a prime. By definition, each output of the circuit represents a polynomial
of the input values.

The satisfiability of an arithmetic circuit is defined analogously to the boolean case. Let
n, h, l respectively denote the statement, witness and output sizes. The input is divided
into two parts, the statement and the witness. The arithmetic circuit satisfiability problem
[12] of a circuit C : Fn × Fh → Fl is defined by the relation RC = {(x,w) ∈ Fn × Fh :
C(x,w) = 0l}. The corresponding language is LC = {x ∈ Fn : ∃w ∈ Fh, C(x,w) = 0l}.

Next we define quadratic arithmetic program and its satisfiability, which were originally
introduced in [55], following the notation of [12]. First, let us denote by F[z] the ring of
univariate polynomials over field F and by F≤d[z] the subring of polynomials of degree less
than or equal to d.

Definition 15 (Quadratic arithmetic program [12]) A quadratic arithmetic program
(QAP) of size m and degree d over F is a tuple (A,B,C, Z) where

• A = (A0, A1, ..., Am) with Ai ∈ F≤d−1[z],

• B = (B0, B1, ..., Bm) with Bi ∈ F≤d−1[z],

• C = (C0, C1, ..., Cm) with Ci ∈ F≤d−1[z] and

• Z ∈ F[z] has degree exactly d.

Definition 16 (QAP satisfiability problem [12]) The satisfiability problem of a QAP
(A,B,C, Z) of size m is defined by the relation RA,B,C,Z of pairs (x, s) such that

• x ∈ Fn, s ∈ Fm and n ≤ m;

• xi = si for i ∈ [n] (i.e, s extends x); and

• the polynomial Z(z) divides the following polynomial

(A0(z) +
m∑
i=1

siAi(z)) · (B0(z) +
m∑
i=1

siBi(z))− (C0(z) +
m∑
i=1

siCi(z)).

The vector s can be called as a “QAP witness“.

48

Reduction from arithmetic circuit satisfiability to QAP satisfiability can be done efficiently,
as was shown by Gennaro et. al [55]. If the number of wires in circuit C is α and the number
of gates is β, then there exists a polynomial time algorithm QAPinst that produces QAP
with size m = α and degree d = β + 1 [12]. Next we outline the zk-SNARK construction
from QAP very informally; missing details can be found from [55, 12].

Besides the QAPinst, there exists also a polynomial time algorithm QAPwit [12] that
enables the prover to construct the QAP witness s. Let us disregard the zero-knowledge
property for a while, and assume that the prover just wants to prove that they know
a witness w for a statement x ∈ LC . If the prover just sends the QAP witness s to
the verifier, the proof size is proportional to the circuit size that may be thousands of
gates. However, due to the properties of the underlying mathematics and the zk-SNARK
construction scheme in question [55], the verifier does not need so much information to
verify the divisibility of polynomials described in the definition 16. It suffices that verifier
evaluates certain constraints in only a few different points in polynomials, so the proof
needs to have data only for these few evaluation points. The proof is thus of a constant
size, i.e., succinct.

If the prover would know what the evaluation points are, they could fabricate the proof
so that the constraint checks are passed, although the QAP-satisfiability of the polyno-
mials is not fulfilled. Crucially, the zk-SNARK scheme provides a way to evaluate these
polynomials “blindly“, so that neither the prover nor the verifier know the actual evalu-
ation points. An additively homomorphic encryption scheme is used to enable constraint
checking with encrypted evaluation points. In the CRS generation the plaintext values of
these evaluation points were sampled randomly, and their encryptions were included in
the CRS. Afterwards the plaintext values are not needed, and because they could be used
to make forged proofs, destroying them is recommended.

Zero-knowledge property is achieved so that the prover samples random values δA, δB, δC ∈
F, and while constructing the proof incorporates them to the QAP polynomials A,B,C so
that the divisibility still holds. This way the verifier does not learn anything else than
that the divisibility holds. In fact, this scheme is statistically zero-knowledge, because the
encrypted elements in the proof are statistically indistinguishable from other encrypted
elements that satisfy the constraints. While not outlined here, the scheme provides also
proof of knowledge.

PCP is categorized as linear PCP [17] if the proof oracle that answers to verifier’s queries
is a linear function π : Fn → F. The previously mentioned constraint checks performed to

49

ensure the divisibility of polynomials in the QAP structure (and correspondingly also in
the QSP) can thus be seen as linear PCP queries [17].

Practical implementations

The zk-SNARK scheme introduced by Gennaro et. al [55], henceforth called GGPR13,
has been a basis for several implementations. Pinocchio [99] was among the first such
implementations. Pinocchio is a program that can build QSP or QAP based zk-SNARK
proof systems from boolean circuits or arithmetic circuits, respectively. Furthermore,
Pinocchio provides a compiler to generate arithmetic circuits from input programs that
are written in certain subset of C language. Together this forms an end-to-end solution
from describing NP statements in a high-level programming language to a zk-SNARK
proof system for these statements.

A zk-SNARK proof system developed by Ben-Sasson et. al [12] (BCTV14) is based on the
schemes in GGPR13 and Pinocchio. It has some efficiency improvements, and it provides
more flexibility for defining the input C programs for circuit compiler than Pinocchio.
It also was the initial proof system for the cryptocurrency Zcash that is reviewed in the
following section.

In recent years numerous other zk-SNARK implementations have been created∗, and many
of them are based on other constructions than QAP. Some of those non-QAP based schemes
are mentioned in Section 5.4.

∗https://zkp.science/

5 ZKP’s utilization with blockchain tech-
nologies

In this section we review three examples of blockchain applications that utilize zero-
knowledge proofs to improve privacy. The first two, Zcash and Ethereum use zk-SNARKs,
and the third, Monero, uses NIZK proofs based on the Fiat-Shamir transform. The last
subsection summarizes the findings related to these examples. In particular, privacy, se-
curity and viability aspects are reviewed.

5.1 Zcash

Zcash is a cryptocurrency that utilizes zk-SNARK based zero-knowledge protocol to
achieve privacy. Zcash software is open source and is built on the Bitcoin codebase.
These two cryptocurrencies have similarities in mechanisms and also in details, like the
same total supply of units (21 million). Zcash has a proof-of-work consensus mechanism
like Bitcoin, but it uses different PoW algorithm called Equihash [15]. Zcash has been
created by a privately held company Electric Coin Co. that also has the main responsi-
bility of Zcash’s further development. The initial release of Zcash was in 2016 under the
version name Sprout. The current version is called Sapling, and substantial changes have
been done to the Zcash protocol since the initial release.

Zcash has two types of addresses, transparent addresses (t-addresses) and shielded ad-
dresses (z-addresses). Transactions between t-addresses, called as transparent transac-
tions, work similarly like in Bitcoin. Input and output addresses and transaction values
are publicly visible. Transactions between z-addresses, called as shielded transactions, are
encrypted, so the input and output addresses and transaction values are not disclosed.
Shielded transaction contains a zero-knowledge argument, zk-SNARK, of its validity. It
is also possible to create a transaction from t-address to z-address, known as shielding,
and from z-address to t-address, known as deshielding. Shielded parts of shielding and
deshielding transactions are covered by zk-SNARKs. The set of the shielded addresses is
called as shielded pool.

Since the shielded transactions are a characteristic of Zcash, the existence of transparency

51

requires justification. Zcash site mentions [114] that transparent addresses enable easier
adoption of the currency, and let users to make themselves a choice of their privacy level.
As is discussed in Section 5.4, the existence of transparent addresses has been practically
imperative to support compatibility with other cryptocurrency infrastructure.

Zerocash

Zcash is based on the Zerocash cryptographic currency protocol [106]. Over the years the
Zcash protocol [80] has somewhat changed comparing to the original Zerocash. There were
already differences during the release of Zcash, but the Zerocash still constitutes a major
theoretical foundation for the current Zcash. One contribution of Zerocash article [106] is
the decentralized anonymous payment scheme (DAP) that is meant to be a generic, pri-
vacy preserving primitive that could be used as a foundation for decentralized currencies.
Zerocash is an implementation of DAP, and thus to some extent Zcash also implements
it.

DAP is modelled as an extension to a regular blockchain based currency, that is referred
to as Basecoin. So the blockchain and network mechanisms of the Basecoin are assumed
to be given. One example of a Basecoin is Bitcoin, that is used as the basis for Zerocash.

Definition 17 [106] A decentralized anonymous payment scheme (DAP) is a tuple of
polynomial time algorithms (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Re-
ceive) that are described as follows:

• The algorithm Setup, having as input a security parameter λ, generates public pa-
rameters pp (the CRS). The setup is done only once, by a trusted party.

• The algorithm CreateAddress generates a new address-key pair (addrpk, addrsk). The
key addrpk is a public address where coins can be sent to. Hereafter these coins can
be spent with the corresponding private key addrsk.

• The algorithm Mint on given value v and address addrpk generates coin c that has
a unique serial number sn and previously mentioned address and value. A mint
transaction minttx that contains a coin commitment cm(c) is created. This coin
commitment hides the address, value and serial number of the coin.

• The algorithm Pour transfers value from input coins into new output coins, input
coins are set consumed. From input coins the algorithm also needs the private keys

52

of addresses. Output coins are described as (value, output address) pairs. A pour
transaction pourtx is created, that contains serial numbers of input coins which are
therefore considered consumed. The serial number is necessary to prevent double
spending. Pour transaction contains also coin commitments of output coins.

• The algorithm VerifyTransaction checks the validity of transaction (minttx or pourtx).

• The algorithm Receive can be used by address owner. On given address key pair
(addrpk, addrsk) algorithm Receive outputs unspent coins for that address.

DAP scheme should fulfill completeness, which means that unspent coins can be spent.
Security related properties are ledger indistinguishability, transaction non-malleability, and
balance. Ledger indistinguishability means that only the information that is intended as
public can be learned from the blockchain. Adversary’s inability to alter the transaction
before it is stored in the blockchain is referred as non-malleability. Balance property
assures that the amount of unspent coins cannot be exceeded by spending.

The concrete implementation of DAP scheme, Zerocash, deploys standard cryptographic
machinery from public key cryptography and hash functions, tools that are already widely
used in Bitcoin. In this perspective, deployment of zk-SNARKs is the most distinctive
new feature. The place where zk-SNARKs are used is in the Pour transaction where coins
are transferred between addresses.

zk-SNARK generation in Zerocash

zk-SNARK, the construction of which is described below, is intended to be a zero-knowledge
proof of the validity of a Pour transaction. The succinctness of zk-SNARK is essential
because it is included in the Pour transaction, replacing its otherwise public information
of sender, receiver and transaction value. Let us start the construction of zk-SNARK
from the NP statement. In the case of Pour transaction pourtx, its NP statement pourx is
the visible content of transaction, that includes the serial numbers of old coins, and coin
commitments of new coins. Let us denote the a user who creates transaction pourtx as
prover. The prover must attach to pourtx a proof, zk-SNARK, that its statement pourx
belongs to a language of valid transactions.

The witness w of statement pourx consists of prover’s private information regarding the
public content of the transaction. It should be noted that the witness is the part of
the transaction data that is to be replaced by the zk-SNARK. Witness w contains all the

53

information of old and new coins in transaction, and the secret keys of old coins’ addresses.
The witness w is valid for a statement pourx if the following conditions are met∗: 1) coin
commitments of old coins are in the blockchain, 2) secret keys of old addresses match the
corresponding public addresses, 3) sum of old coin values is equal to the sum of new ones.

Zerocash uses the BCTV14 system [12], that is a quadratic arithmetic programming im-
plementation of zk-SNARK proof system. Therefore an arithmetic circuit is needed to be
“etched“ for pourx. Actually, only one circuit Cpour is needed to be constructed in the
system’s lifetime. This circuit can validate any statement pourx. The authors of Zerocash
noticed, that the verifying of SHA-256 hash function output dominates the computational
work in pourx statement verification; it is relatively expensive and it is done many times in
one statement’s verification. They handcrafted an efficient circuit for SHA-256, that has
only 27904 gates. Using a programmatic circuit generator like Pinocchio [99] would have
yielded at least twice as large circuit. The overall circuit Cpour was obtained by combining
various subcircuits; circuits of SHA-256 and some others. The size of Cpour is about 4
million gates, more than 99% of which are dedicated to SHA-256 verifications†. With the
circuit Cpour, zk-SNARKs are created using the BCTV14 system.

Last we present some metrics of the difficulty of creating and verifying zk-SNARKs of
Cpour in Zerocash. With an ordinary laptop machine in 2014, proof generation for Cpour
took about 3 minutes, and its verification time with VerifyTransaction algorithm was
8,5 milliseconds [12]. The proof size is constant, 288 B. This proof, zk-SNARK, that is
included to pourtx transaction is lightweight enough to be added to blockchain, and its
verification does not cause significant overhead for the miners. The work of the prover is
more heavyweight, and as is discussed later, it has probably hindered the adoptance of
zk-SNARK related shielded transactions in Zcash. The one time job of generating CRS
took about 8 minutes and the resulted CRS size was about 900 MB. In the underlying
zk-SNARK scheme [12] the CRS is divided into two parts: proving key that is needed by
prover, and verification key that is needed in verification. From the total size of 900 MB
the verification key was only 749 B.

∗In more detailed technical level there are few other conditions [12].
†SHA-256 is represented in the circuit 146 times. Both old coin commitments are retrieved from

Merkle tree data structure in which these commitments are stored. Each Merkle tree layer needs a SHA-
256 invocation and the number of layers is 64 in the Zerocash implementation. Arithmetic circuit does not
have loops, so for each SHA-256 invocation, its subcircuit must be replicated in the total Cpour circuit.

54

Trusted setup

The issues relating to trusted setup of CRS were not handled in the Zerocash paper [106].
Zcash, a cryptocurrency used in production, has had to resolve these issues. A key question
is whether the CRS can be trusted. Loosely speaking, the party that generated the CRS
may possess the related trapdoor information that it can use for abuses in the system.
The definition of non-interactive zero-knowledge (14) necessitates an existence of such a
trapdoor. As was shown by Bellare, Fuchsbauer and Scafuro [8], this trapdoor information
could be exploited by adversary in various ways, depending of the system. At minimum
either the soundness or the zero-knowledge property is lost in such attack.

In the Zcash’s initial release, the CRS was created by following a multi-party protocol [26],
that ensures that even if only one party is acting honestly, the resulting CRS is secure.
Acting honestly here means that the party destroys the trapdoor information, also referred
to as “toxic waste“, they obtain when participating in the protocol, or at least does not
combine this data with other parties. The execution of the multi-party protocol, by six
participants, was elaborate and comprehensively documented ceremony. Regardless, if
the security of the CRS were compromised, in the case of Zcash’s zk-SNARK-system,
the soundness would be lost, but not the zero-knowledge property. This means that
the adversary could forge zero-knowledge proofs of shielded transactions, and so could
counterfeit money without anyone noticing, but then again the privacy of the system’s
users would not be endangered.

zk-SNARK solutions in Zcash

We note that there are structural differences between Zerocash and Zcash. Unlike Zero-
cash, Zcash has no separate transaction types, but these operations are embedded in the
original Bitcoin transaction as extra data. In Zcash the Pour operation is split to two
different operations that both employ zk-SNARKs, Spend and Output transfers. Nev-
ertheless, the zk-SNARK generation described above for Zerocash is essentially valid for
Zcash as well.

Originally, in the Zcash Sprout release, the proof system for zk-SNARK was BCTV14
[12], as in Zerocash. In 2018, with Zcash Sapling release, the proof system was switched
to Groth16 [75]. Like BCTV14, Groth16 is a QAP-based system, and its improvements
include e.g. smaller proof size of 192 bytes. Another change in the Sapling upgrade was
the partial replacement of the SHA-256 hash function with other solutions that can be

55

represented by much smaller arithmetic circuits. Consequently, proving has become easier.
The proof generation time and its memory requirements have been reduced from ∼40
seconds/3 GB to ∼2 seconds/40 MB according to Zcash site∗. This has made shielded
payments, i.e., operations that require proof generation easier, thus facilitating better
support for third-party applications and mobile devices.

In 2018, it was revealed [53] that the BCTV14 proof system has a severe security flaw.
The CRS exposed some reduntant elements that the adversary could utilize in an attack.
Basically, attacker could create a proof of knowledge for any statement, given a valid
proof for some statement. When the vulnerability was revealed, Zcash was already using
Groth16 proof system. Zcash representatives stated their belief that no one else had been
aware of the vulnerability. In the report [53] it was stated that the vulnerability was
noticed during reviewing a proof of security for BCTV14 [25], and that the proof itself
was found to be erroneous.

5.2 Ethereum

Blockhain has been used as a foundation for cryptocurrencies. After the Bitcoin introduced
the concept of blockchain, it was quickly found out that also other things, in addition to
cryptocurrencies, could be decentralized by blockchain. One of the early examples was
Namecoin [81] whose purpose was e.g. act as a decentralized domain name registry (DNS).
Namecoin functions as a cryptocurrency, but it also supports storing of records, that are
essentially key-value pairs, in blockchain. Purchasing of record costs some namecoins,
these are included in the record creating transaction. Record owner can modify record, or
give its ownership to someone else by making a transaction. The protocol maintains the
uniqueness of stored keys.

Namecoin has similar proof-of-work based consensus mechanism like Bitcoin, so it needs a
reasonable community support, i.e., amount of miners to retain its security. If some party
has a majority of mining power, then decentralization can be seen as lost. A term altcoin
refers to “alternative cryptocurrency to Bitcoin“. Creating an altcoin is relatively easy,
but the harder part is to bootstrap a community support for it. Therefore, it does not
seem reasonable to create a new altcoin for each narrow use case or application.

Ethereum† is a project that tries to tackle this issue. The functionality of the Namecoin
∗https://z.cash/upgrade/sapling/
†https://ethereum.org/

56

described above could be implemented in Ethereum. But instead of hard-coding Name-
coin’s application logic to the Ethereum protocol, Namecoin could be implemented as a
programmable smart contract. Ethereum has its own Turing-complete programming lan-
guage, a bytecode language referred to as “Ethereum virtual machine code“ (EVM code)
[111]. The EVM is a stack based virtual machine, which means that is does not use
registers.

Smart contracts

A smart contract is a code snippet that is described in EVM language and stored in
Ethereum blockchain. Smart contract is created by a transaction, and it can be referred
to in subsequent transactions. Smart contract has a state that is stored in blockchain, and
it defines a set of public methods with their arguments. Calling a public method of smart
contract in transaction changes the state of this smart contract according to its program
logic. Contract can also call a public method of another contract. For writing smart
contracts, Ethereum provides multiple high-level programming languages, that resemble
some general use programming languages like JavaScript or Python. When creating a
transaction, Ethereum client then compiles the smart contract into bytecode. A decen-
tralized application (dApp) is an entire application that provides a front end for its users,
and whose back end consists of smart contracts in blockchain.

Each node that validates Ethereum transactions runs the code of the smart contract
defined in transaction. If smart contract is computationally expensive, or even has infinite
loops, troubles may follow. Ethereum prevents these problems with a mechanism that
revolves around the concept of gas. Each basic operation in smart contract costs a specific
amount of gas that reflects its complexity. A smart contract is created by sending a
transaction where contract’s bytecode is defined. The sender of transaction must define
the gas price in the Ethereum currency ether that they pay for one gas unit, and also the
gas limit that the contract computation is allowed to cost at maximum. If gas limit is hit,
like in the case of infinite loop, the validator of the transaction halts computation of the
contract. In this case the sender of the transaction pays ethers according to the gas limit,
otherwise they pay of the spent gas.

57

Privacy in Ethereum

Ethereum originates to year 2013 when Vitalik Buterin published Ethereum’s white paper
[32]. The initial release of Ethereum was in 2015. Privacy features of Ethereum proto-
col were essentially the same as those of Bitcoin, e.g., transparent data, pseudonymous
identities. Actually, original privacy level of Ethereum was potentially worse than that of
Bitcoin because the unencrypted smart contract data could potentially reveal much more
than the mere amount of bitcoins that is disclosed in Bitcoin transaction.

Since the Byzantium version release in 2017, Ethereum has had support for zk-SNARKs.
At that time precompiled contracts were added to execute certain mathematical oper-
ations, like operations on elliptic curves, that relate to the verification of zk-SNARKs.
A precompiled contract is a smart contract hardcoded in the Ethereum protocol. The
contract is not executed in EVM, but instead it is run on the machine that hosts the
Ethereum client. Zk-SNARK verification-related operations benefit from this, because it
would have been very inefficient to run them in the stack based EVM, and the gas cost
would have been tremendous. Smart contracts can use precompiled contracts in order to
verify zk-SNARKs. In essence, this provides a way for dApps to build a privacy layer on
top of the Ethereum protocol. Sensitive input data for a smart contract can be kept out
of the blockchain, and only a proof, zk-SNARK, of their validity for the smart contract is
needed for the blockchain where it is verified. The creation of zk-SNARKs and the trusted
setup are the responsibility of the dApp, outside the Ethereum.

Numerous third party solutions have been released for Ethereum that are focused on
privacy. ZoKrates∗[45] is a toolbox, that aims to help the implementation of dApps that
utilize zk-SNARKs. First, the developer creates a file that describes a verification program
in ZoKrates’ domain specific language. Then the toolbox provides a chain of conversions to
produce the needed components. Arithmetic circuit is generated, CRS is constructed in the
setup phase, a smart contract described in Ethereum’s high level language is outputted
that includes the verification key from the CRS. The prover is provided with a utility
to create a zk-SNARK from a witness and the previously described CRS and circuit
representation. It should be noted that the setup mentioned here is really trusted only by
the party executing it, the creator of the smart contract. A trusted setup, that could be
trusted by anyone, is not at least yet available in ZoKrates.

Ethereum protocol-level support for zk-SNARKs is not in sight. Zcash needs two arith-
∗https://zokrates.github.io/

58

metic circuits, one for Spend and other for Output operation, to manage all the needed
zk-SNARKs. Because of the Turing completeness of the EVM language, Ethereum can-
not cope just with fixed pre-created circuits. Basically every smart contract would need
its own circuit that should be created automatically and stored in the blockchain. The
trusted setup would also be very challenging.

Because the zk-SNARK enabled privacy is not in the Ethereum blockhain layer, but above
it in smart contract layer, from the transaction it is visible that a specific account x, that
is Ethereum’s counterpart for address, is interacting with a smart contract y. This may
not be a privacy issue if the interaction details are adequately hidden with zk-SNARKs.

5.3 Monero

Monero is a privacy focused cryptocurrency that was established in 2014. It utilizes
various cryptographic primitives to obtain privacy, some of which use zero-knowledge
proofs. Transaction structure in Monero is similar to that in Bitcoin: input addresses,
signing with corresponding private keys and output addresses with values. Monero uses
cryptographic techniques to hide input addresses, output addresses and transaction values,
which are called ring signatures, one-time keys and Pedersen commitments associated with
range proofs, respectively.

In a ring signature scheme [103] the signer s specifies a set S of possible signers, i.e., set
of public keys, such that s ∈ S. As with regular signature scheme, the private key of
signer s is used in signing. It can only be deduced from the signature that it was created
by a member of S, without revealing the identity of the actual member. To validate
such signature, it contains a non-interactive zero-knowledge argument on random oracle
model. When sender creates transaction they specify a set of n “decoy“ inputs from the
blockchain that have equal value than sender’s input and then sign a ring signature for this
set that includes also sender’s input. Monero has been using a variant of ring signature
that is also traceable [51] to prevent double spending. One private key can be used to sign
only one ring signature. If it is used second time, this is detectable in the scheme, and
the corresponding transaction is deemed invalid. This ring signature primitive provides
an anonymity set for a sender’s address, and it is also enforced by the Monero protocol
becauset minimum ring size is set to be 11 (in 2020).

Monero provides a mechanism of one-time keys. Let us denote the recipient’s public ad-
dress as addrr, the related public key as pkr and verifier’s private key as skr. In transaction

59

the output address is not directly a recipient’s public address. Instead, the sender is en-
forced according to the protocol to create a new public key pk′r that is derived from the
recipient’s address and a random value provided by sender, and put that new public key
as output address. For everyone else than the sender or recipient the new public key is
unlinkable to recipient’s address, or to any other address. When examining transactions,
the recipient notices that transaction output address pk′r is derivable from the private key
skr. The scheme also enables the recipient to recover from pk

′
r and skr the new private key

sk
′
r, with which they can spend this transaction output in new transaction. The under-

lying cryptographic primitive to this confidential delivery of secret key is Diffie-Hellman
key exchange [40].

Ring signatures and one-time keys were Monero’s original privacy-enhancing ingredients
introduced in Monero’s underlying CryptoNote protocol [105]. To further enhance privacy
Monero launched in 2017 new “Ring Confidential Transactions“ (RingCT) [97] scheme.
Transaction values are hidden by Pedersen commitments. In transaction the sum of the
input values must be equal than the sum of output values. Thanks to the additively
homomorphic property of Pedersen commitment scheme, transaction balance check can
be done with committed values instead of plaintext values. The sum of committed input
values must be equal than the sum of committed output values. This description still
needs adjustments to take into account the ring signatures and decoy inputs that come
with them; also the ring signature scheme needs modifications [97].

A more detailed view also reveals that the scheme needs to be strengthened with range
proofs. Negative values would cause inconsistencies because the balance check with com-
mitted values would hold, for example, with plaintext values (1 + 2) = (−5 + 8), and the
transaction would create 5 coins out of thin air∗. Also large positive values are harmful
because the commitment space in Pedersen commitment is a finite field, so as the values
increase they wrap around according to modulo arithmetics. Each output value needs a
range proof, which proves that the value is in certain positive range, let it be denoted
as [0, 2n]. In RingCT scheme a range proof for an output value consists of n ring sig-
natures, which essentially prove that the value can be represented as a binary expansion
b = b0 · 20 + b1 · 21 + · · ·+ bn · 2n where bi ∈ {0, 1}.

Range proofs formed a kind of bottleneck in the RingCT scheme, because a vast majority
of transaction size consisted of range proofs. In 2018 Monero introduced Bulletproofs
scheme [30], that brought efficiency to range proofs. Bulletproofs is a NIZK argument

∗The negative output value could be subsequently just ignored.

60

protocol where the size of a range proof for statement x ∈ [0, 2n] is logarithmic to n.
Comparing to RingCT where the the range proof size is linear to n, this is a substantial
saving, and more savings follow from aggregating range proofs of all transaction outputs
to a single range proof. Even 80% drops in transaction sizes have been reported since
Bulletproofs deployment∗.

5.4 Discussion

We have now gone through three examples of blockchain applications that utilize zero-
knowledge proofs. In relation to these examples, the aspects of privacy, security and
viability will be considered next.

Privacy

In can be said that privacy is the raison d’être for zero-knowledge proofs in blockchains.
Next we assess the privacy aspects of Monero and Zcash.

In Monero, the transaction graph is severely obfuscated by the ring signatures, one time
keys and transaction value hiding. Some analysis can still be made of it. For example,
Möser et. al [93] studied traceability of Monero transactions, by which they meant how
likely is that the real input of the transaction could be deduced. They pointed out that
0-mixin transactions, i.e., transactions whose inputs have no decoy inputs defined in ring
signatures, are not only themselves traceable, but also increase traceability to some ex-
tent in subsequent transactions. The possibility to omit decoy inputs can be seen as a
design flaw, that already had been patched in November 2017, when above research was
conducted. Another weakness observed in [93] was the use of a suboptimal distribution
from which the decoy inputs were sampled. Usually the real input was the newest input in
the ring signature. A spend-time of an input means the time elapsed since the transaction
whose output this input spends. Currently the input sampling distribution in Morero
reflects more the usual spend times of real inputs.

In Zcash the shielded transactions, i.e., transactions that are verified using the embedded
zk-SNARKs, do not disclose the transaction graph at all. In a shielded transaction, only
its timestamp and transaction fee can be seen by an outside observer. If this would be
the whole picture, complete privacy would be very close, assuming the NIZK scheme is se-

∗https://web.getmonero.org/resources/moneropedia/bulletproofs.html

61

cure. However, a vast majority of Zcash transactions are not shielded. These transactions
have either only inputs or outputs in the shielded pool, or they are totally transparent.
Transparent transactions have privacy level of Bitcoin. To a some extent, transparent
transactions also illuminate shielded pool activities, as studies have shown [101, 82, 14].
These studies describe certain identifiable patterns of transactions to and from the shielded
pool.

The dominance of transparent transactions in Zcash severely impairs the privacy achieved
by the use of zk-SNARKs. Practical reasons probably largely explain the popularity of
transparent activity. Creation of a shielded transaction, its zk-SNARK in particular, is
computationally expensive, although it has become substantially easier with the Sapling
upgrade. Initially there were no cryptocurrency exchanges or wallets that would support
sending zcash to shielded addresses. Currently the shielded transaction accessibility is
better, but according to statistics∗, the portion of shielded transactions has not essentially
grown.

It can be concluded that the privacy issues of Monero and Zcash are caused by other
factors than the use of zero-knowledge proofs. In Monero zero-knowledge proofs are only
a part of the cryptographic scheme, in Zcash zero-knowledge proof scheme is not widely
used.

Security

Privacy and not only privacy can be lost, if the cryptographic scheme is not secure. Recall
that a proof of security for a cryptographic scheme means that some security properties of
the scheme are proved mathematically based on assumptions. Typically, general purpose
cryptographic schemes have security proofs. If the implementation deviates from the
original scheme or the implementation is a composition of multiple schemes, it may need
its own security proof. In practice, absence of security proof has not prevented the use of
such implementation.

The original article [97] of Monero’s RingCT scheme did not include security proof. Its
security properties were formalized later [109], when RingCT had already been deployed
in Monero. Zk-SNARK schemes in most cases have rigid security proofs, as in the QAP-
based scheme GGPR13 [55]. Zcash’s original zk-SNARK implementation, BCTV14 [12],
was based on GGPR13 with some tweaks, which would necessitate a separate security

∗https://explorer.zcha.in/statistics/transactions

62

proof. The security proof was provided later [25], when Zcash had already been released.
That security proof itself was found to be erroneous [53] and a severe vulnerability was
found from BCTV14 system. The following zk-SNARK construction of Zcash [27], that is
a modification of the Groth16 proof system [75] was introduced with a security proof.

Security proof is typically based on assumptions. From a security point of view, “strong“
is not a favorable qualifier for an assumption, as it may mean that the assumption has not
been well studied, or it is more prone to invalidation compared to another assumption.
For Monero, the strongest assumption can be considered to be the random oracle model
whose issues are discussed in Sections 2.2 and 4.4. Zcash with its zk-SNARK scheme has
assumptions that are considered strong. For GGPR13 the strongest is the “knowledge of
exponent“ assumption, for Groth16 the assumption of generic group model (GGM). The
GGM resembles random oracle model in the sense that it is also an idealized construction
that helps in formulating security proofs. The GGM also has an analogous example with
random oracle model of a cryptographic scheme that is secure in the idealized model, but
insecure with any concrete instantiation of that model [39]. With QAP-based zk-SNARKs,
which are used in Zcash, an unavoidable encumbrance is also the CRS with its trusted
setup that brings its own practical difficulties.

It may be that the above mentioned strong or uninstantiable assumptions are more of
a headache for the theoretically inclined people. Implementing practical cryptographic
schemes may also require a pragmatic stance to the assumptions.

Viability and recent trends

We have seen that CRS model based zk-SNARK schemes can have assumptions that
are almost comparable to the random oracle model. Therefore, one may ask whether
zk-SNARKs could be constructed without the CRS model, only with the random oracle
model, which as such is a simple and efficient tool and does not need a trusted setup.
Recall that the NIZK application of the random oracle model, the Fiat-Shamir transform,
converts interactive zero-knowledge proof into non-interactive. One critical requirement
for zk-SNARK is succinctness, and it should be noted that the Fiat-Shamir transform does
not in itself provide succinctness, so the underlying interactive protocol must be succinct.
In fact, in recent years NIZK constructions have been introduced in random oracle model,
which can be classified as zk-SNARKs on the basis of succinctness and other properties.

Above discussed QAP-based zk-SNARK schemes, GGPR13 and Groth16 are optimal for

63

blockchains in the sense that they are so “unbalanced“. The proof size O(1) and verifier’s
complexity O(1) are very small compared to prover’s execution time O(n log n). The proof
is stored in the blockchain and the proof verification is done at each node in the network,
so their lightness is critical. A recent example of zk-SNARK scheme where the prover’s
and verifier’s complexities are more balanced is Libra [112]. In Libra the execution time
for prover is O(n) and the proof size and verifier’s execution time is O(d log n), where n
denotes the circuit size and d the circuit depth. The prover’s work is easier than in Groth16,
but especially the proof size may make this scheme still impractical for blockchains. In
one example of the article [112], the proof size with Libra was 51 KB, while with Groth16
it was only 192 B.

There seems to be a trade-off between prover’s complexity and verifier’s complexity. In this
respect, more balanced schemes may find use outside blockchains, for example in verifiable
computation [54]. In verifiable computation, computing is outsourced to untrusted work-
ers, which reside in cloud platforms, for example. In verifiable computation the worker
returns the result of the computation along with a succinct proof that the result is valid.
In this context the zero-knowledge property is not considered, and SNARK is referred to
without “zk“.

The burden of the trusted setup has not lightened. Much work has been done in order to
reduce the need for trusted setup. Recall that in GGPR13 scheme the CRS, and therefore
the trusted setup are circuit specific. The previously mentioned Libra has an universal
CRS that can be reused with arbitrary circuits of limited size. The CRS construction
described by Groth et. al [76] is not only universal, but also updatable. Being updatable
means that the CRS can be updated after its creation, and if even one of the parties that
contributed to the creation or updating of the CRS is honest, then the CRS is secure.
Therefore, the security of the CRS does not only depend on the initial trusted setup, but
its security can be enhanced at a later stage.

As was noted before, zk-SNARKs have been achieved also with the random oracle model.
One example of such scheme is SuperSonic [31] where the proof size is logarithmic to
the circuit size; it is around 10 KB with reasonable sized circuits. Currently, in 2020,
the QAP-based schemes such as Groth16 are still in a class of their own in terms of small
proof size and verifier’s complexity. Schemes with other desired properties, such as smaller
prover’s complexity, an universal or updatable CRS, or no trusted setup, pay for these
properties with a larger proof size and verifier’s complexity. With recent developments
in non-QAP zk-SNARK schemes, this proof size trade-off may already be acceptable for

64

some blockhain applications.

6 Conclusions

Zero-knowledge proofs have proven to be a usable way to increase privacy in blockchain
applications. The cryptographic foundation is strong, and zero-knowledge proofs have
become sufficiently efficient for practical use. Blockchains are a felicitous use case for
zero-knowledge proofs because the transactions in a blockchain must be publicly verifi-
able. Depending on the extent of use, zero-knowledge proofs can reduce the information
revealed from a transaction to an absolute minimum, so only its validity is revealed in
the verification. Zcash reaches this highest obfuscation level, only the transaction fee is
disclosed.

Zero-knowledge proofs can also be used as part of cryptographic obfuscation mechanism, as
is done with Monero. Ethereum enables zero-knowledge proofs for smart contracts which
form an abstraction layer on top of the blockchain protocol. When comparing Monero and
Zcash, the amount of information revealed about transactions is lower in Zcash because
everything is concealed with zero-knowledge proofs. Therefore, it could be argued that
Zcash provides better privacy. On the other hand, the difference in privacy levels may not
be relevant given the other obfuscation mechanisms in Monero.

The situation is also affected by other factors. If users have the possibility to opt-out
of privacy enhancing features, it can erode the privacy of all users. This has been the
case with Monero in the past, and still with Zcash at the time of writing. The lack of
infrastructure support, i.e., lack of cryptocurrency wallets and exchanges that support
the privacy preserving shielded transaction, has been a major explanatory factor for the
privacy opt-out in Zcash. Third party cryptocurrency services have been struggling to
digest the high computational time and memory requirements that are related to the
construction of zero-knowledge proofs in Zcash. Still, a vast majority of Zcash transactions
are transparent, so this may well make privacy worse in Zcash than in Monero.

The blockchain setting, where transactions must be publicly verifiable, requires non-
interactive protocol for zero-knowledge proofs. The Fiat-Shamir transform provides a
partial solution and is ready to be used as a sub-protocol, but it alone does not pro-
vide succinct enough proof for the entire transaction. Constructs called zk-SNARKs have
been promising candidates, and when the QAP-based zk-SNARK scheme was introduded
by Gennaro et. al they became a practical solution to create NIZK proof for the entire

66

transaction. This QAP-based scheme that provides constant sized proof and verification
time is still the best in terms of those properties. A major drawback of it and other
similar schemes is the dependence of trusted setup. Recent advances with zk-SNARKs
have brought attractive alternatives that offer other favorable properties, such as shorter
proving time or the freedom from trusted setup.

Cryptographic assumptions for Fiat-Shamir transform and zk-SNARKs are quite strong,
at least compared to what cryptographers are generally accustomed to. It is difficult to
get a clear picture of how great a threat these assumptions pose and which of them is the
most vulnerable. On top of this there is the ongoing cryptography-wide preparation for
the quantum era. Certain cryptographic assumptions are invalidated, if the adversary has
access to a quantum computer with a sufficient number of qubits . It can be said that
some currently used cryptographic schemes are “quantum resistant“ [110], and some are
not [108], including the schemes used within NIZK.

Technological advancements, such as cryptocurrencies, are not completely detached from
societal issues. Already Bitcoin, with its supposed anonymity, has attracted users involved
in illegal activity. Criminals have also found newer privacy-focused cryptocurrencies. Arti-
cles related to cryptocurrency traceability sometimes discuss these topics as a motivating
factor for research [36], and for example, mixing services are sometimes referred to as
“[money] laundering services“. Cryptocurrencies, by definition, do not have user iden-
tification or supervising intermediaries. From the point of view of the cryptocurrency
protocol, “good“ and “bad“ activities are indistinguishable. However, this applies also
to cryptographic protocols in general. Problems related to illegal activities may be un-
avoidable, but it is generally believed that the benefits of blockchain applications outweigh
them.

Bibliography

[1] W. Aiello and J. Hastad. “Statistical Zero-Knowledge Languages Can Be Recog-
nized in Two Rounds”. In: Journal of Computer and System Sciences 42 (1991),
pp. 327–345.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. “Proof Verification and
the Hardness of Approximation Problems”. In: J. ACM 45.3 (May 1998), pp. 501–
555. issn: 0004-5411. doi: 10.1145/278298.278306. url: https://doi.org/10.

1145/278298.278306.

[3] S. Arora and S. Safra. “Probabilistic Checking of Proofs: A New Characterization
of NP”. In: J. ACM 45.1 (Jan. 1998), pp. 70–122. issn: 0004-5411. doi: 10.1145/

273865.273901. url: https://doi.org/10.1145/273865.273901.

[4] L. Babai. “Trading Group Theory for Randomness”. In: Proceedings of the Seven-
teenth Annual ACM Symposium on Theory of Computing. STOC ’85. Providence,
Rhode Island, USA: Association for Computing Machinery, 1985, pp. 421–429. isbn:
0897911512. doi: 10.1145/22145.22192. url: https://doi.org/10.1145/

22145.22192.

[5] A. Back. Hashcash - A Denial of Service Counter-Measure. Sept. 2002. url: http:

//www.hashcash.org/hashcash.pdf.

[6] D. Bayer, S. Haber, and W. S. Stornetta. “Improving the Efficiency and Reliability
of Digital Time-Stamping”. In: Sequences II. Ed. by R. Capocelli, A. De Santis,
and U. Vaccaro. New York, NY: Springer New York, 1993, pp. 329–334. isbn:
978-1-4613-9323-8.

[7] Bellare. “A Note on Negligible Functions”. In: J. Cryptol. 15.4 (Sept. 2002), pp. 271–
284. issn: 0933-2790. doi: 10.1007/s00145-002-0116-x.

[8] M. Bellare, G. Fuchsbauer, and A. Scafuro. “NIZKs with an Untrusted CRS: Se-
curity in the Face of Parameter Subversion”. In: Advances in Cryptology – ASI-
ACRYPT 2016. Ed. by J. H. Cheon and T. Takagi. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 777–804. isbn: 978-3-662-53890-6.

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
http://www.hashcash.org/hashcash.pdf
http://www.hashcash.org/hashcash.pdf
https://doi.org/10.1007/s00145-002-0116-x

68

[9] M. Bellare and O. Goldreich. “On Defining Proofs of Knowledge”. In: Advances
in Cryptology — CRYPTO’ 92. Ed. by E. F. Brickell. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1993, pp. 390–420. isbn: 978-3-540-48071-6.

[10] M. Bellare and P. Rogaway. “Random Oracles Are Practical: A Paradigm for De-
signing Efficient Protocols”. In: Proceedings of the 1st ACM Conference on Com-
puter and Communications Security. CCS ’93. Fairfax, Virginia, USA: Association
for Computing Machinery, 1993, pp. 62–73. isbn: 0897916298. doi: 10 . 1145 /

168588.168596. url: https://doi.org/10.1145/168588.168596.

[11] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. “Secure Sampling of
Public Parameters for Succinct Zero Knowledge Proofs”. In: 2015 IEEE Symposium
on Security and Privacy. May 2015, pp. 287–304. doi: 10.1109/SP.2015.25.

[12] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct Non-Interactive Zero
Knowledge for a von Neumann Architecture. Cryptology ePrint Archive, Report
2013/879. 2013. url: https://eprint.iacr.org/2013/879.

[13] D. Bernhard, O. Pereira, and B. Warinschi. “How Not to Prove Yourself: Pitfalls of
the Fiat-Shamir Heuristic and Applications to Helios”. In: Advances in Cryptology
– ASIACRYPT 2012. Ed. by X. Wang and K. Sako. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 626–643. isbn: 978-3-642-34961-4.

[14] A. Biryukov and D. Feher. “Privacy and linkability of mining in zcash”. In: 2019
IEEE Conference on Communications and Network Security (CNS). IEEE. 2019,
pp. 118–123.

[15] A. Biryukov and D. Khovratovich. “Equihash: Asymmetric proof-of-work based on
the generalized birthday problem”. In: Ledger 2 (2017), pp. 1–30.

[16] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “From Extractable Collision
Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again”.
In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.
ITCS ’12. Cambridge, Massachusetts: Association for Computing Machinery, 2012,
pp. 326–349. isbn: 9781450311151. doi: 10.1145/2090236.2090263. url: https:

//doi.org/10.1145/2090236.2090263.

[17] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky. “Succinct Non-
interactive Arguments via Linear Interactive Proofs”. In: Theory of Cryptography.
Ed. by A. Sahai. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 315–333.
isbn: 978-3-642-36594-2.

https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/SP.2015.25
https://eprint.iacr.org/2013/879
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263

69

[18] Bitcoin community Wiki. Accessed 15.11.2020. url: https://en.bitcoin.it/

wiki/.

[19] Bitcoin community Wiki, CoinJoin. Accessed 15.11.2020. url: https : / / en .

bitcoin.it/wiki/CoinJoin.

[20] M. Blum, A. De Santis, S. Micali, and G. Persiano. “Noninteractive Zero-Knowledge”.
In: SIAM Journal on Computing 20.6 (1991), pp. 1084–1118. doi: 10 . 1137 /

0220068. eprint: https://doi.org/10.1137/0220068. url: https://doi.

org/10.1137/0220068.

[21] M. Blum, P. Feldman, and S. Micali. “Non-Interactive Zero-Knowledge and Its Ap-
plications”. In: Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing. STOC ’88. Chicago, Illinois, USA: Association for Computing Ma-
chinery, 1988, pp. 103–112. isbn: 0897912640. doi: 10.1145/62212.62222. url:
https://doi.org/10.1145/62212.62222.

[22] S. Bojja Venkatakrishnan, G. Fanti, and P. Viswanath. “Dandelion: Redesigning
the Bitcoin Network for Anonymity”. In: Proc. ACM Meas. Anal. Comput. Syst. 1.1
(June 2017). doi: 10.1145/3084459. url: https://doi.org/10.1145/3084459.

[23] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. “Zero-Knowledge
Proofs on Secret-Shared Data via Fully Linear PCPs”. In: Advances in Cryptol-
ogy – CRYPTO 2019. Ed. by A. Boldyreva and D. Micciancio. Cham: Springer
International Publishing, 2019, pp. 67–97. isbn: 978-3-030-26954-8.

[24] D. Boneh, E.-J. Goh, and K. Nissim. “Evaluating 2-DNF Formulas on Ciphertexts”.
In: Theory of Cryptography. Ed. by J. Kilian. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 325–341. isbn: 978-3-540-30576-7.

[25] S. Bowe, A. Gabizon, and M. D. Green. “A multi-party protocol for constructing
the public parameters of the Pinocchio zk-SNARK”. In: International Conference
on Financial Cryptography and Data Security. Springer. 2018, pp. 64–77.

[26] S. Bowe, A. Gabizon, and M. D. Green. “A Multi-party Protocol for Constructing
the Public Parameters of the Pinocchio zk-SNARK”. In: Financial Cryptography
and Data Security. Ed. by A. Zohar, I. Eyal, V. Teague, J. Clark, A. Bracciali, F.
Pintore, and M. Sala. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 64–
77. isbn: 978-3-662-58820-8.

https://en.bitcoin.it/wiki/
https://en.bitcoin.it/wiki/
https://en.bitcoin.it/wiki/CoinJoin
https://en.bitcoin.it/wiki/CoinJoin
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/3084459
https://doi.org/10.1145/3084459

70

[27] S. Bowe, A. Gabizon, and I. Miers. Scalable Multi-party Computation for zk-SNARK
Parameters in the Random Beacon Model. Cryptology ePrint Archive, Report 2017/1050.
2017. url: https://eprint.iacr.org/2017/1050.

[28] J. Boyar, I. Damgå, and R. Peralta. “Short Non-Interactive Cryptographic Proofs”.
In: Journal of Cryptology 13.4 (2000), pp. 449–472.

[29] G. Brassard, D. Chaum, and C. Crépeau. “Minimum disclosure proofs of knowl-
edge”. In: Journal of Computer and System Sciences 37.2 (1988), pp. 156–189.
issn: 0022-0000. doi: https://doi.org/10.1016/0022-0000(88)90005-0. url:
http://www.sciencedirect.com/science/article/pii/0022000088900050.

[30] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs:
Short Proofs for Confidential Transactions and More”. In: 2018 IEEE Symposium
on Security and Privacy (SP). 2018, pp. 315–334.

[31] B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK Compilers.
Cryptology ePrint Archive, Report 2019/1229. 2019. url: https://eprint.iacr.

org/2019/1229.

[32] V. Buterin. “A next-generation smart contract and decentralized application plat-
form”. In: (2013). url: https://cryptorating.eu/whitepapers/Ethereum/

Ethereum_white_paper.pdf.

[33] R. Canetti, O. Goldreich, and S. Halevi. “The Random Oracle Methodology, Revis-
ited”. In: J. ACM 51.4 (July 2004), pp. 557–594. issn: 0004-5411. doi: 10.1145/

1008731.1008734. url: https://doi.org/10.1145/1008731.1008734.

[34] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance”. In: Proceedings
of the Third Symposium on Operating Systems Design and Implementation. OSDI
’99. New Orleans, Louisiana, USA: USENIX Association, 1999, pp. 173–186. isbn:
1880446391.

[35] CoinJoins as a Percentage of All Bitcoin Payments. Accessed 15.11.2020. url:
https://en.longhash.com/news/coinjoins- as- a- percentage- of- all-

bitcoin-payments-have-tripled-to-409-over-the-past-year.

[36] J. Crawford and Y. Guan. “Knowing your Bitcoin Customer: Money Laundering
in the Bitcoin Economy”. In: 2020 13th International Conference on Systematic
Approaches to Digital Forensic Engineering (SADFE). 2020, pp. 38–45.

[37] Cryptocurrency, The Merriam-Webster.com Dictionary. Accessed 15.11.2020. url:
https://www.merriam-webster.com/dictionary/cryptocurrency.

https://eprint.iacr.org/2017/1050
https://doi.org/https://doi.org/10.1016/0022-0000(88)90005-0
http://www.sciencedirect.com/science/article/pii/0022000088900050
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1229
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/1008731.1008734
https://en.longhash.com/news/coinjoins-as-a-percentage-of-all-bitcoin-payments-have-tripled-to-409-over-the-past-year
https://en.longhash.com/news/coinjoins-as-a-percentage-of-all-bitcoin-payments-have-tripled-to-409-over-the-past-year
https://www.merriam-webster.com/dictionary/cryptocurrency

71

[38] I. Damgård. “Non-Interactive Circuit Based Proofs and Non-Interactive Perfect
Zero-knowledge with Preprocessing”. In: Advances in Cryptology — EUROCRYPT’
92. Ed. by R. A. Rueppel. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993,
pp. 341–355. isbn: 978-3-540-47555-2.

[39] A. W. Dent. “Adapting the weaknesses of the random oracle model to the generic
group model”. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. Springer. 2002, pp. 100–109.

[40] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE Transac-
tions on Information Theory 22.6 (Nov. 1976), pp. 644–654. issn: 1557-9654. doi:
10.1109/TIT.1976.1055638.

[41] I. Dinur. “The PCP Theorem by Gap Amplification”. In: J. ACM 54.3 (June 2007),
12–es. issn: 0004-5411. doi: 10.1145/1236457.1236459. url: https://doi.org/

10.1145/1236457.1236459.

[42] J. Don, S. Fehr, C. Majenz, and C. Schaffner. “Security of the Fiat-Shamir Trans-
formation in the Quantum Random-Oracle Model”. In: Advances in Cryptology –
CRYPTO 2019. Ed. by A. Boldyreva and D. Micciancio. Cham: Springer Interna-
tional Publishing, 2019, pp. 356–383. isbn: 978-3-030-26951-7.

[43] C. Dwork and M. Naor. “Pricing via Processing or Combatting Junk Mail”. In:
Advances in Cryptology — CRYPTO’ 92. Ed. by E. F. Brickell. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 139–147. isbn: 978-3-540-48071-6.

[44] C. Dwork, M. Naor, and A. Sahai. “Concurrent Zero-Knowledge”. In: J. ACM 51.6
(Nov. 2004), pp. 851–898. issn: 0004-5411. doi: 10.1145/1039488.1039489. url:
https://doi.org/10.1145/1039488.1039489.

[45] J. Eberhardt and S. Tai. “ZoKrates-Scalable Privacy-Preserving Off-Chain Compu-
tations”. In: 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
2018, pp. 1084–1091.

[46] T. El Gamal. “A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms”. In: Proceedings of CRYPTO 84 on Advances in Cryptology.
Santa Barbara, California, USA: Springer-Verlag, 1985, pp. 10–18. isbn: 0387156585.

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1039488.1039489
https://doi.org/10.1145/1039488.1039489

72

[47] I. Eyal and E. G. Sirer. “Majority Is Not Enough: Bitcoin Mining Is Vulnerable”.
In: Financial Cryptography and Data Security. Ed. by N. Christin and R. Safavi-
Naini. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 436–454. isbn:
978-3-662-45472-5.

[48] U. Feige, D. Lapidot, and A. Shamir. “Multiple non-interactive zero knowledge
proofs based on a single random string”. In: Proceedings [1990] 31st Annual Sym-
posium on Foundations of Computer Science. Oct. 1990, 308–317 vol.1. doi: 10.

1109/FSCS.1990.89549.

[49] A. Fiat and A. Shamir. “How To Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems”. In: Advances in Cryptology — CRYPTO’ 86. Ed. by
A. M. Odlyzko. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 186–194.
isbn: 978-3-540-47721-1.

[50] L. Fortnow. “The Complexity of Perfect Zero-Knowledge”. In: Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing. STOC ’87. New
York, New York, USA: Association for Computing Machinery, 1987, pp. 204–209.
isbn: 0897912217. doi: 10.1145/28395.28418. url: https://doi.org/10.1145/

28395.28418.

[51] E. Fujisaki and K. Suzuki. Traceable Ring Signature. Cryptology ePrint Archive,
Report 2006/389. 2006. url: https://eprint.iacr.org/2006/389.

[52] M. Furer, O. Goldreich, and Y. Mansour. On Completeness and Soundness in In-
teractive Proof Systems. 1989.

[53] A. Gabizon.On the security of the BCTV Pinocchio zk-SNARK variant. Cryptology
ePrint Archive, Report 2019/119. 2019. url: https://eprint.iacr.org/2019/

119.

[54] R. Gennaro, C. Gentry, and B. Parno. “Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers”. In: Annual Cryptology Conference.
Springer. 2010, pp. 465–482.

[55] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic Span Programs and
Succinct NIZKs without PCPs. Cryptology ePrint Archive, Report 2012/215. 2012.
url: https://eprint.iacr.org/2012/215.

[56] C. Gentry. “A Fully Homomorphic Encryption Scheme”. PhD thesis. Stanford, CA,
USA, 2009. isbn: 9781109444506.

https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1145/28395.28418
https://doi.org/10.1145/28395.28418
https://doi.org/10.1145/28395.28418
https://eprint.iacr.org/2006/389
https://eprint.iacr.org/2019/119
https://eprint.iacr.org/2019/119
https://eprint.iacr.org/2012/215

73

[57] C. Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In: Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing. STOC ’09.
Bethesda, MD, USA: Association for Computing Machinery, 2009, pp. 169–178.
isbn: 9781605585062. doi: 10.1145/1536414.1536440. url: https://doi.org/

10.1145/1536414.1536440.

[58] C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. Smith. “Using Fully Ho-
momorphic Hybrid Encryption to Minimize Non-interative Zero-Knowledge Proofs”.
In: Journal of cryptology 28.4 (2015), pp. 820–843.

[59] S. Ghosh. Distributed Systems: An Algorithmic Approach, Second Edition. 2nd.
Chapman & Hall/CRC, 2014. isbn: 1466552972.

[60] O. Goldreich. “Concurrent Zero-Knowledge with Timing, Revisited”. In: Theoretical
Computer Science: Essays in Memory of Shimon Even. Ed. by O. Goldreich, A. L.
Rosenberg, and A. L. Selman. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 27–87. isbn: 978-3-540-32881-0. doi: 10 . 1007 / 11685654 _ 2. url: https :

//doi.org/10.1007/11685654_2.

[61] O. Goldreich. Foundations of Cryptography: Basic Tools. USA: Cambridge Univer-
sity Press, 2000. isbn: 0521791723.

[62] O. Goldreich. “Modern Cryptography, Probabilistic Proofs and Pseudorandom-
ness”. In: (2000). url: http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.150.485&rep=rep1&type=pdf.

[63] O. Goldreich and J. Håstad. “On the Complexity of Interactive Proofs with Bounded
Communication”. In: Inf. Process. Lett. 67.4 (Aug. 1998), pp. 205–214. issn: 0020-
0190. doi: 10.1016/S0020-0190(98)00116-1. url: https://doi.org/10.1016/

S0020-0190(98)00116-1.

[64] O. Goldreich and A. Kahan. “How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP”. In: Journal of Cryptology 9 (June 1997). doi: 10.1007/

s001459900010.

[65] O. Goldreich and H. Krawczyk. “On the Composition of Zero-Knowledge Proof Sys-
tems”. In: SIAM Journal on Computing 25 (Jan. 1996). doi: 10.1007/BFb0032038.

[66] O. Goldreich, S. Micali, and A. Wigderson. “Proofs That Yield Nothing but Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems”. In: J. ACM
38.3 (July 1991), pp. 690–728. issn: 0004-5411. doi: 10.1145/116825.116852. url:
https://doi.org/10.1145/116825.116852.

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/11685654_2
https://doi.org/10.1007/11685654_2
https://doi.org/10.1007/11685654_2
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.485&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.485&rep=rep1&type=pdf
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1007/s001459900010
https://doi.org/10.1007/s001459900010
https://doi.org/10.1007/BFb0032038
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852

74

[67] O. Goldreich and Y. Oren. “Definitions and Properties of Zero-Knowledge Proof
Systems”. In: J. Cryptol. 7.1 (Dec. 1994), pp. 1–32. issn: 0933-2790. doi: 10.1007/

BF00195207. url: https://doi.org/10.1007/BF00195207.

[68] O. Goldreich, S. Vadhan, and A. Wigderson. “On Interactive Proofs with a Laconic
Prover”. In: Comput. Complex. 11.1/2 (June 2002), pp. 1–53. issn: 1016-3328. doi:
10.1007/s00037-002-0169-0. url: https://doi.org/10.1007/s00037-002-

0169-0.

[69] S. Goldwasser and M. Sipser. “Private Coins versus Public Coins in Interactive
Proof Systems”. In: Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing. STOC ’86. Berkeley, California, USA: Association for Com-
puting Machinery, 1986, pp. 59–68. isbn: 0897911938. doi: 10.1145/12130.12137.
url: https://doi.org/10.1145/12130.12137.

[70] S. Goldwasser and Y. T. Kalai. “On the (In)security of the Fiat-Shamir paradigm”.
In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings. 2003, pp. 102–113.

[71] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of Interactive
Proof Systems”. In: SIAM Journal on Computing 18.1 (1989), pp. 186–208. doi:
10.1137/0218012. eprint: https://doi.org/10.1137/0218012. url: https:

//doi.org/10.1137/0218012.

[72] S. Goldwasser, S. Micali, and R. L. Rivest. “A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks”. In: SIAM Journal on Computing 17.2
(1988), pp. 281–308. doi: 10.1137/0217017.

[73] A. Greenberg. “Prosecutors Trace $13.4M in Bitcoins From the Silk Road to Ul-
bricht’s Laptop”. In: Wired (Jan. 2015). url: https://www.wired.com/2015/01/

prosecutors-trace-13-4-million-bitcoins-silk-road-ulbrichts-laptop/.

[74] J. Groth. “Non-interactive Zero-Knowledge Arguments for Voting”. In: Applied
Cryptography and Network Security. Ed. by J. Ioannidis, A. Keromytis, and M.
Yung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 467–482. isbn:
978-3-540-31542-1.

[75] J. Groth. “On the Size of Pairing-Based Non-Interactive Arguments”. In: Proceed-
ings, Part II, of the 35th Annual International Conference on Advances in Cryp-
tology — EUROCRYPT 2016 - Volume 9666. Berlin, Heidelberg: Springer-Verlag,
2016, pp. 305–326. isbn: 9783662498958.

https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1145/12130.12137
https://doi.org/10.1145/12130.12137
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0217017
https://www.wired.com/2015/01/prosecutors-trace-13-4-million-bitcoins-silk-road-ulbrichts-laptop/
https://www.wired.com/2015/01/prosecutors-trace-13-4-million-bitcoins-silk-road-ulbrichts-laptop/

75

[76] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. “Updatable and
Universal Common Reference Strings with Applications to zk-SNARKs”. In: Ad-
vances in Cryptology – CRYPTO 2018. Ed. by H. Shacham and A. Boldyreva.
Cham: Springer International Publishing, 2018, pp. 698–728. isbn: 978-3-319-96878-
0.

[77] J. Groth, R. Ostrovsky, and A. Sahai. “New Techniques for Noninteractive Zero-
Knowledge”. In: J. ACM 59.3 (June 2012). issn: 0004-5411. doi: 10.1145/2220357.

2220358. url: https://doi.org/10.1145/2220357.2220358.

[78] J. Groth, R. Ostrovsky, and A. Sahai. “Perfect Non-interactive Zero Knowledge
for NP”. In: Advances in Cryptology - EUROCRYPT 2006. Ed. by S. Vaudenay.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 339–358. isbn: 978-3-540-
34547-3.

[79] S. Haber and W. S. Stornetta. “How to Time-Stamp a Digital Document”. In:
Advances in Cryptology-CRYPTO’ 90. Ed. by A. J. Menezes and S. A. Vanstone.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 437–455. isbn: 978-3-540-
38424-3.

[80] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. “Zcash protocol specification”.
In: GitHub: San Francisco, CA, USA (2020). Version 2020.1.14. url: https://

raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf.

[81] H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan. “An
Empirical Study of Namecoin and Lessons for Decentralized Namespace Design.”
In: WEIS. Citeseer. 2015.

[82] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn. “An empirical analysis of
anonymity in zcash”. In: 27th {USENIX} Security Symposium ({USENIX} Security
18). 2018, pp. 463–477.

[83] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.
Chapman & Hall/CRC Cryptography and Network Security Series. Taylor & Fran-
cis, 2014. isbn: 9781466570269. url: https://books.google.fi/books?id=

OWZYBQAAQBAJ.

[84] J. Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended
Abstract)”. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on The-
ory of Computing. STOC ’92. Victoria, British Columbia, Canada: Association

https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://books.google.fi/books?id=OWZYBQAAQBAJ
https://books.google.fi/books?id=OWZYBQAAQBAJ

76

for Computing Machinery, 1992, pp. 723–732. isbn: 0897915119. doi: 10.1145/

129712.129782. url: https://doi.org/10.1145/129712.129782.

[85] J. Kilian and E. Petrank. “An Efficient Noninteractive Zero-Knowledge Proof Sys-
tem for NP with General Assumptions”. In: J. Cryptol. 11.1 (Jan. 1998), pp. 1–27.
issn: 0933-2790. doi: 10.1007/s001459900032. url: https://doi.org/10.1007/

s001459900032.

[86] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”. In:
ACM Trans. Program. Lang. Syst. 4.3 (July 1982), pp. 382–401. issn: 0164-0925.
doi: 10.1145/357172.357176. url: https://doi.org/10.1145/357172.357176.

[87] G. Maxwell. CoinJoin: Bitcoin privacy for the real world. Accessed 15.11.2020. url:
https://bitcointalk.org/index.php?topic=279249.0.

[88] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. “Simple schnorr multi-signatures
with applications to bitcoin”. In: Designs, Codes and Cryptography 87.9 (2019),
pp. 2139–2164.

[89] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage. “A Fistful of Bitcoins: Characterizing Payments among Men with
No Names”. In: Proceedings of the 2013 Conference on Internet Measurement Con-
ference. IMC ’13. Barcelona, Spain: Association for Computing Machinery, 2013,
pp. 127–140. isbn: 9781450319539. doi: 10.1145/2504730.2504747. url: https:

//doi.org/10.1145/2504730.2504747.

[90] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied Cryp-
tography. 1996.

[91] R. C. Merkle. “Protocols for Public Key Cryptosystems”. In: 1980 IEEE Symposium
on Security and Privacy. Apr. 1980, pp. 122–122. doi: 10.1109/SP.1980.10006.

[92] S. Micali. “Computationally sound proofs”. In: SIAM Journal on Computing 30.4
(2000), pp. 1253–1298.

[93] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan, J.
Hennessey, A. Miller, A. Narayanan, et al. “An empirical analysis of traceability in
the monero blockchain”. In: Proceedings on Privacy Enhancing Technologies 2018.3
(2018), pp. 143–163.

[94] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Accessed 15.11.2020.
2009. url: http://www.bitcoin.org/bitcoin.pdf.

https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/s001459900032
https://doi.org/10.1007/s001459900032
https://doi.org/10.1007/s001459900032
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://bitcointalk.org/index.php?topic=279249.0
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1109/SP.1980.10006
http://www.bitcoin.org/bitcoin.pdf

77

[95] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and
Cryptocurrency Technologies: A Comprehensive Introduction. USA: Princeton Uni-
versity Press, 2016. isbn: 0691171696.

[96] A. Narayanan and J. Clark. “Bitcoin’s academic pedigree”. In: Communications of
the ACM 60.12 (Dec. 2017), pp. 36–45. issn: 0001-0782. doi: https://doi.org/

10.1145/3132259.

[97] S. Noether, A. Mackenzie, and T. Lab. “Ring Confidential Transactions”. In: Ledger
1 (Dec. 2016), pp. 1–18. doi: 10.5195/LEDGER.2016.34.

[98] Y. Oren. “On the cunning power of cheating verifiers: Some observations about
zero knowledge proofs”. In: 28th Annual Symposium on Foundations of Computer
Science (sfcs 1987). Oct. 1987, pp. 462–471. doi: 10.1109/SFCS.1987.43.

[99] B. Parno, J. Howell, C. Gentry, and M. Raykova. “Pinocchio: Nearly Practical
Verifiable Computation”. In: 2013 IEEE Symposium on Security and Privacy. 2013,
pp. 238–252.

[100] A. Pfitzmann and M. Köhntopp. “Anonymity, Unobservability, and Pseudonymity
— A Proposal for Terminology”. In: Designing Privacy Enhancing Technologies:
International Workshop on Design Issues in Anonymity and Unobservability Berke-
ley, CA, USA, July 25–26, 2000 Proceedings. Ed. by H. Federrath. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2001, pp. 1–9. isbn: 978-3-540-44702-3. doi:
10.1007/3-540-44702-4_1. url: https://doi.org/10.1007/3-540-44702-4_1.

[101] J. Quesnelle. On the linkability of Zcash transactions. 2017. arXiv: 1712.01210

[cs.CR].

[102] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems”. In: Commun. ACM 21.2 (Feb. 1978),
pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342. url: https://doi.

org/10.1145/359340.359342.

[103] R. L. Rivest, A. Shamir, and Y. Tauman. “How to Leak a Secret”. In: Advances
in Cryptology — ASIACRYPT 2001. Ed. by C. Boyd. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 552–565. isbn: 978-3-540-45682-7.

[104] D. Ron and A. Shamir. “Quantitative Analysis of the Full Bitcoin Transaction
Graph”. In: Financial Cryptography and Data Security. Ed. by A.-R. Sadeghi.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 6–24. isbn: 978-3-642-
39884-1.

https://doi.org/https://doi.org/10.1145/3132259
https://doi.org/https://doi.org/10.1145/3132259
https://doi.org/10.5195/LEDGER.2016.34
https://doi.org/10.1109/SFCS.1987.43
https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-44702-4_1
https://arxiv.org/abs/1712.01210
https://arxiv.org/abs/1712.01210
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342

78

[105] N. van Saberhagen. CryptoNote v 2.0. 2013. url: https://cryptonote.org/

whitepaper.pdf.

[106] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
“Zerocash: Decentralized anonymous payments from bitcoin”. In: 2014 IEEE Sym-
posium on Security and Privacy. IEEE. 2014, pp. 459–474.

[107] Secure Hash Standard. Federal Inf. Process. Stds. (NIST FIPS) 180-4. NIST. 2015.

[108] P. W. Shor. “Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer”. In: SIAM review 41.2 (1999), pp. 303–332.

[109] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen. “Ringct 2.0: A compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency monero”. In:
European Symposium on Research in Computer Security. Springer. 2017, pp. 456–
474.

[110] D. Unruh. “Non-interactive zero-knowledge proofs in the quantum random oracle
model”. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 2015, pp. 755–784.

[111] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Pe-
tersburg version. Accessed 12.10.2020. url: https : / / ethereum . github . io /

yellowpaper/paper.pdf.

[112] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct Zero-
Knowledge Proofs with Optimal Prover Computation. Cryptology ePrint Archive,
Report 2019/317. 2019. url: https://eprint.iacr.org/2019/317.

[113] X. Yi, R. Paulet, and E. Bertino. Homomorphic Encryption and Applications.
Springer Publishing Company, Incorporated, 2014. isbn: 3319122282.

[114] Zcash FAQ. Accessed 15.11.2020. url: https://z.cash/support/faq/.

https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2019/317
https://z.cash/support/faq/

	Introduction
	Cryptography
	Basic concepts
	Cryptographic assumptions and tools

	Review of Blockchain
	Structure of Bitcoin
	Distributed consensus
	Bitcoin consensus mechanism
	Anonymity

	Zero-knowledge proof (ZKP)
	Interactive proof systems
	Interactive zero-knowledge proofs
	Zero-knowledge definitions and variants
	Non-interactive zero-knowledge proofs
	Efficient NIZK proofs
	Succinct NIZK arguments

	ZKP's utilization with blockchain technologies
	Zcash
	Ethereum
	Monero
	Discussion

	Conclusions
	Bibliography

